一种耐高温、隔热、透波陶瓷基复合材料及其制备方法与流程

文档序号:15844381发布日期:2018-11-07 08:49阅读:414来源:国知局

本发明涉及陶瓷复合材料制备技术领域,具体涉及一种耐高温、隔热、透波陶瓷基复合材料的制备方法。

背景技术

在军事国防领域,随着飞行器速度的大幅提高,其面临着严重的气动加热,导致在飞行器前段或机翼前缘的温度高达1200℃,为了避免热量经由天线罩体传递至机体内部,因此需要制备一种耐高温、轻质、低热导率且透波的复合材料。目前使用的石英类或氮化物陶瓷面临使用温度过低或不抗高温氧化等问题,同时为了降低材料的热导率,常会将多孔透波材料或编制体与二氧化硅气凝胶进行复合,实现隔热透波的目的,但二氧化硅较差的抗烧结能力使其不能应用于温度高于800℃的环境中。

同时,气凝胶制备过程中常采用超临界干燥,设备昂贵且具有一定的危险性。而当前发展的常压干燥工艺涉及长时间的老化及溶剂置换和干燥过程,制备周期漫长。

鉴于上述缺陷,本发明创作者经过长时间的研究和实践提出了本发明。



技术实现要素:

本发明针对现有材料体系耐热温度低和不抗氧化的问题,选用含针状晶须的多孔莫来石为基体,通过与氧化硅和氧化铝气凝胶进行复合实现提高耐热温度和降低热导率的目的,且具有良好的微波介电性能,实现了耐高温/隔热/透波各功能的一体化。本发明采用的技术方案在于,提供一种耐高温、隔热、透波陶瓷基复合材料的制备方法,其包括以下步骤:

第一步:将质量比1:0.2-0.6:1.2-3.1的高岭土、氧化铝、工业铝溶胶置于混料罐中,同时加入矿化剂和助烧剂,混合烘干并过筛后,获得混合粉体a;

第二步:将质量比1:0-0.6的第一步所述混合粉体a与造孔剂置于混料罐中,混合烘干并过筛后,获得混合粉体b;

第三步:将第二步中所述混合粉b至于钢质模具中,在10-40mpa的轴向压力下,获得陶瓷生坯,并至于封闭的氧化铝坩埚中,在马弗炉中进行排胶烧结,获得孔隙率为60%-85%的多孔莫来石;

第四步:将溶胶前驱体、去离子水、无水乙醇、二甲基甲酰胺按摩尔比1:4:1.2-2.4:0.3-0.6混合后,并先后加入盐酸和氨水,获得氧化硅溶胶;

第五步:将第三步中所述多孔莫来石置入第四步所述氧化硅溶胶中,置于室温下密封的环境中,待发生凝胶后得到复合体,将所述复合体浸入异丙醇中进行溶剂置换,置换温度为50-70℃,待置换完成后,倒出多余的所述异丙醇,将所述复合体置于60-80℃的环境中进行常压缓慢干燥,得到干燥的复合体;

第六步:将第五步中所述干燥的复合体置于流动的惰性气氛中进行裂解处理,裂解温度为600-1200℃,保温0.8-1.2h,升温速率1-5℃/min;

第七步:将第六步中所述裂解后的复合体浸入铝溶胶中,并在温度为60℃的环境下的烘干,重复浸渍过程1-3次;

第八步:将第七步中所述浸渍后的复合体置于600-800℃的空气气氛中处理1-3小时,最终获得耐高温、隔热、透波的陶瓷基复合材料。

较佳的,第一步中所述高岭土需经过900℃高温煅烧,并经球磨使其粒径分布在0.2-1μm之间;第一步所述的氧化铝为α-al2o3,且粉体粒径为1-2μm;所述的工业铝溶胶固相含量为20-30%,且所述工业铝溶胶溶胶中胶体的颗粒大小约为20-80nm。

较佳的,第一步中所述矿化剂为无水氟化铝,粒度为5-10μm,且所述矿化剂的加入量占所述混合粉体a总质量的8-12%;第一步所述助烧剂为三氧化钼,粒度为5-10μm,且所述助烧剂的加入量占所述混合粉体a总质量的6-10%。

较佳的,第二步中所用的造孔剂为ps微球或pmma微球,且所述造孔剂的平均粒径均小于5μm。

较佳的,第二步中所用的造孔剂为ps微球与活性炭混合的复合造孔剂,或pmma微球与活性炭混合的复合造孔剂,且所述造孔剂的平均粒径均小于5μm。

较佳的,第三步所述烧结的工艺为:以1-4℃/min的速率升温至630-670℃,保温1.5-2.5小时,再以3-5℃/min速率,升温至1200-1600℃,保温时间1-3小时。

较佳的,第四步所述溶胶前驱体为硅氧烷单体与正硅酸乙酯的混合物,混合摩尔比例为1:0.75-1.25,且所述硅氧烷单体为含有si-c键的烷氧基硅烷。

较佳的,第四步所述盐酸和所述氨水的浓度均为1-4mol/l。

较佳的,第七步所述的铝溶胶的制备方法为:将市售工业铝溶胶稀释至固相含量为1-5%的溶液获得;或将无机铝盐溶解于无水乙醇中,加入环氧丙烷催化后获得,其中所述无机铝盐、所述无水乙醇和所述环氧丙烷三者的摩尔比例为1:20-30:4-8;或将有机铝源溶解于无水乙醇中,搅拌后加入水和醋酸,获得铝溶胶,其中所述有机铝盐、所述无水乙醇、所述水和所述醋酸的摩尔比例为1:8-13:1.0-1.4:0.8-1.2。

利用上述方法制备的一种耐高温、隔热、透波陶瓷基复合材料。

与现有技术比较,本发明的有益效果在于:

1、通过原料的合理选取,实现了多孔莫来石的低温制备,在降低原料成本的同时也减少了生产能耗;

2、本发明引入硅氧烷单体,增强了凝胶网络的结构强度,实现了氧化硅气凝胶的常压干燥和快速制备,同时借助浸渍工艺实现了氧化硅与氧化铝气凝胶的复合,避免了复杂漫长的制备及干燥过程,缩短了制备周期,节省了制备成本;

3、所制备的材料具有低密度、耐高温、低热导率的特点,同时兼具优异的透波性能,最高使用温度可达1300℃,热导率低至0.09w/m/k,介电常数低于2.6,损耗角正切值小于5×10-3,具有优异的综合性能。

附图说明

图1为本发明实施例1中制备的一种耐高温、隔热、透波陶瓷基复合材料的sem照片。

图2为本发明实施例1中制备的一种耐高温、隔热、透波陶瓷基复合材料的介电常数及介电损耗图。

图3为本发明实施例2中制备的一种耐高温、隔热、透波陶瓷基复合材料的介电常数及介电损耗图。

具体实施方式

以下结合实施例,对本发明上述的和另外的技术特征和优点作更详细的说明。

实施例1

本实施例提供了一种耐高温、隔热、透波陶瓷基复合材料的制备方法,其特征在于,其包括以下步骤:

第一步:将质量分别为100g、52g、154g的高岭土、氧化铝、工业铝溶胶置于混料罐中,同时加入质量为7.5g和5g的矿化剂无水氟化铝和质量为5g的助烧剂三氧化钼,再加入400g氧化铝磨球和150ml无水乙醇作为研磨介质,连续混合24小时后,置于60℃烘箱中烘干并过筛后,获得混合粉体a;

第二步:将质量比1:0.5的第一步所述混合粉体a与造孔剂ps微球置于混料罐中,加入200g氧化铝磨球和150ml无水乙醇为球磨介质,湿混2小时,置于60℃烘箱中烘干并过60目钢筛,获得混合粉体b,其中所述造孔剂的平均粒径均小于5μm;

第三步:将30g第二步中所述混合粉b至于直径为60mm钢质模具中,施加20mpa的轴向压力并保压5min后脱模,获得陶瓷生坯,并至于封闭的氧化铝坩埚中,在马弗炉中进行排胶烧结,以4℃/min的速率升温至650℃,保温2小时,再以4℃/min速率,升温至1400℃,保温2小时,获得多孔莫来石;

第四步:将溶胶前驱体、去离子水、无水乙醇、二甲基甲酰胺按摩尔比1:4:1.5:0.6混合后,加入2mol/l盐酸将溶液ph值调节至1-3,搅拌2-4小时进行水解后,加入2mol/l氨水将溶液ph值调节至7-9,搅拌3分钟后,获得氧化硅溶胶,其中,所述溶胶前驱体为乙烯基三乙氧基硅烷与正硅酸乙酯按摩尔比1:1混合所得;

第五步:将第三步中所述多孔莫来石置入第四步所述氧化硅溶胶中,在真空条件下使溶胶充分渗入多孔莫来石的孔隙内,再置于室温下密封的环境中,待发生凝胶后得到复合体,将所述复合体浸入异丙醇中进行溶剂置换,置换温度为60℃,待置换完成后,倒出多余的所述异丙醇,将所述复合体置于60-80℃的环境中进行常压缓慢干燥,得到干燥的复合体;

第六步:将第五步中所述干燥的复合体置于流动的惰性气氛中进行裂解处理,裂解温度为900℃,保温1小时,升温速率3℃/min;

第七步:将第六步中所述裂解后的复合体浸入铝溶胶中,在真空条件下使所述铝溶胶充分渗入复合体的孔隙内,并在温度为60℃的环境下的烘干,重复浸渍过程2次,其中所述铝溶胶的制备方法为,将九水结晶硝酸铝溶解于无水乙醇中,加入环氧丙烷催化后搅拌获得所需铝溶胶,其中硝酸铝、无水乙醇和环氧丙烷三者的摩尔比例为1:28:6;

第八步:将第七步中所述浸渍后的复合体置于650℃的空气气氛中处理2小时,最终获得耐高温、隔热、透波的陶瓷基复合材料。

其中,第一步所述高岭土需经过900℃高温煅烧,并经球磨使其粒径分布在0.2-1μm之间;所述的氧化铝为α-al2o3,且粉体粒径为1-2μm;所述的工业铝溶胶固相含量为20-30%,且所述工业铝溶胶溶胶中胶体的颗粒大小约为20-80nm。所述矿化剂为无水氟化铝,粒度为5-10μm,所述助烧剂为三氧化钼,粒度为5-10μm。

请参见图1和图2,

图1为本实施例中制备的一种耐高温、隔热、透波陶瓷基复合材料的sem照片;

图2为本实施例中制备的一种耐高温、隔热、透波陶瓷基复合材料的介电常数及介电损耗图。

通过图1可以观察到,高气孔莫来石陶瓷的孔隙被气凝胶的纳米颗粒完全填充,因此,降低了材料的热导率。通过图2可以观察到,本实施例所制备的耐高温、隔热、透波陶瓷基复合材料平均介电常数为1.92、介电损耗角正切值小于5×10-3,具有优异的透波性能。

因此,本发明通过选用高岭土和铝溶胶为原料,降低了莫来石的反应温度,并且材料内部莫来石晶粒为针状结构,改善了材料的力学及介电性能,性能优于传统多孔莫来石;通过引入含有机基团的前驱体作为二氧化硅前驱体,并通过高温裂解的方式,提高了气凝胶孔结构的强度,为后续的铝溶胶浸渗工艺提供了基础,最终实现了两种气凝胶的复合,获得了耐热温度更高的硅铝复合气凝胶,实现了气凝胶材料的常压制备。同时,通过原料的合理选取,实现了多孔莫来石的低温制备,在降低原料成本的同时也减少了生产能耗;简化了气凝胶的干燥工艺,缩短了制备周期;且所制备的材料具有低密度、耐高温、低热导率的特点,同时兼具优异的透波性能。

实施例2

本实施例与实施例1的不同之处在于,第二步所述混合粉体a与造孔剂ps微球的质量比为1:0.35;第七步中的所述铝溶胶的制备方法为,将市售固相含量为25%工业铝溶胶稀释至固相含量为3%的溶液获得。

请参见图3,

图3为本实施例中制备的一种耐高温、隔热、透波陶瓷基复合材料的介电常数及介电损耗图。

通过图3可以看出,本实施例制备的一种耐高温、隔热、透波陶瓷基复合材料的平均介电常数为2.02,介电损耗角正切值小于5×10-3

因此,本实施例通过调节第二步中所述造孔剂ps微球的含量可实现对多孔莫来石气孔率的调节,进而实现对复合材料介电性能的调控,实现材料性能的可控制备。

实施例3

本实施例与实施例1的不同之处在于,第二步中所述造孔剂用pmma微球替代,且所述陶瓷粉体a与造孔剂的质量比为1:0.7,其中所述造孔剂的平均粒径均小于5μm:且第三步在马弗炉中进行排胶烧结,其工艺替换为,以4℃/min的速率升温至650℃,保温2小时,再以4℃/min速率,升温至1200℃,保温2小时,获得多孔莫来石。

本实施例除造孔剂的种类和含量不同外,通过采用低的烧结温度,获得具有更低热导率(0.11w/m/k)的复合材料。

实施例4

本实施例与实施例1的不同之处在于,第四步所述溶胶前驱体、所述去离子水、所述无水乙醇和所述二甲基甲酰的混合摩尔比替换为1:4:2:0.5,其中所述溶胶前驱体为甲基三乙氧基硅烷与正硅酸乙酯按摩尔比1:1混合所得。

实施例5

本实施例与实施例1的不同之处在于,第四步所述溶胶前驱体为苯基三乙氧基硅烷与正硅酸乙酯按摩尔比1:1混合所得。

实施例6

本实施例与实施例1的不同之处在于,第四步所述溶胶前驱体为二甲基二乙氧基硅烷与正硅酸乙酯按摩尔比1:1混合所得。

实施例7

本实施例与实施例3不同之处在于:第二步中的采用的造孔剂为pmma微球与活性碳粉按质量比8:2混合的复合造孔剂,且所述混合粉体a与所述造孔剂的质量比为1:0.55,其中所述造孔剂的平均粒径均小于5μm。

本实施例选用复合造孔剂来制备多孔莫来石,能够使多孔莫来石烧结过程中的线收缩率小于0.34%,增大了复合材料的气孔率,从而将热导率降至0.09w/m/k。

实施例8

本实施例与实施例3的不同之处在于,第七步中的所述铝溶胶的制备方法为,将有异丙醇铝溶解于无水乙醇中,搅拌后加入一定的水和醋酸,获得铝溶胶,其中所述异丙醇铝、所述无水乙醇、所述水和所述醋酸的摩尔比例为1:9:1:0.9。

实施例9

本实施例与实施例3的不同之处在于,第七步中的所述铝溶胶的制备方法为,将六水结晶氯化铝溶解于无水乙醇中,加入环氧丙烷催化后搅拌获得所需铝溶胶,其中所述硝酸铝、所述无水乙醇和所述环氧丙烷三者的摩尔比例为1:24:7。

以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1