一种基于冷冻流延制备功能梯度陶瓷/金属复合材料的方法与流程

文档序号:15844301发布日期:2018-11-07 08:49阅读:189来源:国知局

本发明涉及陶瓷/金属复合材料材料的方法,特别涉及一种基于冷冻流延制备功能梯度陶瓷/金属复合材料的方法。

背景技术

功能梯度陶瓷/金属复合材料是指成分(陶瓷含量)、微观结构及性能呈现连续变化的一种复合材料,有着极为广泛的应用。对于陶瓷/金属复合材料来说,陶瓷含量的梯度化可有效地解决其界面阶跃变化,改善其冲击载荷下的界面应力状态,充分发挥陶瓷的高强、高硬特性和金属的高韧性,是一种极具前景的轻量化和高效化装甲材料。然而,现有的技术很难实现功能梯度复合材料层与层之间成分、微观结构的精确控制,这也是本发明需要解决的问题。

鉴于上述缺陷,本发明创作者经过长时间的研究和实践提出了本发明。



技术实现要素:

本发明是为了实现功能梯度复合材料层与层之间成分、微观结构的精确控制,提供了一种基于冷冻流延制备功能梯度陶瓷/金属复合材料的方法,其技术方案在于,其包括以下步骤:

第一步,分别将不同比例的陶瓷粉体与去离子水混合后,依次加入分散剂、粘结剂、增塑剂和消泡剂,在混料罐中混合,得到一系列含有不同固含量的流延浆料;

第二步,将第一步得到的最低或最高固相含量的所述浆料于真空环境下脱泡,并流延成型后进行冷冻处理,至所述流延浆料完全凝固;

第三步,以第二步所述凝固后的流延浆料为基底,对第一步其它所述浆料按照固相含量的升序或降序重复第二步的过程,直至流延膜的厚度达到需求,获得冷冻坯体;

第四步,将所述冷冻坯体进行冷冻干燥、排胶、烧结后,得到多孔陶瓷预制体;

第五步,将第四步所述多孔陶瓷预制体置于模具中预热,同时将金属熔化后,倒入所述模具中,进行挤压铸造;

第六步,将第五步压制好的试件脱模,待冷却后采用机械加工除去周边多余的金属,即可得到具有功能梯度的陶瓷/金属复合材料。

较佳的,第一步所述陶瓷粉体为氧化物、氮化物、碳化物或硼化物中的一种或几种;第一步所述分散剂为聚丙烯酸、柠檬酸铵或四甲基氢氧化铵中的一种;所述粘接剂为聚乙烯醇、丙烯酸乳液、聚丙烯酸酯或聚醋酸乙烯酯中的一种,所述增塑剂为丙三醇,所述消泡剂为正丁醇。

较佳的,所述分散剂的质量为所述陶瓷粉体质量的0.1-1.5wt%,所述粘接剂的质量为所述陶瓷粉体质量的2-4wt%,所述增塑剂的质量为所述陶瓷粉体质量的4-8wt%,所述消泡剂的质量为所述陶瓷粉体质量的0.2-1wt%。

较佳的,第二步所述冷冻处理的温度为-196℃-0℃,所述保温时间为3-8min。

较佳的,第四步所述排胶的工艺条件为,以0.2-1℃/min的速度升温至500-650℃,排胶1-3h。

较佳的,第四步所述烧结的温度为600℃至2500℃。

较佳的,第四步所述冷冻干燥条件为,在温度为-40℃-0℃下,冷冻干燥24h-48h。

较佳的,第五步所述金属为铝合金、镁合金或铜合金中的一种,且所述金属的体积为所述多孔陶瓷预制体体积的1.5-3倍,且所述金属熔化后,金属液能没过所述多孔陶瓷预制体。

较佳的,第五步所述熔化的条件为,在高于所述金属熔点的100℃-200℃的温度下熔化,并保温30min。

较佳的,第五步所述压制成型的条件为,在50mpa-100mpa的压力下,保压5min-10min。

与现有技术比较,本发明的有益效果为,本发明提供的一种基于冷冻流延制备功能梯度陶瓷/金属复合材料的方法,采用逐层冷冻流延工艺,通过控制各层流延浆料的成分、固相含量和冷冻温度,实现多孔预制体成分、孔隙率和孔径大小的梯度控制,进而实现梯度复合材料成分、陶瓷含量和陶瓷分布的梯度化,得到力学性能呈梯度变化的复合材料,可广泛应用于功能梯度金属基复合材料的制备。

附图说明

图1为本发明实施例1中一种基于冷冻流延制备功能梯度陶瓷/金属复合材料的方法的工艺流程图。

具体实施方式

实施例1

请参见图1,

图1为本实施例中一种基于冷冻流延制备功能梯度陶瓷/金属复合材料的方法的工艺流程图;

本实施例提供了一种基于冷冻流延制备功能梯度陶瓷/金属复合材料的方法,其包括以下步骤:

第一步,分别将不同比例的陶瓷粉体与去离子水混合,所述陶瓷粉体的体积分数为5-60vol%,依次加入分散剂、粘结剂、增塑剂和消泡剂,在混料罐中混合8-12h,得到一系列含有不同固含量的流延浆料;其中,所述陶瓷粉体为氧化物、氮化物、碳化物中或硼化物的一种或几种,如al2o3、si3n4、aln、bn、sic、b4c、tib2等中的一种或几种,或al2o3、si3n4、aln、bn、sic、b4c、tib2中的一种与相应烧结助剂的混合物,其中所述烧结助剂为b2o3、ca-b-si玻璃、ba-al-si玻璃、ca-al-si玻璃、caf2、li2co3、cuo、mgo、sio2、y2o3中的一种或几种;所述分散剂为聚丙烯酸、柠檬酸铵或四甲基氢氧化铵中的一种,且所述分散剂的质量为所述陶瓷粉体质量的0.1-1.5wt%;所述粘接剂为聚乙烯醇、丙烯酸乳液、聚丙烯酸酯或聚醋酸乙烯酯中的一种,且所述粘接剂的质量为所述陶瓷粉体质量的2-4wt%;所述增塑剂为丙三醇,且所述增塑剂的质量为所述陶瓷粉体质量的4-8wt%;所述消泡剂为正丁醇,且所述消泡剂的质量为所述陶瓷粉体质量的0.2-1wt%。

第二步,将第一步得到的最低或最高固相含量的所述流延浆料于真空环境下脱泡15-25min,并在铝箔或者pet离型膜上流延成型后,在温度为-196℃-0℃下进行冷冻处理,至所述流延浆料完全凝固,继续保温3-8min,其中所述流延成型过程中刮刀的高度为0.1-2mm;

第三步,以第二步所述凝固后的流延浆料为基底,对第一步其它所述浆料按照固相含量的升序或降序依次重复第二步的过程,直至流延膜的厚度达到需求,获得冷冻坯体;

第四步,将所述冷冻坯体置于-40℃至0℃的冷冻干燥机中进行干燥,干燥时间为24h-48h,干燥后的坯体置于空气炉中以0.2-1℃/min的速度升温至500-650℃,排胶1-3h,以除去其中的有机添加剂,并根据陶瓷的组分和烧结制度的不同,将所述生坯置于空气炉、真空炉、气氛保护炉或气压炉中进行烧结,烧结温度为600℃-2500℃,烧结后即可得到具有成分、孔隙率及孔结构梯度的多孔陶瓷预制体;

第五步,将金属置于陶瓷坩埚中,并在高于所述金属熔点100℃-200℃的温度下熔化,保温20-40min,得到液态金属,所述金属为铝合金、镁合金或铜合金中的一种,且所述金属与所述多孔陶瓷预制体的体积比为1.5-3:1;将第四步所述多孔陶瓷预制体置于模具中并预热,所述预热温度为所述金属熔点的±50℃范围内;将所述液态金属倒入所述模具中,此时金属液能没过所述多孔陶瓷预制体,安装压头,施加50mpa-100mpa的压力,并保压5-10min,进行挤压铸造。

第六步,将第五步所述压制好的试件脱模,待冷却后采用机械加工除去周边多余的金属,即可得到具有功能梯度的陶瓷/金属复合材料。

因此,本发明提供的一种基于冷冻流延制备功能梯度陶瓷/金属复合材料的方法,采用逐层冷冻流延工艺,通过控制各层流延浆料的成分、固相含量和冷冻温度,实现多孔预制体成分、孔隙率和孔径大小的梯度控制,进而实现梯度复合材料成分、陶瓷含量和陶瓷分布的梯度化,得到力学性能呈梯度变化的复合材料,可广泛应用于功能梯度金属基复合材料的制备。

实施例2

本实施例提供了一种基于冷冻流延制备功能梯度陶瓷/金属复合材料的方法,其包括以下步骤:

第一步,按照体积比为40:60、35:65、30:70、25:75、20:80和15:85,分别将al2o3陶瓷粉体与去离子水混合,并依次加入分散剂、粘结剂、增塑剂和消泡剂,在混料罐中混合10h,得到均匀混合的陶瓷含量不同的流延浆料,分别记为浆料a、b、c、d、e和f;其中,所述分散剂为聚丙烯酸,且所述分散剂的质量为所述陶瓷粉体质量的0.9wt%;所述粘接剂为聚乙烯醇,且所述粘接剂的质量为所述陶瓷粉体质量的2.5wt%;所述增塑剂为丙三醇,且所述增塑剂的质量为所述陶瓷粉体质量的6.5wt%;所述消泡剂为正丁醇,且所述消泡剂的质量为所述陶瓷粉体质量的0.6wt%。

第二步,将第一步所述浆料a于真空环境下脱泡20min,并在铝箔上流延成型后,在温度为-40℃下进行冷冻处理,至所述流延浆料完全凝固,继续保温5min,其中所述流延成型过程中刮刀的高度为1mm;

第三步,将第一步中的所述浆料b置于真空环境下脱泡20min,以第二步所述凝固后的浆料a为基底进行流延成型,流延过程中刮刀的高度为1mm,流延后置于-40℃的平台上进行冷冻,直至浆料完全凝固后,继续保温5min;重复上述过程,分别对流延浆料c、d、e和f进行流延成型和冷冻,制备出层数为6层的冷冻坯体;

第四步,将所述冷冻坯体置于-40℃至0℃的冷冻干燥机中进行干燥,干燥时间为24h,干燥后的坯体置于空气炉中以0.5℃/min的速度升温至600℃,排胶2h,以除去其中的有机添加剂,并根据陶瓷的组分和烧结制度的不同,将所述生坯置于空气炉中进行烧结,烧结温度为1500℃,烧结后即可得到具有成分、孔隙率及孔结构梯度的多孔陶瓷预制体;

第五步,将铜合金置于陶瓷坩埚中,并在1200℃的温度下熔化,保温30min,得到液态铜合金,且所述铜合金与所述多孔陶瓷预制体的体积比为2:1;将第四步所述多孔陶瓷预制体置于模具中并预热,所述预热温度为1050℃;将所述液态铜合金倒入所述模具中,此时金属液能没过所述多孔陶瓷预制体,安装压头,施加80mpa的压力,并保压10min,进行挤压铸造。

第六步,将第五步所述压制好的试件脱模,待冷却后采用机械加工除去周边多余的金属,即可得到具有功能梯度的al2o3/cu复合材料。

因此,本发明提供的一种基于冷冻流延制备功能梯度al2o3陶瓷/铜合金复合材料的方法,采用逐层冷冻流延工艺,通过控制各层流延浆料的成分、固相含量和冷冻温度,实现多孔预制体成分、孔隙率和孔径大小的梯度控制,进而实现梯度复合材料成分、陶瓷含量和陶瓷分布的梯度化,得到力学性能呈梯度变化的复合材料,可广泛应用于功能梯度金属基复合材料的制备。

实施例3

本实施例提供了一种基于冷冻流延制备功能梯度陶瓷/金属复合材料的方法,其包括以下步骤:

第一步,按照体积比为40:60、35:65、30:70、25:75、20:80和15:85,分别将si3n4陶瓷粉体与去离子水混合,并依次加入分散剂、粘结剂、增塑剂和消泡剂,在混料罐中混合12h,得到均匀混合的陶瓷含量不同的流延浆料,分别记为浆料a、b、c、d、e和f;其中,所述分散剂为聚丙烯酸,且所述分散剂的质量为所述陶瓷粉体质量的0.4wt%;所述粘接剂为聚丙烯酸酯,且所述粘接剂的质量为所述陶瓷粉体质量的4wt%;所述增塑剂为丙三醇,且所述增塑剂的质量为所述陶瓷粉体质量的5wt%;所述消泡剂为正丁醇,且所述消泡剂的质量为所述陶瓷粉体质量的1wt%。

第二步,将第一步所述浆料a于真空环境下脱泡20min,并在铝箔上流延成型后,在温度为-160℃下进行冷冻处理,至所述流延浆料完全凝固,继续保温4min,其中所述流延成型过程中刮刀的高度为0.1mm;

第三步,将第一步中的所述浆料b置于真空环境下脱泡20min,以第二步所述凝固后的浆料a为基底进行流延成型,流延过程中刮刀的高度为0.5mm,流延后置于-160℃的平台上进行冷冻,直至浆料完全凝固后,继续保温3min;重复上述过程,分别对流延浆料c、d、e和f进行流延成型和冷冻,制备出层数为6层的冷冻坯体;

第四步,将所述冷冻坯体置于-40℃至0℃的冷冻干燥机中进行干燥,干燥时间为48h,干燥后的坯体置于空气炉中以0.2℃/min的速度升温至650℃,排胶3h,以除去其中的有机添加剂,并根据陶瓷的组分和烧结制度的不同,将所述生坯置于气压炉中进行烧结,烧结温度为1800℃,烧结后即可得到具有成分、孔隙率及孔结构梯度的多孔陶瓷预制体;

第五步,将铝合金置于陶瓷坩埚中,并在800℃的温度下熔化,保温30min,得到液态铝合金,且所述铝合金与所述多孔陶瓷预制体的体积比为1.5:1;将第四步所述多孔陶瓷预制体置于模具中并预热,所述预热温度为700℃;将所述液态铝合金倒入所述模具中,此时金属液能没过所述多孔陶瓷预制体,安装压头,施加100mpa的压力,并保压7min。

第六步,将第五步所述压制好的试件脱模,待冷却后采用机械加工除去周边多余的金属,即可得到具有功能梯度的si3n4/al复合材料。

因此,本发明提供的一种基于冷冻流延制备功能梯度si3n4陶瓷/铝合金复合材料的方法,采用逐层冷冻流延工艺,通过控制各层流延浆料的成分、固相含量和冷冻温度,实现多孔预制体成分、孔隙率和孔径大小的梯度控制,进而实现梯度复合材料成分、陶瓷含量和陶瓷分布的梯度化,得到力学性能呈梯度变化的复合材料,可广泛应用于功能梯度金属基复合材料的制备。

实施例4

本实施例与实施例3的区别之处在于,第一步所述陶瓷粉体用bn、aln中的一种或几种替代,其它与实施例3相同。

实施例5

本实施例提供了一种基于冷冻流延制备功能梯度陶瓷/金属复合材料的方法,其包括以下步骤:

第一步,按照体积比为40:60、35:65、30:70、25:75、20:80和15:85,分别将sic陶瓷粉体与去离子水混合,并依次加入分散剂、粘结剂、增塑剂和消泡剂,在混料罐中混合8h,得到均匀混合的陶瓷含量不同的流延浆料,分别记为浆料a、b、c、d、e和f;其中,所述分散剂为四甲基氢氧化铵,且所述分散剂的质量为所述陶瓷粉体质量的1.5wt%;所述粘接剂为聚醋酸乙烯酯,且所述粘接剂的质量为所述陶瓷粉体质量的4wt%;所述增塑剂为丙三醇,且所述增塑剂的质量为所述陶瓷粉体质量的6wt%;所述消泡剂为正丁醇,且所述消泡剂的质量为所述陶瓷粉体质量的0.6wt%。

第二步,将第一步所述浆料a于真空环境下脱泡20min,并在铝箔上流延成型后,在温度为-45℃下进行冷冻处理,至所述流延浆料完全凝固,继续保温6min,其中所述流延成型过程中刮刀的高度为0.8mm;

第三步,将第一步中的所述浆料b置于真空环境下脱泡20min,以第二步所述凝固后的浆料a为基底进行流延成型,流延过程中刮刀的高度为0.8mm,流延后置于-45℃的平台上进行冷冻,直至浆料完全凝固后,继续保温6min;重复上述过程,分别对流延浆料c、d、e和f进行流延成型和冷冻,制备出层数为6层的冷冻坯体;

第四步,将所述冷冻坯体置于-40℃至0℃的冷冻干燥机中进行干燥,干燥时间为32h,干燥后的坯体置于空气炉中以0.6℃/min的速度升温至500℃,排胶1.5h,以除去其中的有机添加剂,并根据陶瓷的组分和烧结制度的不同,将所述生坯置于在真空炉或气氛保护炉中进行烧结,烧结温度为1700℃,烧结后即可得到具有成分、孔隙率及孔结构梯度的多孔陶瓷预制体;

第五步,将铝合金置于陶瓷坩埚中,并在800℃的温度下熔化,保温30min,得到液态铝合金,且所述铝合金与所述多孔陶瓷预制体的体积比为3:1;将第四步所述多孔陶瓷预制体置于模具中并预热,所述预热温度为650℃;将所述液态铝合金倒入所述模具中,此时金属液能没过所述多孔陶瓷预制体,安装压头,施加70mpa的压力,并保压5min。

第六步,将第五步所述压制好的试件脱模,待冷却后采用机械加工除去周边多余的金属,即可得到具有功能梯度的sic/al复合材料。

因此,本发明提供的一种基于冷冻流延制备功能梯度sic陶瓷/铝合金复合材料的方法,采用逐层冷冻流延工艺,通过控制各层流延浆料的成分、固相含量和冷冻温度,实现多孔预制体成分、孔隙率和孔径大小的梯度控制,进而实现梯度复合材料成分、陶瓷含量和陶瓷分布的梯度化,得到力学性能呈梯度变化的复合材料,可广泛应用于功能梯度金属基复合材料的制备。

实施例6

本实施例与实施例5的区别之处在于,第一步所述陶瓷粉体用b4c替代,其它与实施例5相同。

实施例7

本实施例提供了一种基于冷冻流延制备功能梯度陶瓷/金属复合材料的方法,其包括以下步骤:

第一步,按照体积比为40:60、35:65、30:70、25:75、20:80和15:85,分别将tib2陶瓷粉体与去离子水混合,并依次加入分散剂、粘结剂、增塑剂和消泡剂,在混料罐中混合10h,得到均匀混合的陶瓷含量不同的流延浆料,分别记为浆料a、b、c、d、e和f;其中,所述分散剂为柠檬酸三铵,且所述分散剂的质量为所述陶瓷粉体质量的0.4wt%;所述粘接剂为聚丙烯酸酯,且所述粘接剂的质量为所述陶瓷粉体质量的3wt%;所述增塑剂为丙三醇,且所述增塑剂的质量为所述陶瓷粉体质量的4wt%;所述消泡剂为正丁醇,且所述消泡剂的质量为所述陶瓷粉体质量的1wt%。

第二步,将第一步所述浆料a于真空环境下脱泡20min,并在铝箔上流延成型后,在温度为-80℃下进行冷冻处理,至所述流延浆料完全凝固,继续保温5min,其中所述流延成型过程中刮刀的高度为0.2mm;

第三步,将第一步中的所述浆料b置于真空环境下脱泡20min,以第二步所述凝固后的浆料a为基底进行流延成型,流延过程中刮刀的高度为0.5mm,流延后置于-80℃的平台上进行冷冻,直至浆料完全凝固后,继续保温3min;重复上述过程,分别对流延浆料c、d、e和f进行流延成型和冷冻,制备出层数为6层的冷冻坯体;

第四步,将所述冷冻坯体置于-40℃至0℃的冷冻干燥机中进行干燥,干燥时间为30h,干燥后的坯体置于空气炉中以0.2℃/min的速度升温至600℃,排胶3h,以除去其中的有机添加剂,并根据陶瓷的组分和烧结制度的不同,将所述生坯置于真空炉中进行烧结,烧结温度为1800℃,烧结后即可得到具有成分、孔隙率及孔结构梯度的多孔陶瓷预制体;

第五步,将镁合金置于陶瓷坩埚中,并在800℃的温度下熔化,保温30min,得到液态镁合金,且所述镁合金与所述多孔陶瓷预制体的体积比为1.5:1;将第四步所述多孔陶瓷预制体置于模具中并预热,所述预热温度为600℃;将所述液态镁合金倒入所述模具中,此时金属液能没过所述多孔陶瓷预制体,安装压头,施加100mpa的压力,并保压7min。

第六步,将第五步所述压制好的试件脱模,待冷却后采用机械加工除去周边多余的金属,即可得到具有功能梯度的tib2/mg复合材料。

因此,本发明提供的一种基于冷冻流延制备功能梯度tib2陶瓷/镁合金复合材料的方法,采用逐层冷冻流延工艺,通过控制各层流延浆料的成分、固相含量和冷冻温度,实现多孔预制体成分、孔隙率和孔径大小的梯度控制,进而实现梯度复合材料成分、陶瓷含量和陶瓷分布的梯度化,得到力学性能呈梯度变化的复合材料,可广泛应用于功能梯度金属基复合材料的制备。

尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1