高介电常数陶瓷粉料及所制得的陶瓷电容器及制造方法与流程

文档序号:15570480发布日期:2018-09-29 04:20阅读:1519来源:国知局

本发明涉及一种高介电常数陶瓷粉料及利用这种高介电常数粉料所制得的圆片陶瓷电容器,特别是涉及具有2f4特性的高介电常数陶瓷粉料及利用这种粉料所制得的圆片陶瓷电容器。



背景技术:

目前,中高压圆片陶瓷电容器广泛应用于中高压电子线路和电力设备,如彩色电视机、激光器、电力阻断器、微波炉、等电器设备中的电容器,其市场较为广阔。为了适应电子产品的小型化技术的发展,在保证圆片电容器的适用性和高性能的前提下尽可能提高电容器的介电常数,以减小圆片电容器的体积,这对电容器的制造工艺和对原材料的选择提出了较高的要求。目前,国内生产使用的具有2f4特性(所谓2f4特性是指-25℃~+85℃,ε/ε20℃在+22%~-82%)的电子陶瓷粉料主要是采用batio3体系的瓷料,但使用的瓷料最高介电常数小于15000,烧结温度在1320℃以上,耐压特性vdc在5-6kv/mm,vac在2.5-3kv/mm左右。

上述现有技术的缺点是:一是介电常数偏低,电容器稳定性差,耐压特性一般,不能适应元件小型化的特点。二是瓷料烧结温度偏高,一般在1320℃以上烧结,增加了生产成本,原因是:采用的材料与配方的匹配性以及添加物的种类、数量等造成。



技术实现要素:

针对上述现有技术的不足,本发明提供了一种高介电常数陶瓷粉料,该高介电常数粉料具有2f4特性。

另一方面,本发明还提供了由上述高介电常数陶瓷粉料制造的圆片陶瓷电容器以及制备陶瓷电容器的方法。

一种高介电常数陶瓷粉料,其包括第一组分batio3、第二组分bazro3、第三组分cazro3,其特征在于:还包括总含量占陶瓷粉料重量百分含量为0.1%~2.0%的第四组分,第四组分选自mnco3、mno2、zno、sm2o3、cuo、ceo2、中的一种或两种以上。

进一步来说,所述第一组分batio3占陶瓷粉料重量百分含量的80%~95%,且该组分中ba∶ti摩尔比的范围为1∶0.90~1.10;所述第二组分bazro3占陶瓷粉料重量百分含量的4.5%~15%,且该组分中ba∶zr摩尔比的范围为1∶0.90~1.10;所述第三组分cazro3占陶瓷粉料重量百分含量的0.5%~3.0%,且该组分中ca∶zr摩尔比的范围为1∶0.90~1.10。

具体地来说,所述第一组分batio3是把baco3、tio2按比例球磨混合均匀后,在1150~1250℃煅烧2~5小时后获得;所述第二组分bazro3是把baco3、zro2按比例球磨混合均匀后,在1150~1250℃煅烧2~5小时后获得;所述第三组分cazro3是把caco3、zro2按比例球磨混合均匀后,在1170~1270℃煅烧2~5小时后获得。

一种以上述高介电常数陶瓷粉料所制得的陶瓷电容器。

一种如上所述的陶瓷电容器的制备方法,包括以下步骤:将所述陶瓷粉料的各组分湿磨均匀,磨细后干燥,进行干压成型、挤压或扎膜成型制得生坯;然后依次进行排胶、烧结、超声波清洗;最后进行分选、印银、还原、测试、包封;所述排胶温度是280~400℃,烧结温度是1250℃~1290℃,烧结时间为1~3小时。

对采用本发明上述陶瓷粉体的圆片电容器产品进行测试,其各项技术指标均符合国标2f4标准,主要特征参数为:

介电常数(20℃,1khz):17000~20000

介质损耗(20℃,1khz):<80×10-4

绝缘性能:>1010

抗电强度:vdc·>6.0kv/mm,vac·>3.2kv/mm

温度特性:-25℃~+85℃iδε/ε20℃i在+22%~-82%

烧结特性ts:1250℃~1290℃

从以上可知本发明是batio3一bazro3一cazro3体系的陶瓷粉料,但由于本发明对所用主要原料组分中的摩尔比进行控制,因而产品的性能随着ba、ti、zr、ca比例的摩尔比变化而变化,适当的ba、ti、zr、ca的摩尔比有利于瓷体烧结性能的改善和瓷体介电常数的提高,batio3作为主晶相从低成本和工艺成熟考虑比较有利,而且是一种典型的铁电材料以其为基的铁电材料具有较高的介电常数,现在对batio3的改性多数通过取代置换引起的效应来提高峰值,加入量达到80%~95%范围时,使瓷料有较高的介电常数和耐压,同时又有较低的介质损耗,含量过高则难以在本发明温度下烧结,过低则难以获得较高的介电常数。利用第二组份bazro3控制瓷料的居里温度点移动,有利于抑制温度系数的漂移,并且zr能有效地阻止ti还原且通过置换取代,起到移峰作用,当加入量大于15%时,会使介电常数直线下降达不到本发明要求,少于4.5%时瓷料恶化出现烧不熟的现象。同时第三组份cazro3主要是起到展宽峰值的作用,随着其含量在本发明的范围内可获得优良的ε-t曲线,如果加入量少于0.5%起不到展宽峰值的作用,大于3.0%介电常数受到压制而变得降低。本发明通过加入第四组分来调整瓷料的温度系数和烧结温度,使瓷料的温度特性符合2f4特性。其中zno是典型的晶粒成长阻滞剂,它的加入不能移动居里点,但能有效控制晶粒生长速度,有利于促进陶瓷的致密性,达到提高陶瓷介质抗电强度的目的。cuo主要起烧结促进和低温烧结剂的作用,能够减缓粒界的移动,抑制晶粒的二次生长。mnco3或mno2的加入起到对瓷料的烧结成色稳定作用,更重要还可以调节居里点,使其介电常数提高。sm2o3的加入也有效地改善烧结,使瓷体具有均匀的晶格,有助耐电强度提高。ceo2对钛酸钡陶瓷的晶粒生长有较大的抑制作用来减小介电常数温度变化率。当中第四组份的总加入量在0.1%--2.0%较为合适,见表1。所以利用本发明陶瓷粉料制得的电容器介电常数提高到17000<k<20000,而且直流(交流)耐压特性也有提高,烧结温度也降低到了约1250℃~1290℃左右。这样,使用本发明瓷料不但适应了电子产品的大容量小型化技术的发展,耐压特性高,而且降低烧结温度,大大节约生产厂家的生产成本。

具体实施方式

下面结合实施例对本发明作进一步的说明,但本发明的范围并不限于如下实施方式。

具体实施方式:

本发明是采用batio3一bazro3一cazro3体系,然后通过加入第四组份改性添加剂来调节瓷料的性能、采用常规的工艺制成所需瓷料,得到一种符合2f4瓷介特性、高介电常数的环保型介质材料,下面结合实施例对本发明的内容作进一步详述.

选取电子级的baco3、tio2、zro2、caco3作为原材料,将baco3、tio2按1∶0.9~1.1(如本例中按1∶1)比例称重,将物料置于球磨机中进行湿式混合均匀,随后在空气中以1150~1250℃的温度锻烧1~3小时,从而获得第一组分batio3。

将baco3、zro2,按1∶0.9~1.1(如本例中按1∶1)比例称重,将物料置于球磨机中进行湿式混合均匀,随后在空气中以1150~1250℃的温度锻烧1~3小时,从而获得第二组分bazro3。

将caco3、zro2按1∶0.9~1.1(如本例中按1∶1)比例称重,将物料置于球磨机中进行湿式混合均匀,随后在空气中以1170~1270℃的温度锻烧1~3小时,从而获得第三组分cazro3,得到以上主要组份物料后,再按以下方法制得陶瓷电容器。

1、将第一组分batio3、第二组分bazro3、第三组分cazro3和mnco3、mno2、zno、sm2o3、cuo、ceo2、等粉末按表1配方1-10称重,将称好的物料混合置于球磨机中先初步湿磨,后再入砂磨机中进行磨细,然后按配料重量加入固含量为10%而加入量为10%-20%的pva胶水溶液及适量的分散剂、消泡剂、脱膜剂等,用造粒干燥机进行干燥造粒,再通过干压成型方法制得生坯,然后经过叠片、1270℃烧结1~3小时、超声波清洗、分选、印银、还原、测试、包封、测试,最后获得可在整机上使用的电容器,测得性能如表2中1-10所示。

使用hp4278a电桥测定在1khz,1vrms,20℃的电容量(c)和介电损耗(tanδ),由c通过计算可得到介电常数(ε)。在20℃和85℃,使用绝缘电阻测定仪,测定样品的绝缘电阻(r),从而获得c与r的乘积,即cr积。测定以20℃为基准的在-25℃,85℃的电容变化率(δc/c20℃);测定以20℃为基准的在-25℃和85℃的电容变化率(δc/c20℃),以及在-25℃至85℃的温度范围内的电容量的变化最大率(δc/cmax)。各种材料配方及性能实施例如表1、表2所示:

表1:配方组成(单位:克)

表2:根据上述陶瓷介质材料制得产品性能参数

上述的陶瓷电容器是圆片电容器,其制备方法主要是采用干压成型、挤压或扎膜等方法制得生坯,然后经过叠片、烧结、超声波清洗、分选、印银、还原、测试、包封、测试,最后获得可在整机上使用的环保电容器。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1