一种高压陶瓷电容器介质及其制备方法与流程

文档序号:15570482发布日期:2018-09-29 04:20阅读:187来源:国知局

本发明涉及无机非金属材料技术领域,具体涉及一种高压陶瓷电容器介质以及这种高压陶瓷电容器介质的制备方法。



背景技术:

彩电、电脑、通迅、航空航天、导弹、航海等领域迫切需要击穿电压高、温度稳定性好、可靠性高、小型化、大容量的陶瓷电容器。一般单片高压陶瓷电容器介质的烧结温度为1300~1430℃,能耗较高,增加了高压陶瓷电容器的成本。用于生产高压陶瓷电容器的介质中通常含有一定量的铅、镉,这不仅在生产、使用和废弃过程中对人体和环境造成危害,而且对性能稳定性也有不良影响。有些陶瓷电容器介质虽属无铅、无镉介质材料,但介电常数太小,不利于提高陶瓷电容器的容量并且小型化,且耐压性较差,不利于扩大陶瓷电容器的使用范围及提高安全性。

中国期刊《电子元件与材料》1989年第5期在“高介高压2b4介质陶瓷”一文中公开了一种高压陶瓷电容器介质材料,该介质材料采用97.8wt.%batio3、0.8wt.%bi2o3、0.7wt.%nb2o5、0.5wt.%ceo2和0.2wt.%mno2的配方,以常规的工艺制备试样,其介电常数ε=2500~2600,tgδ=0.5-1.4%,直流耐压强度为7kv/mm。该介质虽属无铅介质材料,但耐压性较差,介电常数太小。

中国专利“一种高压陶瓷电容器介质”(专利号zl00112050.6)公开的电容器陶瓷介质虽属无铅介质材料,但介电常数太小(介电常数为1860-3300),耐电压可以达到10kv/mm以上(直流),烧结温度较高(烧结温度为1260-1400℃)。

中国期刊《江苏陶瓷》1999年第2期在“batio3系低温烧成高介x7r电容器瓷料”一文中公开了一种batio3中低温烧成高介满足x7r特性的电容器瓷料,该介质材料的配方组成为(质量百分数):(batio3+nd2o3)89%~92%+bi2o3·2tio27.5~10%+低熔点玻璃料0.8%+50%mn(no3)2(水溶液)0.205%。其中,所用的低熔点玻璃料是硼硅酸铅低熔点玻璃,介质是含铅的,并且未涉及耐电压,介电常数小于3500。

另有专利“高介高性能中温烧结片式多层瓷介电容器瓷料”(专利申请号:97117286.2),它是采用固相法合成等价和异价离子同时取代(sr2+,zr4+,sn4+,nb5+)batio3固溶体,加入适量的硼铅锌铜玻璃烧结剂,使瓷料在中温烧结,其性能为:介电常数大于等于16000,耐压为700v/mm,虽然介电常数高,但是材料的耐压太差,另外其组分含有一定量的铅。

还有中国专利“高性能中温烧结片式多层瓷介电容器瓷料”(专利申请号:97117287.0),它采用独特的配方(重量百分比)(batio393~96%+nb2o50.8~1.5%+bi2o31.0~2.2%+助熔剂1.8~3.5%+改性剂0.25~1.0%)得到中温烧结的满足如下性能的电容器陶瓷:介电常数为3000,介质损耗小于1.5%,耐压为860v/mm。所用的助熔剂含有一定量的铅,且耐电压太差,同时介电常数太低。

还有中国专利“一种中低温烧结高压陶瓷电容器介质”(专利申请号:200410041863.x),它采用独特的配方(重量百分比)(batio360-90%,srtio31-20%cazro30.1-10%,nb2o50.01-1%,mgo0.01-1%,ceo20.01-0.8%,zno0.01-0.6%,co2o30.03-1%,铋锂固溶体0.05-10%)得到中温烧结的满足如下性能的电容器陶瓷:介电常数为2000~3000,耐电压为6kv/mm以上,其介电常数和耐电压均较低。



技术实现要素:

本发明所要解决的技术问题是提供一种高压陶瓷电容器介质以及这种高压陶瓷电容器介质的制备方法,这种高压陶瓷电容器介质介电常数高,且耐电压高,在制备和使用过程中不污染环境,并且能够在较低温度下烧结。采用的技术方案如下:

一种高压陶瓷电容器介质,其特征在于由下述重量配比的原料制成:batio355-90%,srtio32-25%,naalsi2o62-15%,nd(zn1/2ti1/2)o30.05-10%,v2o50.03-1.0%,zno0.1-1.5%,mno20.03-1.0%。

一种优选方案中,上述高压陶瓷电容器介质由下述重量配比的原料制成:batio360-86%,srtio33-22%,naalsi2o63-12%,nd(zn1/2ti1/2)o30.5-8%,v2o50.2-0.6%,zno0.2-0.7%,mno20.03-1.0%。

另一种优选方案中,上述高压陶瓷电容器介质由下述重量配比的原料制成:batio365-83%,srtio33-19%,naalsi2o64-10%,nd(zn1/2ti1/2)o31-6%,v2o50.2-0.6%,zno0.2-0.7%,mno20.03-1.0%。

另一种优选方案中,上述高压陶瓷电容器介质由下述重量配比的原料制成:batio370-81%,srtio34-17%,naalsi2o63-8%,nd(zn1/2ti1/2)o31-5%,v2o50.2-0.6%,zno0.2-0.7%,mno20.03-1.0%。

优选上述batio3、srtio3、naalsi2o6、nd(zn1/2ti1/2)o3分别是采用常规的化学原料以固相法合成。

上述batio3可采用如下工艺制备:按1:1的摩尔比配备baco3和tio2,然后对baco3和tio2进行研磨并混合均匀,再将baco3和tio2的混合物料放入氧化铝坩埚内,于1250℃下保温120分钟,得到batio3。得到的batio3冷却后,经研磨并过200目筛,备用。

上述srtio3可采用如下工艺制备:按1:1的摩尔比配备srco3和tio2,然后对srco3和tio2进行研磨并混合均匀,再将srco3和tio2的混合物料放入氧化铝坩埚内,于1260℃下保温120分钟,得到srtio3。得到的srtio3冷却后,经研磨并过200目筛,备用。

上述naalsi2o6可采用如下工艺制备:按1:0.5:2的摩尔比配备naco3和al2o3和sio2,然后对naco3和al2o3和sio2进行研磨并混合均匀,再将naco3和al2o3和sio2的混合物料放入氧化铝坩埚内,于1200-1230℃下保温120分钟,得到naalsi2o6。得到的naalsi2o6冷却后,经研磨并过200目筛,备用。

上述nd(zn1/2ti1/2)o3可采用如下工艺制备:按0.5:0.5:0.5的摩尔比配备nd2o3和zno和tio2,然后对nd2o3和zno和tio2进行研磨并混合均匀,再将nd2o3和zno和tio2的混合物料放入氧化铝坩埚内,于1050-1130℃下保温120分钟,得到nd(zn1/2ti1/2)o3。得到的nd(zn1/2ti1/2)o3冷却后,研磨并过200目筛,备用。

上述naalsi2o6、nd(zn1/2ti1/2)o3的加入能提高高压陶瓷电容器介质的耐压并且能降低介质损耗,同时能降低高压陶瓷电容器介质的烧结温度。

本发明还提供上述高压陶瓷电容器介质的一种制备方法,其特征在于包括下述步骤:

(1)按比例配备batio3、srtio3、naalsi2o6、nd(zn1/2ti1/2)o3、v2o5、zno和mno2;

(2)将步骤(1)所配备的batio3、srtio3、naalsi2o6、nd(zn1/2ti1/2)o3、v2o5、zno和mno2粉碎并混合均匀,得到混合粉料;

(3)对步骤(2)得到的混合粉料进行烘干,得到干粉料;

(4)向干粉料中加入粘结剂并进行造粒,得到颗粒状物料;

(5)将步骤(4)得到的颗粒状物料压制成生坯片;

(6)将生坯片置于1210-1250℃下保温1-4小时,使生坯片排出粘结剂并烧结,得到所述高压陶瓷电容器介质。

得到的高压陶瓷电容器介质为陶瓷片,在780-870℃下保温15分钟进行烧银,形成银电极,再焊引线,进行包封,即得陶瓷电容器。

步骤(2)中,可以分别将各种原料粉碎后混合均匀;也可以将各种原料混合后进行粉碎,随后边粉碎边混合,或粉碎后再使各种原料混合均匀。粉碎设备可采用球磨,也可以采用其它粉碎设备。优选采用行星球磨机对配备好的原料进行球磨,被球磨的原料、所用球、所用水的重量比例为:原料:球:水=1:3:(0.6-1.0),球磨过程持续4-8小时。水可采用蒸馏水或去离子水。

步骤(4)的粘结剂可采用聚乙烯醇水溶液(即pva溶液)。优选步骤(4)的粘结剂采用重量百分比浓度为10%的聚乙烯醇溶液,所加入的聚乙烯醇溶液的重量为干粉料的重量的8-10%。

步骤(4)中,可在造粒后混研并过40目筛。

优选步骤(5)中,在20-30mpa压力下对颗粒状物料进行干压成型,得到生坯片。

本发明与现有技术相比,具有如下优点:

(1)本发明的陶瓷电容器介质的介电常数高(介电常数为5600以上),耐电压高(直流耐电压可达23kv/mm以上,交流耐压可达14kv/mm以上),介质损耗小(介质损耗小于0.1%)。由于介电常数高,因而能实现陶瓷电容器的小型化和大容量,符合陶瓷电容器的发展趋势,同时也会降低陶瓷电容器的成本。耐电压的提高有利于扩大陶瓷电容器的使用范围和安全性。

(2)本发明的陶瓷电容器介质的电容温度变化率小,符合y5u特性的要求;同时由于介质损耗小(小于0.1%),因此在使用过程中性能稳定性好,安全性高。

(3)本发明的陶瓷电容器介质可中温烧结(1210-1250℃),这样能大大降低高压陶瓷电容器的成本。

(4)本发明的陶瓷电容器介质组分中不含铅和镉,在制备和使用过程中对环境无污染。

此外,主要原料采用陶瓷电容器级纯即可制造出本发明的陶瓷电容器介质。

本发明的陶瓷电容器介质适合于制备单片陶瓷电容器和多层片式陶瓷电容器。

具体实施方式

实施例1

首先,以固相法合成batio3、srtio3、naalsi2o6、nd(zn1/2ti1/2)o3。

batio3采用如下工艺制备:按1:1的摩尔比配备baco3和tio2,然后对baco3和tio2进行研磨并混合均匀,再将baco3和tio2的混合物料放入氧化铝坩埚内,于1250℃下保温120分钟,得到batio3。得到的batio3冷却后,经研磨并过200目筛,备用。

srtio3采用如下工艺制备:按1:1的摩尔比配备srco3和tio2,然后对srco3和tio2进行研磨并混合均匀,再将srco3和tio2的混合物料放入氧化铝坩埚内,于1260℃下保温120分钟,得到srtio3。得到的srtio3冷却后,经研磨并过200目筛,备用。

naalsi2o6采用如下工艺制备:按1:0.5:2的摩尔比配备naco3和al2o3和sio2,然后对naco3和al2o3和sio2进行研磨并混合均匀,再将naco3和al2o3和sio2的混合物料放入氧化铝坩埚内,于1220℃下保温120分钟,得到naalsi2o6。得到的naalsi2o6冷却后,经研磨并过200目筛,备用。

nd(zn1/2ti1/2)o3采用如下工艺制备:按0.5:0.5:0.5的摩尔比配备nd2o3和zno和tio2,然后对nd2o3和zno和tio2进行研磨并混合均匀,再将nd2o3和zno和tio2的混合物料放入氧化铝坩埚内,于1090℃下保温120分钟,得到nd(zn1/2ti1/2)o3。得到的nd(zn1/2ti1/2)o3冷却后,研磨并过200目筛,备用。

然后,按下述步骤制备高压陶瓷电容器介质:

(1)按比例配备batio3、srtio3、naalsi2o6、nd(zn1/2ti1/2)o3、v2o5、zno和mno2;

参考表1,配备的各种原料的重量百分比如下:batio383%,srtio35%,naalsi2o65%,nd(zn1/2ti1/2)o36%,v2o50.3%,zno0.3%,mno20.4%;

(2)将步骤(1)所配备的batio3、srtio3、naalsi2o6、nd(zn1/2ti1/2)o3、v2o5、zno和mno2粉碎并混合均匀,得到混合粉料;

本步骤(2)中,采用行星球磨机对配备好的原料进行球磨,被球磨的原料、所用球、所用水的重量比例为:原料:球:水=1:3:0.9,球磨过程持续5小时;

(3)对步骤(2)得到的混合粉料进行烘干,得到干粉料;

(4)向干粉料中加入粘结剂并进行造粒(在造粒后混研并过40目筛),得到颗粒状物料;

本步骤(4)的粘结剂采用重量百分比浓度为10%的聚乙烯醇溶液,所加入的聚乙烯醇溶液的重量为干粉料的重量的9.5%;

(5)将步骤(4)得到的颗粒状物料压制成生坯片;

本步骤(5)中,在26mpa压力下对颗粒状物料进行干压成型,得到生坯片;

(6)将生坯片置于1230℃下保温3小时,使生坯片排出粘结剂并烧结,得到所述高压陶瓷电容器介质。

得到的高压陶瓷电容器介质为陶瓷片,在800℃下保温15分钟进行烧银,形成银电极,再焊引线,进行包封,即得陶瓷电容器。

实施例2

首先,以固相法合成batio3、srtio3、naalsi2o6、nd(zn1/2ti1/2)o3。

本实施例中batio3、srtio3的制备工艺与实施例1相同。

naalsi2o6采用如下工艺制备:按1:0.5:2的摩尔比配备naco3和al2o3和sio2,然后对naco3和al2o3和sio2进行研磨并混合均匀,再将naco3和al2o3和sio2的混合物料放入氧化铝坩埚内,于1200℃下保温120分钟,得到naalsi2o6。得到的naalsi2o6冷却后,经研磨并过200目筛,备用。

nd(zn1/2ti1/2)o3采用如下工艺制备:按0.5:0.5:0.5的摩尔比配备nd2o3和zno和tio2,然后对nd2o3和zno和tio2进行研磨并混合均匀,再将nd2o3和zno和tio2的混合物料放入氧化铝坩埚内,于1130℃下保温120分钟,得到nd(zn1/2ti1/2)o3。得到的nd(zn1/2ti1/2)o3冷却后,研磨并过200目筛,备用。

然后,按下述步骤制备高压陶瓷电容器介质:

(1)按比例配备batio3、srtio3、naalsi2o6、nd(zn1/2ti1/2)o3、v2o5、zno和mno2;

参考表1,配备的各种原料的重量百分比如下:batio381%,srtio38%,naalsi2o66%,nd(zn1/2ti1/2)o34%,v2o50.3%,zno0.5%,mno20.2%;

(2)将步骤(1)所配备的batio3、srtio3、naalsi2o6、nd(zn1/2ti1/2)o3、v2o5、zno和mno2粉碎并混合均匀,得到混合粉料;

本步骤(2)中,采用行星球磨机对配备好的原料进行球磨,被球磨的原料、所用球、所用水的重量比例为:原料:球:水=1:3:0.8,球磨过程持续6小时;

(3)对步骤(2)得到的混合粉料进行烘干,得到干粉料;

(4)向干粉料中加入粘结剂并进行造粒(在造粒后混研并过40目筛),得到颗粒状物料;

本步骤(4)的粘结剂采用重量百分比浓度为10%的聚乙烯醇溶液,所加入的聚乙烯醇溶液的重量为干粉料的重量的8%;

(5)将步骤(4)得到的颗粒状物料压制成生坯片;

本步骤(5)中,在20mpa压力下对颗粒状物料进行干压成型,得到生坯片;

(6)将生坯片置于1210℃下保温4小时,使生坯片排出粘结剂并烧结,得到所述高压陶瓷电容器介质。

得到的高压陶瓷电容器介质为陶瓷片,在790℃下保温15分钟进行烧银,形成银电极,再焊引线,进行包封,即得陶瓷电容器。

实施例3

首先,以固相法合成batio3、srtio3、naalsi2o6、nd(zn1/2ti1/2)o3。

本实施例中batio3、srtio的制备工艺与实施例1相同。

naalsi2o6采用如下工艺制备:按1:0.5:2的摩尔比配备naco3和al2o3和sio2,然后对naco3和al2o3和sio2进行研磨并混合均匀,再将naco3和al2o3和sio2的混合物料放入氧化铝坩埚内,于1230℃下保温120分钟,得到naalsi2o6。得到的naalsi2o6冷却后,经研磨并过200目筛,备用。

nd(zn1/2ti1/2)o3采用如下工艺制备:按0.5:0.5:0.5的摩尔比配备nd2o3和zno和tio2,然后对nd2o3和zno和tio2进行研磨并混合均匀,再将nd2o3和zno和tio2的混合物料放入氧化铝坩埚内,于1050℃下保温120分钟,得到nd(zn1/2ti1/2)o3。得到的nd(zn1/2ti1/2)o3冷却后,研磨并过200目筛,备用。

然后,按下述步骤制备高压陶瓷电容器介质:

(1)按比例配备batio3、srtio3、naalsi2o6、nd(zn1/2ti1/2)o3、v2o5、zno和mno2;

参考表1,配备的各种原料的重量百分比如下:batio384%,srtio35%,naalsi2o65%,nd(zn1/2ti1/2)o35%,v2o50.4%,zno0.4%,mno20.2%;

(2)将步骤(1)所配备的batio3、srtio3、naalsi2o6、nd(zn1/2ti1/2)o3、v2o5、zno和mno2粉碎并混合均匀,得到混合粉料;

本步骤(2)中,采用行星球磨机对配备好的原料进行球磨,被球磨的原料、所用球、所用水的重量比例为原料:球:水=1:3:0.7,球磨过程持续8小时;

(3)对步骤(2)得到的混合粉料进行烘干,得到干粉料;

(4)向干粉料中加入粘结剂并进行造粒(在造粒后混研并过40目筛),得到颗粒状物料;

本步骤(4)的粘结剂采用重量百分比浓度为10%的聚乙烯醇溶液,所加入的聚乙烯醇溶液的重量为干粉料的重量的10%;

(5)将步骤(4)得到的颗粒状物料压制成生坯片;

本步骤(5)中,在30mpa压力下对颗粒状物料进行干压成型,得到生坯片;

(6)将生坯片置于1250℃下保温2小时,使生坯片排出粘结剂并烧结,得到所述高压陶瓷电容器介质。

得到的高压陶瓷电容器介质为陶瓷片,在860℃下保温15分钟进行烧银,形成银电极,再焊引线,进行包封,即得陶瓷电容器。

实施例4-9

实施例4-9中,各种原料的配比如表1所示。实施例4、5中制备高压陶瓷电容器介质的方法与实施例1相同;实施例6、8中制备高压陶瓷电容器介质的方法与实施例2相同;实施例7、9中制备高压陶瓷电容器介质的方法与实施例3相同。

以上各实施例制得陶瓷电容器后,测试其性能,各实施例陶瓷电容器介质的性能如表2所示。从表2可以看出,所制备的电容器陶瓷耐电压高,直流耐电压可达23kv/mm以上,交流耐压可达14kv/mm以上;介电常数为5600以上;介质损耗小于0.1%;电容温度变化率小,符合y5u特性的要求。

表1本发明各实施例的原料配比(重量百分比)

表2本发明各实施例制得的陶瓷电容器介质的性能

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1