一种3D打印专用超细球形陶瓷粉体材料的制备方法与流程

文档序号:16012892发布日期:2018-11-20 21:01阅读:318来源:国知局

本发明公开了一种3d打印专用超细球形陶瓷粉体材料的制备方法,属于无机材料技术领域。

背景技术

陶瓷材料作为全球材料业三大支柱之一,具有高强度、高硬度、高耐磨性、耐高温、抗腐蚀等显著特性,历年来受到科研工作者广泛关注。随着具有更优良力学、热学、光学、电学、化学和生物特性等性能的新型陶瓷的研发,陶瓷材料在机械、电子、航空航天、军事、生物工程等领域的应用越来越广泛,同时,这种应用需求也对陶瓷的形状和结构复杂性提出了新要求。然而,传统陶瓷成型工艺,例如干压成型、等静压成型、流延成型、凝胶注模成型等,对坯体形状限制较大,难以制备复杂形状陶瓷零部件,且模具制造过程复杂,成本高,开发周期长,不足以满足现代社会对陶瓷应用的需求。

3d打印(又称增材制造)技术基于“离散-堆积”成型原理,由零部件的三维数据驱动直接制造实体零件,省去了传统成型技术中繁复的工艺过程和昂贵的模具成本,将传统“去除”材料制造转变为“增加”材料制造。该技术集成计算机、数控、激光和新材料等技术,在制备无需模具的复杂形状和结构零部件方面具有巨大优势。其中,激光选区熔化和激光选区烧结两种增材制造工艺,利用高能激光束逐层熔化/烧结预先铺置在工作台上的薄层粉体来成型复杂零部件,具有精细度高和无需模具快速成型复杂结构等突出优势,因此,在陶瓷及其复合材料成型方面具有良好的应用前景。然而,由于成型陶瓷零部件过程中温度变化范围过大,速度过快,产生的应力较大,使陶瓷零部件极易产生气孔、裂纹等缺陷,从而严重制约了该技术在陶瓷快速成型领域的应用。

而传统的3d打印专用陶瓷粉体材料还存在粒径分布不均匀,容易产生缺陷,球形度不高,且在机械粉碎过程中容易发生二次团聚,陶瓷粉体粒径无法进一步缩小,导致产品烧结性能下降的问题,因此,如何使3d打印专用陶瓷粉体材料发挥更好的性能成为了本技术领域亟待解决的技术问题之一。



技术实现要素:

本发明主要解决的技术问题是:传统采用机械粉碎获得的陶瓷粉体材料粒径分布不均匀,容易产生缺陷,球形度不高,且在机械粉碎过程中容易发生二次团聚,陶瓷粉体粒径无法进一步缩小,导致产品烧结性能下降的弊端,提供了一种3d打印专用超细球形陶瓷粉体材料的制备方法。

为了解决上述技术问题,本发明所采用的技术方案是:

一种3d打印专用超细球形陶瓷粉体材料的制备方法,具体制备步骤为:

(1)按重量份数计,依次取30~40份乳化剂,60~80份聚丙烯酰胺,200~300份水,先将聚丙烯酰胺和水搅拌溶解,再加入乳化剂,高速恒温搅拌,得乳液;

(2)将异丙醇铝和异丙醇按质量比为1:1~3:1搅拌混合,得混合溶液,再将混合溶液缓慢滴加至温度为80~85℃的稀硝酸溶液中,恒温搅拌反应,得溶胶;

(3)按重量份数计,依次取100~120份乳液,80~150份溶胶,10~20份铬盐溶液,2~4份聚乙烯吡咯烷酮,先将乳液、溶胶和聚乙烯吡咯烷酮搅拌混合,再加入铬盐溶液,恒温搅拌反应后,出料,干燥至含水率为8~10%,得含水物料;

(4)将含水物料加入蒸压釜中,再向蒸压釜中缓慢通入载有三甲基铝的氮气,直至蒸压釜中压力达1.2~2.2mpa,保压静置2~4h后,出料,干燥至恒重,得干燥蒸压料;

(5)将干燥蒸压料于惰性气体保护状态下,热处理2~4h,冷却,出料,即得3d打印专用超细球形陶瓷粉体材料。

步骤(1)所述乳化剂为十二烷基苯磺酸钠、吐温-60、斯潘-80或乳化剂op-10。

步骤(1)所述聚丙烯酰胺为分子量为600~1200万的阴离子聚丙烯酰胺。

步骤(2)所述缓慢滴加为以4~6ml/min速率进行滴加。

步骤(2)所述稀硝酸溶液为质量分数为3~10%的硝酸溶液。

步骤(3)所述铬盐溶液为质量分数为4~8%的铬盐溶液;所述铬盐为硝酸铬或氯化铬中的任意一种。

步骤(4)所述载有三甲基铝的氮气为三甲基铝质量含量为4~8%的氮气。

步骤(5)所述惰性气体为氮气或氩气中的任意一种。

本发明的有益效果是:

(1)本发明技术方案以聚丙烯酰胺为稳泡剂,乳化剂为起泡剂,铬盐作为交联剂,在铬离子作用下,发生适度交联,即为聚合物交联过程中使相邻交联点间的链长大于同样条件下链段的长度,从而造成大的结构单元不易活动,而小的结构单元仍可保持较好的运动能力,从而有效将交联网络中的刚性和柔性链段统一起来,这样既可以提高产生的交联网络保持良好的机械性能,同时又具有良好的弹性,从而使溶胶颗粒可以有效嵌入乳化剂-聚丙烯酰胺-铬盐构建的乳化交联体系中,而在后续三甲基铝处理过程中,随着三甲基铝和体系中残留水分接触后发生水解,水解产物为氢氧化铝和甲烷气体,良好的弹性可保障甲烷气体的顺利排出,并有效避免乳化交联膜的破裂,而氢氧化铝的水解产生可实现对溶胶颗粒的二次修饰,从而使其球形度提高;在最终热处理过程中,乳化交联膜中有机质逐渐炭化分解,残留有机质可继续起到阻隔作用,避免在热处理过程中颗粒重新发生团聚,使产品始终保持良好的分散性和球形度,而炭化残留物还可在产品使用过程中起到良好的润滑分散作用;

(2)本发明制备得到的产品颗粒相比于传统机械粉碎获得的陶瓷颗粒尺寸较小,表面呈球形或类球形,所得产品烧结效果更佳。

具体实施方式

按重量份数计,依次取30~40份乳化剂,60~80份聚丙烯酰胺,200~300份水,先将聚丙烯酰胺和水混合倒入烧杯中,用玻璃棒搅拌溶解10~20min,再将烧杯移至数显测速恒温磁力搅拌器,于温度为55~65℃,转速为1200~1400r/min条件下,边高速恒温搅拌变加入乳化剂,待乳化剂加入结束,继续高速恒温搅拌1~2h,出料,得乳液;按质量比为1:1~3:1将异丙醇铝和异丙醇按质量比为1:1~3:1搅拌混合,得混合溶液;再将预热至80~85℃的稀硝酸溶液倒入三口烧瓶中,并将盛有稀硝酸溶液的三口烧瓶移至数显测速恒温磁力搅拌器,于温度为80~85℃,转速为400~600r/min条件下,边恒温搅拌边通过滴液漏斗将混合溶液以4~6ml/min速率缓慢滴加至温度为80~85℃的稀硝酸溶液中,待混合溶液滴加完毕,继续恒温搅拌反应2~4h,得溶胶;按重量份数计,依次取100~120份乳液,80~150份溶胶,10~20份铬盐溶液,2~4份聚乙烯吡咯烷酮,先将乳液、溶胶和聚乙烯吡咯烷酮倒入反应釜中,用搅拌器以600~800r/min转速搅拌混合30~45min后,再加入铬盐溶液,继续于温度为65~70℃,转速为600~800r/min条件下,恒温搅拌反应1~3h后,出料,并真空干燥至含水率为8~10%,得含水物料;将所得含水物料移入蒸压釜中,并以100~300ml/min速率向蒸压釜中缓慢通入载有三甲基铝的氮气,直至蒸压釜中压力达1.2~2.2mpa,保压静置2~4h后,泄压至常压,再将蒸压釜中物料转入烘箱中,于温度为105~110℃条件下干燥至恒重,得干燥蒸压料;将所得干燥蒸压料移入管式炉中,并以30~50ml/min速率向管式炉内通入惰性气体,于惰性气体保护状态下,以2~4℃/min速率程序升温至480~550℃,保温热处理2~4h后,随炉冷却至室温,出料,即得3d打印专用超细球形陶瓷粉体材料。所述乳化剂为十二烷基苯磺酸钠、吐温-60、斯潘-80或乳化剂op-10。所述聚丙烯酰胺为分子量为600~1200万的阴离子聚丙烯酰胺。所述稀硝酸溶液为质量分数为3~10%的硝酸溶液。所述铬盐溶液为质量分数为4~8%的铬盐溶液;所述铬盐为硝酸铬或氯化铬中的任意一种。所述载有三甲基铝的氮气为三甲基铝质量含量为4~8%的氮气。所述惰性气体为氮气或氩气中的任意一种。

实例1

按重量份数计,依次取40份乳化剂,80份聚丙烯酰胺,300份水,先将聚丙烯酰胺和水混合倒入烧杯中,用玻璃棒搅拌溶解20min,再将烧杯移至数显测速恒温磁力搅拌器,于温度为65℃,转速为1400r/min条件下,边高速恒温搅拌变加入乳化剂,待乳化剂加入结束,继续高速恒温搅拌2h,出料,得乳液;按质量比为3:1将异丙醇铝和异丙醇按质量比为3:1搅拌混合,得混合溶液;再将预热至85℃的稀硝酸溶液倒入三口烧瓶中,并将盛有稀硝酸溶液的三口烧瓶移至数显测速恒温磁力搅拌器,于温度为85℃,转速为600r/min条件下,边恒温搅拌边通过滴液漏斗将混合溶液以6ml/min速率缓慢滴加至温度为85℃的稀硝酸溶液中,待混合溶液滴加完毕,继续恒温搅拌反应4h,得溶胶;按重量份数计,依次取120份乳液,150份溶胶,20份铬盐溶液,4份聚乙烯吡咯烷酮,先将乳液、溶胶和聚乙烯吡咯烷酮倒入反应釜中,用搅拌器以800r/min转速搅拌混合45min后,再加入铬盐溶液,继续于温度为70℃,转速为800r/min条件下,恒温搅拌反应3h后,出料,并真空干燥至含水率为10%,得含水物料;将所得含水物料移入蒸压釜中,并以300ml/min速率向蒸压釜中缓慢通入载有三甲基铝的氮气,直至蒸压釜中压力达2.2mpa,保压静置4h后,泄压至常压,再将蒸压釜中物料转入烘箱中,于温度为110℃条件下干燥至恒重,得干燥蒸压料;将所得干燥蒸压料移入管式炉中,并以50ml/min速率向管式炉内通入惰性气体,于惰性气体保护状态下,以4℃/min速率程序升温至550℃,保温热处理4h后,随炉冷却至室温,出料,即得3d打印专用超细球形陶瓷粉体材料。所述乳化剂为十二烷基苯磺酸钠。所述聚丙烯酰胺为分子量为1200万的阴离子聚丙烯酰胺。所述稀硝酸溶液为质量分数为10%的硝酸溶液。所述铬盐溶液为质量分数为8%的铬盐溶液;所述铬盐为硝酸铬。所述载有三甲基铝的氮气为三甲基铝质量含量为8%的氮气。所述惰性气体为氮气。

实例2

按重量份数计,依次取40份乳化剂,80份聚丙烯酰胺,300份水,先将聚丙烯酰胺和水混合倒入烧杯中,用玻璃棒搅拌溶解20min,再将烧杯移至数显测速恒温磁力搅拌器,于温度为65℃,转速为1400r/min条件下,边高速恒温搅拌变加入乳化剂,待乳化剂加入结束,继续高速恒温搅拌2h,出料,得乳液;按质量比为3:1将异丙醇铝和异丙醇按质量比为3:1搅拌混合,得混合溶液;再将预热至85℃的稀硝酸溶液倒入三口烧瓶中,并将盛有稀硝酸溶液的三口烧瓶移至数显测速恒温磁力搅拌器,于温度为85℃,转速为600r/min条件下,边恒温搅拌边通过滴液漏斗将混合溶液以6ml/min速率缓慢滴加至温度为85℃的稀硝酸溶液中,待混合溶液滴加完毕,继续恒温搅拌反应4h,得溶胶;按重量份数计,依次取120份乳液,150份溶胶,4份聚乙烯吡咯烷酮,先将乳液、溶胶和聚乙烯吡咯烷酮倒入反应釜中,用搅拌器以800r/min转速搅拌混合45min后,恒温搅拌反应3h后,出料,并真空干燥至含水率为10%,得含水物料;将所得含水物料移入蒸压釜中,并以300ml/min速率向蒸压釜中缓慢通入载有三甲基铝的氮气,直至蒸压釜中压力达2.2mpa,保压静置4h后,泄压至常压,再将蒸压釜中物料转入烘箱中,于温度为110℃条件下干燥至恒重,得干燥蒸压料;将所得干燥蒸压料移入管式炉中,并以50ml/min速率向管式炉内通入惰性气体,于惰性气体保护状态下,以4℃/min速率程序升温至550℃,保温热处理4h后,随炉冷却至室温,出料,即得3d打印专用超细球形陶瓷粉体材料。所述乳化剂为十二烷基苯磺酸钠。所述聚丙烯酰胺为分子量为1200万的阴离子聚丙烯酰胺。所述稀硝酸溶液为质量分数为10%的硝酸溶液。所述铬盐为硝酸铬。所述载有三甲基铝的氮气为三甲基铝质量含量为8%的氮气。所述惰性气体为氮气。

实例3

按重量份数计,依次取40份乳化剂,80份聚丙烯酰胺,300份水,先将聚丙烯酰胺和水混合倒入烧杯中,用玻璃棒搅拌溶解20min,再将烧杯移至数显测速恒温磁力搅拌器,于温度为65℃,转速为1400r/min条件下,边高速恒温搅拌变加入乳化剂,待乳化剂加入结束,继续高速恒温搅拌2h,出料,得乳液;按质量比为3:1将异丙醇铝和异丙醇按质量比为3:1搅拌混合,得混合溶液;再将预热至85℃的稀硝酸溶液倒入三口烧瓶中,并将盛有稀硝酸溶液的三口烧瓶移至数显测速恒温磁力搅拌器,于温度为85℃,转速为600r/min条件下,边恒温搅拌边通过滴液漏斗将混合溶液以6ml/min速率缓慢滴加至温度为85℃的稀硝酸溶液中,待混合溶液滴加完毕,继续恒温搅拌反应4h,得溶胶;按重量份数计,依次取120份乳液,150份溶胶,20份铬盐溶液,先将乳液、溶胶倒入反应釜中,用搅拌器以800r/min转速搅拌混合45min后,再加入铬盐溶液,继续于温度为70℃,转速为800r/min条件下,恒温搅拌反应3h后,出料,并真空干燥至含水率为10%,得含水物料;将所得含水物料移入蒸压釜中,并以300ml/min速率向蒸压釜中缓慢通入载有三甲基铝的氮气,直至蒸压釜中压力达2.2mpa,保压静置4h后,泄压至常压,再将蒸压釜中物料转入烘箱中,于温度为110℃条件下干燥至恒重,得干燥蒸压料;将所得干燥蒸压料移入管式炉中,并以50ml/min速率向管式炉内通入惰性气体,于惰性气体保护状态下,以4℃/min速率程序升温至550℃,保温热处理4h后,随炉冷却至室温,出料,即得3d打印专用超细球形陶瓷粉体材料。所述乳化剂为十二烷基苯磺酸钠。所述聚丙烯酰胺为分子量为1200万的阴离子聚丙烯酰胺。所述稀硝酸溶液为质量分数为10%的硝酸溶液。所述铬盐溶液为质量分数为8%的铬盐溶液;所述铬盐为硝酸铬。所述载有三甲基铝的氮气为三甲基铝质量含量为8%的氮气。所述惰性气体为氮气。

实例4

按重量份数计,依次取40份乳化剂,80份聚丙烯酰胺,300份水,先将聚丙烯酰胺和水混合倒入烧杯中,用玻璃棒搅拌溶解20min,再将烧杯移至数显测速恒温磁力搅拌器,于温度为65℃,转速为1400r/min条件下,边高速恒温搅拌变加入乳化剂,待乳化剂加入结束,继续高速恒温搅拌2h,出料,得乳液;按质量比为3:1将异丙醇铝和异丙醇按质量比为3:1搅拌混合,得混合溶液;再将预热至85℃的稀硝酸溶液倒入三口烧瓶中,并将盛有稀硝酸溶液的三口烧瓶移至数显测速恒温磁力搅拌器,于温度为85℃,转速为600r/min条件下,边恒温搅拌边通过滴液漏斗将混合溶液以6ml/min速率缓慢滴加至温度为85℃的稀硝酸溶液中,待混合溶液滴加完毕,继续恒温搅拌反应4h,得溶胶;按重量份数计,依次取120份乳液,150份溶胶,20份铬盐溶液,4份聚乙烯吡咯烷酮,先将乳液、溶胶和聚乙烯吡咯烷酮倒入反应釜中,用搅拌器以800r/min转速搅拌混合45min后,再加入铬盐溶液,继续于温度为70℃,转速为800r/min条件下,恒温搅拌反应3h后,出料,并真空干燥至含水率为10%,得含水物料;将所得干燥蒸压料移入管式炉中,并以50ml/min速率向管式炉内通入惰性气体,于惰性气体保护状态下,以4℃/min速率程序升温至550℃,保温热处理4h后,随炉冷却至室温,出料,即得3d打印专用超细球形陶瓷粉体材料。所述乳化剂为十二烷基苯磺酸钠。所述聚丙烯酰胺为分子量为1200万的阴离子聚丙烯酰胺。所述稀硝酸溶液为质量分数为10%的硝酸溶液。所述铬盐溶液为质量分数为8%的铬盐溶液;所述铬盐为硝酸铬。所述惰性气体为氮气。

实例5

按重量份数计,依次取40份乳化剂,80份聚丙烯酰胺,300份水,先将聚丙烯酰胺和水混合倒入烧杯中,用玻璃棒搅拌溶解20min,再将烧杯移至数显测速恒温磁力搅拌器,于温度为65℃,转速为1400r/min条件下,边高速恒温搅拌变加入乳化剂,待乳化剂加入结束,继续高速恒温搅拌2h,出料,得乳液;按质量比为3:1将异丙醇铝和异丙醇按质量比为3:1搅拌混合,得混合溶液;再将预热至85℃的稀硝酸溶液倒入三口烧瓶中,并将盛有稀硝酸溶液的三口烧瓶移至数显测速恒温磁力搅拌器,于温度为85℃,转速为600r/min条件下,边恒温搅拌边通过滴液漏斗将混合溶液以6ml/min速率缓慢滴加至温度为85℃的稀硝酸溶液中,待混合溶液滴加完毕,继续恒温搅拌反应4h,得溶胶;按重量份数计,依次取120份乳液,150份溶胶,20份铬盐溶液,4份聚乙烯吡咯烷酮,先将乳液、溶胶和聚乙烯吡咯烷酮倒入反应釜中,用搅拌器以800r/min转速搅拌混合45min后,再加入铬盐溶液,继续于温度为70℃,转速为800r/min条件下,恒温搅拌反应3h后,出料,并真空干燥至含水率为10%,得含水物料;将所得含水物料移入蒸压釜中,并以300ml/min速率向蒸压釜中缓慢通入载有三甲基铝的氮气,直至蒸压釜中压力达2.2mpa,保压静置4h后,泄压至常压,再将蒸压釜中物料转入烘箱中,于温度为110℃条件下干燥至恒重,得干燥蒸压料;将所得干燥蒸压料移入管式炉中,以4℃/min速率程序升温至550℃,保温热处理4h后,随炉冷却至室温,出料,即得3d打印专用超细球形陶瓷粉体材料。所述乳化剂为十二烷基苯磺酸钠。所述聚丙烯酰胺为分子量为1200万的阴离子聚丙烯酰胺。所述稀硝酸溶液为质量分数为10%的硝酸溶液。所述铬盐溶液为质量分数为8%的铬盐溶液;所述铬盐为硝酸铬。所述载有三甲基铝的氮气为三甲基铝质量含量为8%的氮气。

对比例:上海某科技有限公司生产的3d打印专用陶瓷粉体材料。

将实例1至实例5所得的3d打印专用超细球形陶瓷粉体材料及对比例产品进行性能检测,具体检测方法如下:

1.粒径分布:采用马尔文zetasizer系列电位粒度仪检测试件粒径。

2.团聚程度:用日立h-600透射电子显微镜观察表征粉体的形貌。

具体检测结果如表1所示:

表1.3d打印专用超细球形陶瓷粉体材料具体检测结果

由表1检测结果可知,本发明技术方案制备的3d打印专用超细球形陶瓷粉体材料具有粒径分布均匀,不易团聚的特点,在无机材料技术行业的发展中具有广阔的前景。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1