提高氧化锌压敏电阻2ms方波通流的新型液体侧面高阻层制备工艺的制作方法

文档序号:17152640发布日期:2019-03-19 23:35阅读:579来源:国知局
提高氧化锌压敏电阻2ms方波通流的新型液体侧面高阻层制备工艺的制作方法

本发明涉及电阻片制备工艺领域,特别是一种非线性电阻片制造过程中高阻层的新方法。



背景技术:

zno电阻片是zno避雷器的核心组件,因而是决定避雷器性能优劣的关键组件。在国标中对标称放电电流分别为5ka和10ka的避雷器其4/10μs大电流冲击耐受两次的能力,分别要求达到65ka和100ka。国外专利研究选用了sio2fe2o3系统的配方,但d3、d4电阻片耐受大电流冲击的能力仅能分别达到60ka和80ka左右,距分别要求达到65ka和100ka尚有一定距离。提高zno电阻片大电流能力国内同行的共同难题,其技术难度是多方面的,因为它不仅决定于高阻层本身的绝缘水平,而且还决定于高阻层与电阻片本体的结合性、热膨胀系数、弹性和抗张强度等性能的匹配性。因为无机高阻层系烧结于电阻片本体侧面的厚度仅为0.1-0.12mm的薄层,在高温下烧成时,二者将发生复杂的物理化学反应,在二者的接触处形成界于两者成分之间过渡层,该过渡层的厚薄、致密性等既与二者的组成、涂层厚度有关,也与烧成温度有关。所以要研制出与本体匹配适当、烧结范围宽的高阻层是相当困难的。

从收集到的国内外有关信息分析,用于避雷器的zno电阻片,为了解提高其大电流耐受能力,多数采取在本烧无机高阻层的基础上,涂敷低温玻璃釉或各种有机涂层的措施。有下列几种情况:

(1)在本烧无机高阻层后涂敷低温玻璃釉。某些厂家采用这种工艺的实际情况表明在玻璃釉配方选择适当、厚度相对较厚、熔敷温度制度适宜的情况下,可以达到提高大电流能力的效果,有些厂家的样品通过了国家检测中心的型式试验。但从大生产随机抽样的试验结果看,很难达到标准要求。其原因是,通常在大生产中釉层厚度很难控制加之热处理炉内釉熔融温度温差的波动使之与本体的结合性好坏不一致,釉面的外观色泽也不一:尤其是釉与本体的热膨胀系数难以匹配,所以难以达到稳定提高大电流的效果。加之喷釉工艺的生产效率低,生产成本亦高,质量难以保证,所以这些成为其难以推广应用的决定因素。

(2)在本烧无机高阻层的基础上加涂有机绝缘层。如涂耐热(200°c左右)聚酯漆、高温环氧树脂等,有些在其中还添加无机绝缘粉料,如氧化钛或氧化铝等。这是我国采用较为普遍,工艺上既方便又经济的措施。

(3)不涂无机高阻层,在烧结的电阻片瓷体侧面直接喷涂液态硅橡胶。由于硅橡胶偶联剂与本体结合,因而存在在着结合不牢、机械强度低的缺点。但由于硅橡胶是一种弹性好、绝缘强度高的塑性体,所以具有良好的耐受大电流冲击性。在u1m电位梯度200v/mm以下的情况下,d25和d4均可分别达到65ka和100ka。但是由于生产效率低、材料成本高,而且由于在包装运输过程,涂层容易碰损、磨损,因而电阻片不能作为商品出售,所以该厂家已不再采用,但作为提高电阻片大电流性能的成功技术措施,应该说不失为一种独创的思路。

基于上述情况,耐受大电流冲击好的高阻层,必须具有以下性状特征:

(1)从高阻层与电阻片本体在烧成过程易于发生反应和对本体的电气性能的影响程度考虑,高阻层配方中应选用与zno陶瓷部分成分相同或起生成物绝缘作用相似的成分,这样在烧成过程不仅能与本体容易发生互相扩散渗透反应,生成厚度适宜、结构致密、结合牢固、绝缘性高的高阻层,而且与远离本体的表层即使不能与本体发生反应自身也能生成结构致密、绝缘性高的高阻层。其生成物的主要物相应该是硅酸锌、锑锌尖晶石和少量固溶体或微晶玻璃。

(2)高阻层与本体的热膨胀系数必须相匹配,即二者的热膨胀系数应接近或者最好是前者比后者小06-15×10c,以确保烧成冷却过程高阻层内形成压缩应力、提高电阻片的机械强度和冷热性能,因而提高其抗击大电流冲击性能。

现有的氧化锌电阻片的制造方法,因其工艺稳定,产品合格率高而得到较好的应用。但其也存在如下缺点:

缺点一:高阻层制作工艺复杂,釉浆稳定性差;

缺点二:釉层均匀性差,且釉层厚度受烧成收缩率的影响较大;

缺点三:电阻片的压比较差,电阻片的通流能力受到限制。

随着产品技术等级的不断提高,对产品性能的要求也越来越高,原有的压比性能已不能满足要求,急需开发低压比、高通流的电阻片。



技术实现要素:

本发明需要解决的技术问题:在百万伏电阻片配方,通过高阻层配方调整,以及工艺的控制,使得电阻片的本体与釉层的收缩率匹配,既解决了电阻片的侧面绝缘问题,同时提高了电阻片的方波通流容量。

本发明的技术路线:通过对高阻层配方中锑、铁等元素的引入形式的变化,以及量的调整,使得电阻片在烧结后本体与釉层之间结合良好,且收缩率接近,使得电阻片在通过大容量电流时,电阻片不出现裂纹。

本发明的目的是为了解决上述问题,设计了一种提高氧化锌压敏电阻2ms方波通流的新型液体侧面高阻层制备工艺。具体设计方案为:

一种提高氧化锌压敏电阻2ms方波通流的新型液体侧面高阻层制备工艺,将配好的原料经混合和加热溶解,制成均匀的溶液,并在电阻片成型后直接涂覆在电阻片的侧面,包括原料配制步骤、球磨混合步骤、喷雾干燥步骤、压制成型步骤、烧结步骤、涂覆步骤、成片步骤,所述原料配制步骤、球磨混合步骤、喷雾干燥步骤、压制成型步骤、烧结步骤、涂覆步骤依次进行,

所述原料配置步骤中,原料配方包括氧化锌zno、氧化铋bi2o3、氧化锑sb2o3、氧化硼b2o3、二氧化锡sno2、氧化镍ni2o3、聚乙烯醇c2h4o、去离子水。

所述烧结步骤中,

用高温电炉在封闭气氛中烧结坯体,具体温度和控制时间如下:

从室温至400℃,升温时间10-15h;

在280℃保持低温排胶5h;

降温至室温,降温速度为15℃/h。

所述涂覆步骤中,

涂覆方式包括喷淋、滚涂、直接刷涂,

涂覆层后形成高阻层,所述高阻层的厚度为0.1-0.15mm。

所述成片步骤中,

从室温至900℃,升温时间9h,平均升温速度为100℃/h;

从900℃至1250℃,升温时间5h,平均升温速度为100℃/h;

在1250℃保温2-4h;

自然降温,平均降温速度为100℃/h。

所述原料配方中各成分的质量百分数为:氧化锌zno:30~40%、氧化铋bi2o3:5~20%、氧化锑sb2o3:5~10%、氧化硼b2o3:2~8%、二氧化锡sno2:5~10%、氧化镍ni2o3:0.1~0.5%、聚乙烯醇c2h4o:2.5~5%、去离子水:35~50%。

通过本发明的上述技术方案得到的提高氧化锌压敏电阻2ms方波通流的新型液体侧面高阻层制备工艺,其有益效果是:

选择在成型后上高阻层,减少了原来因预烧收缩率不一致带来的釉层厚度的波动,工艺上更稳定。

附图说明

图1是本发明所述配方的电阻片高阻层配方图;

图2是电阻片高阻层2ms方波筛选结果图。

具体实施方式

下面结合附图对本发明进行具体描述。

实施例1:

选择d5规格电阻片,并按照图1所示方式配高阻层a、b、c、d四种类型

以下为具体配方级生产工艺流程详细描述。

氧化锌阀片经原料配制、球磨混合、喷雾干燥、压制成型后:

1)烧结

用高温电炉在封闭气氛中烧结坯体,具体温度和控制时间如下:

从室温至400℃,升温时间10~15小时;

在280℃保持低温排胶5小时;

降温至室温(15°每小时)

2)涂覆高阻层(每个电阻片涂覆2g,高阻层涂覆厚度0.1mm);

3)从室温至900℃,升温时间9(100度每小时)小时;

从900℃至1250℃,升温时间5(70度每小时)小时;

在1250℃保温2~4小时;

自然降温(100度每小时)。

然后电阻片进行正常磨片、喷铝等后续制作工艺,然后进行测试,结果如图2所示,原材料使用各种可溶性盐,简化了高阻层的制作工艺,并使得在工艺应用上更容易控制;各种原料合理的引入量,可以取得预期效果。

上述技术方案仅体现了本发明技术方案的优选技术方案,本技术领域的技术人员对其中某些部分所可能做出的一些变动均体现了本发明的原理,属于本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1