一种低孔隙不透性石墨的制备工艺的制作方法

文档序号:17341575发布日期:2019-04-06 00:14阅读:181来源:国知局

本发明属于石墨制备技术领域,具体涉及一种低孔隙不透性石墨的制备工艺。



背景技术:

在化工、冶金、轻工、机械、电子、纺织、航天及很多行业的三废治理等众多国民经济领域,由于介质的强腐蚀性能,对制作设备的材料有较高的要求。树脂浸渍石墨材料制备的不透性石墨对许多腐蚀性介质具有极其优良的耐蚀性和耐磨性,其膨胀系数很小,而导热系数很高,因此只要消除渗漏,就可以用来制造防腐性能很高的设备。

我国目前不透性石墨的生产中大量采用酚醛树脂作为浸渍剂,也使用少量的呋喃树脂和水玻璃等作为浸渍剂浸渍石墨材料使其具有不透性,但远远不能满足生产的需求,而且这些浸渍剂通常只能在170℃左右使用。部分企业也采用一些耐高温树脂浸渍剂和稳定型浸渍剂,但推广的效果并不明显。开发使用温度较高的不透性石墨是亟待解决的技术问题。



技术实现要素:

有鉴于此,本发明的目的在于提供一种低孔隙不透性石墨的制备工艺,该工艺制得的不透性石墨的耐腐蚀性更好。

本发明所采用的技术方案为:

一种低孔隙不透性石墨的制备工艺,包括以下步骤:

1)石墨母材制备:

①取焦炭颗粒和粘结剂,焦炭颗粒和粘结剂的质量比为(0.73~0.79):(0.21~0.27);

②将按配方称量好的焦炭颗粒放入混捏锅加热搅拌,再加入沥青粉,继续加热搅拌得到糊料;

③将制得的糊料进行挤压得到生制品,并冷却至常温;

④将冷却后的生制品进行焙烧得到一烧品;

⑤一烧品进行加压浸渍,得到一浸品;

⑥一浸品进行二次焙烧,得到二烧品;

⑦二烧品重复⑤⑥步骤内容,最终得到三烧品;

⑧三烧品放入真空感应石墨化炉中进行石墨化处理,得到石墨母材;

(2)浸渍剂浸渍

将石墨母材放入浸渍罐内进行加压浸渍,先抽真空至-0.08mpa,然后将浸渍剂吸入浸渍罐内部,浸渍剂为添加有固化剂的热固性呋喃树脂,树脂与固化剂质量为100:2-5,然后通过真空泵对浸渍罐内进行加压,从而使树脂渗透到石墨母材微型气孔内,浸渍压力为1.9~2.1mpa,浸渍时间7~8h,反复浸渍2~3次;

(3)浸渍剂固化

将浸渍好的石墨母材放入空气中静置24h,然后放入烘箱进行固化;

(4)碳化处理

将固化后的材料放置在高温气氛炉中进行碳化处理,先抽真空,之后充氮气,保持气氛炉内持续惰性气氛,当炉内温度大于300℃时开启炉门及炉顶冷却水,最终升温至1000~1050℃。

所述步骤①中,粘结剂为沥青粉,其中焦炭颗粒按百分比,粒度为2~1mm焦粒含量为10~20%;粒度为1~0.5mm焦粒含量为25~35%,粒度为0.1~0mm焦粉含量为55~65%;

所述步骤②中,混捏锅的温度为160~180℃,第一次搅拌时间为20~30min,第二次搅拌时间为30~40min;

所述步骤③中,挤压时采用挤压机,挤压过程条件为在压力20~30mpa预压3~5min,再以50~60mm/min的挤压速度进行挤压;

所述步骤④中,焙烧时装入石墨坩埚放置在高温气氛炉中进行,过程中需先抽真空,之后充氮气,一次焙烧升温速度2-10℃/h,最终焙烧升温至900~1000℃,保温1-2h;

所述步骤⑤中,浸渍时,浸渍剂为低喹啉不溶物含量的沥青,浸渍温度180~200℃,浸渍压力2.0~3.0mpa,浸渍时间1.5~2h;

所述步骤⑥中,二次焙烧时,一浸品装入焙烧罐,周围覆盖石英砂,焙烧罐顶部覆盖铁板,二次焙烧升温速度5-15℃/h,二次焙烧最终升温至700~800℃,保温1-2h;

所述步骤⑧中,石墨化处理时需先抽真空,当真空度达到10-50pa,开始升温石墨化,石墨化温度2900℃,石墨化时间15-20h。

所述步骤(2)中,浸渍时,树脂粘度10~150s,含水率≤1.5%,灰份≤3%;固化剂为植酸,浸渍过程中需充分搅拌均匀;浸渍压力为1.9~2.0mpa。

所述步骤(3)中所述烘箱温控最小刻度0.1℃,固化曲线执行:在室温~60℃时,升温速率为4.5~5.5℃/h;在60~70℃时,升温速率为1.5~2.5℃/h;在70~85℃时,升温速率为0.5~1.0℃/h;在85~100℃时,升温速率为2.5~3.5℃/h;在100~130℃时,升温速率为4.0~4.5℃/h;在130~180℃时,升温速率为5.0~6.5℃/h。

所述步骤(4)中碳化处理曲线执行:在180~250℃时,升温速率为4~5.5℃/h;在250~450℃时,升温速率为2.0~3.5℃/h;在450~650℃时,升温速率为1.0~2.0℃/h;在650~700℃时,升温速率为4.0~5.5℃/h;在700~850℃时,升温速率为8.0~10.0℃/h;在850~1050℃时,升温速率为10.0℃~15.0℃/h。

与现有技术相比,本发明的有益技术效果是:

采用本发明制备工艺可以使石墨材料表面浸渍的热固性呋喃树脂碳化成类玻璃碳结构,从而可以在不透性石墨的表面形成一层类玻璃碳层,类玻璃碳层具有高耐热性、高导热性以及抗渗透性,不受浓硫酸和浓硝酸的侵蚀,在空气中的氧化失重也低,此外,玻璃碳还具有较高强度、硬度及弹性模量。

本发明所制得的低孔隙不透性石墨具有以下优点:产品气孔率0.5%-1.0%,产品耐热度500℃以上,耐强酸碱腐蚀;体积密度1.8g/cm3-1.85g/cm3;经碳化处理生产出的石墨产品传热性能好,其导热系数为140~150w/m·k,热膨胀系数3.5~5*10-6/℃。

具体实施方式

下面结合实施例来说明本发明的具体实施方式,但以下实施例只是用来详细说明本发明,并不以任何方式限制本发明的范围。

以下实施例中焦炭颗粒按百分比,粒度为2~1mm焦粒含量为10~20%;粒度为1~0.5mm焦粒含量为25~35%,粒度为0.1~0mm焦粉含量为55~65%。

实施例1:

一种低孔隙不透性石墨的制备工艺,包括以下步骤:

1)石墨母材制备:

①取焦炭颗粒和粘结剂,焦炭颗粒和粘结剂(沥青)的质量比为0.73:0.21;

②将按配方称量好的焦炭颗粒放入混捏锅160℃加热搅拌20min,再加入沥青粉,继续加热搅拌40min得到糊料;

③将制得的糊料送入挤压机进行挤压,挤压过程条件为在压力20mpa预压3min,再以50mm/min的挤压速度进行挤压,挤压后得到生制品,并冷却至常温;

④将冷却后的生制品装入石墨坩埚放置在高温气氛炉中进行进行焙烧,过程中需先抽真空,之后充氮气,一次焙烧升温速度2℃/h,最终焙烧升温至900℃,保温1h,得到一烧品;

⑤一烧品进行加压浸渍,浸渍剂为低喹啉不溶物含量的沥青,浸渍温度180℃,浸渍压力2.0mpa,浸渍时间1.5h,得到一浸品;

⑥一浸品装入焙烧罐进行二次焙烧,周围覆盖石英砂(此处加入石英砂的目的是防止样品被氧化),焙烧罐顶部覆盖铁板(以防止吹扫和喷水过程中对样品的破坏),二次焙烧升温速度5℃/h,二次焙烧最终升温至700℃,保温1h,得到二烧品;

⑦二烧品重复⑤⑥步骤内容,最终得到三烧品;

⑧三烧品放入真空感应石墨化炉中进行石墨化处理,石墨化处理时需先抽真空,当真空度达到10pa,开始升温石墨化,石墨化温度2900℃,石墨化时间15h,得到石墨母材;

(2)浸渍剂浸渍

将石墨母材放入浸渍罐内进行加压浸渍,先抽真空至-0.08mpa,然后将浸渍剂吸入浸渍罐内部,浸渍剂为添加有固化剂(为植酸)的热固性呋喃树脂(树脂粘度10~150s,含水率≤1.5%,灰份≤3%),树脂与固化剂质量为100:2,充分搅拌,然后通过真空泵对浸渍罐内进行加压,从而使树脂渗透到石墨母材微型气孔内,浸渍压力为1.9mpa,浸渍时间7h,反复浸渍2次;

(3)浸渍剂固化

将浸渍好的石墨母材放入空气中静置24h,然后放入烘箱(温控最小刻度0.1℃)进行固化;

固化曲线执行:在室温~60℃时,升温速率为4.5℃/h;在60~70℃时,升温速率为1.5℃/h;在70~85℃时,升温速率为0.5℃/h;在85~100℃时,升温速率为2.5℃/h;在100~130℃时,升温速率为4.0℃/h;在130℃时,升温速率为5.0℃/h;

(4)碳化处理

将固化后的材料放置在高温气氛炉中进行碳化处理,先抽真空,之后充氮气,保持气氛炉内持续惰性气氛,当炉内温度大于300℃时开启炉门及炉顶冷却水,最终升温至1000℃,得到低孔隙不透性石墨;

碳化处理曲线执行:在180~250℃时,升温速率为4℃/h;在250~450℃时,升温速率为2.0℃/h;在450~650℃时,升温速率为1.0℃/h;在650~700℃时,升温速率为4.0℃/h;在700~850℃时,升温速率为8.0℃/h;在850~1050℃时,升温速率为10.0℃/h。

实施例2:

一种低孔隙不透性石墨的制备工艺,包括以下步骤:

1)石墨母材制备:

①取焦炭颗粒和粘结剂,焦炭颗粒和粘结剂(沥青)的质量比为0.79:0.27;

②将按配方称量好的焦炭颗粒放入混捏锅170℃加热搅拌25min,再加入沥青粉,继续加热搅拌35min得到糊料;

③将制得的糊料送入挤压机进行挤压,挤压过程条件为在压力25mpa预压4min,再以55mm/min的挤压速度进行挤压,挤压后得到生制品,并冷却至常温;

④将冷却后的生制品装入石墨坩埚放置在高温气氛炉中进行进行焙烧,过程中需先抽真空,之后充氮气,一次焙烧升温速度6℃/h,最终焙烧升温至950℃,保温2h,得到一烧品;

⑤一烧品进行加压浸渍,浸渍剂为低喹啉不溶物含量的沥青,浸渍温度190℃,浸渍压力3.0mpa,浸渍时间2h,得到一浸品;

⑥一浸品装入焙烧罐进行二次焙烧,周围覆盖石英砂(此处加入石英砂的目的是防止样品被氧化),焙烧罐顶部覆盖铁板(以防止吹扫和喷水过程中对样品的破坏),二次焙烧升温速度10℃/h,二次焙烧最终升温至750℃,保温2h,得到二烧品;

⑦二烧品重复⑤⑥步骤内容,最终得到三烧品;

⑧三烧品放入真空感应石墨化炉中进行石墨化处理,石墨化处理时需先抽真空,当真空度达到30pa,开始升温石墨化,石墨化温度2900℃,石墨化时间18h,得到石墨母材;

(2)浸渍剂浸渍

将石墨母材放入浸渍罐内进行加压浸渍,先抽真空至-0.08mpa,然后将浸渍剂吸入浸渍罐内部,浸渍剂为添加有固化剂(为植酸)的热固性呋喃树脂(树脂粘度10~150s,含水率≤1.5%,灰份≤3%),树脂与固化剂质量为100:3,充分搅拌,然后通过真空泵对浸渍罐内进行加压,从而使树脂渗透到石墨母材微型气孔内,浸渍压力为2.0mpa,浸渍时间8h,反复浸渍3次;

(3)浸渍剂固化

将浸渍好的石墨母材放入空气中静置24h,然后放入烘箱(温控最小刻度0.1℃)进行固化;

固化曲线执行:在室温~60℃时,升温速率为5.0℃/h;在60~70℃时,升温速率为2.0℃/h;在70~85℃时,升温速率为1.0℃/h;在85~100℃时,升温速率为3.0℃/h;在100~130℃时,升温速率为4.5℃/h;在150℃时,升温速率为6.0℃/h;

(4)碳化处理

将固化后的材料放置在高温气氛炉中进行碳化处理,先抽真空,之后充氮气,保持气氛炉内持续惰性气氛,当炉内温度大于300℃时开启炉门及炉顶冷却水,最终升温至1030℃,得到低孔隙不透性石墨;

碳化处理曲线执行:在180~250℃时,升温速率为5.0℃/h;在250~450℃时,升温速率为3.0℃/h;在450~650℃时,升温速率为1.5℃/h;在650~700℃时,升温速率为5.0℃/h;在700~850℃时,升温速率为9.0℃/h;在850~1050℃时,升温速率为13℃/h。

实施例3:

一种低孔隙不透性石墨的制备工艺,包括以下步骤:

1)石墨母材制备:

①取焦炭颗粒和粘结剂,焦炭颗粒和粘结剂(沥青)的质量比为0.75:0.23;

②将按配方称量好的焦炭颗粒放入混捏锅180℃加热搅拌30min,再加入沥青粉,继续加热搅拌30min得到糊料;

③将制得的糊料送入挤压机进行挤压,挤压过程条件为在压力30mpa预压5min,再以60mm/min的挤压速度进行挤压,挤压后得到生制品,并冷却至常温;

④将冷却后的生制品装入石墨坩埚放置在高温气氛炉中进行进行焙烧,过程中需先抽真空,之后充氮气,一次焙烧升温速度10℃/h,最终焙烧升温至9001000℃,保温2h,得到一烧品;

⑤一烧品进行加压浸渍,浸渍剂为低喹啉不溶物含量的沥青,浸渍温度200℃,浸渍压力3.0mpa,浸渍时间2h,得到一浸品;

⑥一浸品装入焙烧罐进行二次焙烧,周围覆盖石英砂(此处加入石英砂的目的是防止样品被氧化),焙烧罐顶部覆盖铁板(以防止吹扫和喷水过程中对样品的破坏),二次焙烧升温速度15℃/h,二次焙烧最终升温至800℃,保温2h,得到二烧品;

⑦二烧品重复⑤⑥步骤内容,最终得到三烧品;

⑧三烧品放入真空感应石墨化炉中进行石墨化处理,石墨化处理时需先抽真空,当真空度达到50pa,开始升温石墨化,石墨化温度2900℃,石墨化时间20h,得到石墨母材;

(2)浸渍剂浸渍

将石墨母材放入浸渍罐内进行加压浸渍,先抽真空至-0.08mpa,然后将浸渍剂吸入浸渍罐内部,浸渍剂为添加有固化剂(为植酸)的热固性呋喃树脂(树脂粘度10~150s,含水率≤1.5%,灰份≤3%),树脂与固化剂质量为100:5,充分搅拌,然后通过真空泵对浸渍罐内进行加压,从而使树脂渗透到石墨母材微型气孔内,浸渍压力为2.1mpa,浸渍时间8h,反复浸渍3次;

(3)浸渍剂固化

将浸渍好的石墨母材放入空气中静置24h,然后放入烘箱(温控最小刻度0.1℃)进行固化;

固化曲线执行:在室温~60℃时,升温速率为5.5℃/h;在60~70℃时,升温速率为2.5℃/h;在70~85℃时,升温速率为1.0℃/h;在85~100℃时,升温速率为3.5℃/h;在100~130℃时,升温速率为4.5℃/h;在180℃时,升温速率为6.5℃/h;

(4)碳化处理

将固化后的材料放置在高温气氛炉中进行碳化处理,先抽真空,之后充氮气,保持气氛炉内持续惰性气氛,当炉内温度大于300℃时开启炉门及炉顶冷却水,最终升温至1050℃,得到低孔隙不透性石墨;

碳化处理曲线执行:在180~250℃时,升温速率为5.5℃/h;在250~450℃时,升温速率为3.5℃/h;在450~650℃时,升温速率为2.0℃/h;在650~700℃时,升温速率为5.5℃/h;在700~850℃时,升温速率为10.0℃/h;在850~1050℃时,升温速率为15.0℃/h。

对本实施例制得的产品气孔率进行检测,测得气孔率为0.8%,对产品耐热度进行检测,耐热度为550℃,产品体积密度为1.8g/cm3,导热系数为143w/m·k,热膨胀系数为3.5~5*10-6/℃。

最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1