弯曲基材的制造方法和弯曲基材的成型模具与流程

文档序号:21203758发布日期:2020-06-23 19:37阅读:159来源:国知局
弯曲基材的制造方法和弯曲基材的成型模具与流程

本发明涉及弯曲基材的制造方法和弯曲基材的成型模具。



背景技术:

作为将平坦状的平板玻璃成型为期望的形状的技术,已知有如下方式形成的技术:通过使模具倾斜而使平坦的平板玻璃的一个边缘部与模具的对准销抵接,通过在该状态下进行加热,使平板玻璃下陷在模具的成型面上而取得成型玻璃物品的表面形状(参照专利文献1)。

现有技术文献

专利文献

专利文献1:日本专利第5639658号公报。



技术实现要素:

然而,如上所述,仅使平板玻璃下陷在成型面上时,难以使成型后的弯曲基材的外形与作为目标的最终外形向相匹配。因此,在上述的成型方法中,有可能成为外形尺寸精度差的玻璃物品。在上述的成型方法中,为了提高外形尺寸精度,需要在成型后对成型玻璃物品的周缘部进行磨削而精加工成作为目标的最终外形的繁琐的后加工。

而且,在上述成型方法中,由于使模具倾斜而成型平板玻璃,因此重力偏向平板玻璃进行作用,有可能产生应变而使品质降低。

本发明的目的在于提供一种能够向成型面高精度地定位而容易地成型高品质的弯曲基材的弯曲基材的制造方法和弯曲基材的成型模具。

本发明包含下述构成。

(1)一种弯曲基材的制造方法,是将预成型件基材沿着成型模具的成型面成型为至少一部分弯曲的弯曲基材的制造方法,

在所述成型面的任意的点的垂直方向中,将所述预成型件基材在成型时弯曲的方向设为下方,将相反方向设为上方,将俯视观察时所述成型面以外设为外侧时,包括如下工序:

基材载置工序,从具有与所述弯曲基材的外形相同外形的所述成型面的上方载置所述预成型件基材,以及

成型工序,通过加热所述预成型件基材而使其软化,从而通过自重使所述预成型件基材沿着所述成型面成型为所述弯曲基材;

在所述基材载置工序中,使所述预成型件基材载置于具备引导构件的成型模具,所述引导构件具有从所述成型面的外侧向所述成型面的边缘部倾斜的引导部,

在所述成型工序中,通过使所述预成型件基材的周缘部与所述引导部接触并滑动,从而使所述预成型件基材的周缘部向所述成型面的边缘部进行引导。

(2)一种弯曲基材的成型模具,是将预成型件基材沿着成型模具的成型面成型为至少一部分弯曲的弯曲基材的成型模具,具备:

具有与所述弯曲基材的外形相同外形的所述成型面,以及

具有从所述成型面的外侧向所述成型面的边缘部倾斜的引导部的引导构件;

所述引导构件通过使所述预成型件基材的周缘部与所述引导部接触并滑动,从而将所述预成型件基材的周缘部向所述成型面的边缘部进行引导。

根据本发明,能够向成型面高精度地定位而容易地将高品质的弯曲基材成型。

附图说明

图1是本实施方式的弯曲基材的立体图。

图2是本实施方式的弯曲基材的平面图。

图3是本实施方式的弯曲基材的边缘部的截面图。

图4是弯曲基材和预成型件基材的立体图。

图5是弯曲基材和预成型件基材的平面图。

图6是将预成型件基材成型为弯曲基材的成型装置的立体图。

图7是将预成型件基材成型为弯曲基材的成型装置的平面图。

图8是成型装置和引导构件的立体图。

图9是对使用成型装置的弯曲基材的成型方法进行说明的图,(a)~(c)分别是成型工序中的成型装置的立体图。

图10是对通过成型得到的预成型件基材的外形的变动和定位进行说明的成型装置的一部分的平面图。

图11是对将预成型件基材成型为弯曲基材的成型的具体例进行说明的图,(a)~(f)分别是成型工序中的成型装置的示意立体图。

图12是对将预成型件基材成型为弯曲基材的成型的具体例进行说明的图,(a)~(f)分别是成型工序中的成型装置的示意侧面图。

图13是对将预成型件基材成型为弯曲基材的成型的具体例进行说明的图,(a)~(f)分别是成型工序中的成型装置的示意平面图。

图14是其它实施方式中使用的成型装置的立体图。

图15是其它实施方式中使用的成型装置的平面图。

图16是成型装置和引导构件的立体图。

图17是对使用成型装置的弯曲基材的成型方法进行说明的图,(a)~(c)分别是成型工序中的成型装置的立体图。

具体实施方式

以下,参照附图对本发明的实施方式详细地进行说明。

应予说明,作为弯曲基材10,例示玻璃板进行说明。

图1是本实施方式的弯曲基材10的立体图。图2是本实施方式的弯曲基材10的平面图。图3是本实施方式的弯曲基材10的边缘部的截面图。

如图1和图2所示,弯曲基材10是具有一个主面11(图中的下表面)和另一个主面12(图中的作为主面11的相反面的上表面)的玻璃板。该弯曲基材10是具有沿着x方向和y方向分别向下方弯曲成凹状的三维形状的基材。该弯曲基材10例如可作为平视显示器的镜、车载品的盖玻璃等的基材使用。如图3所示,弯曲基材10中,对其边缘部的角部13呈凸曲面状地实施倒角加工。

弯曲基材10的x方向尺寸a、y方向尺寸b、板厚t没有特别限定。板厚t优选在弯曲基材10的整个区域中大致恒定。另外,板厚t也可以部分变化,还可以在弯曲基材10的整个区域中变化。

作为弯曲基材10,除无色透明的非晶玻璃之外,还可举出结晶化玻璃、有色玻璃等玻璃板。

更详细而言,作为玻璃,例如可以使用无碱玻璃、钠钙玻璃、钠钙硅酸盐玻璃、铝硅酸盐玻璃、硼硅酸盐玻璃、铝硅酸锂玻璃、硼硅酸玻璃。优选即使厚度薄也容易通过强化处理而产生大的应力,即使薄也可得到高强度的玻璃的铝硅酸盐玻璃。

作为玻璃组成的具体例,可举出在以氧化物基准的摩尔%表示的组成,含有50~80%的sio2、0.1~25%的al2o3、3~30%的li2o+na2o+k2o、0~25%的mgo、0~25%的cao和0~5%的zro2的玻璃,但没有特别限定。更具体而言,可举出以下的玻璃的组成。应予说明,例如“含有0~25%的mgo”是虽然mgo并非必需但可以含有至25%的意思。(i)的玻璃包含在钠钙硅酸盐玻璃中,(ii)和(iii)的玻璃包含在铝硅酸盐玻璃中。(v)的玻璃包含在铝硅酸锂玻璃中。

(i)在以氧化物基准的摩尔%表示的组成中,含有63~73%的sio2、0.1~5.2%的al2o3、10~16%的na2o、0~1.5%的k2o、0~5%的li2o、5~13%的mgo和4~10%的cao的玻璃。

(ii)以氧化物基准的摩尔%表示的组成含有50~74%的sio2、1~10%的al2o3、6~14%的na2o、3~11%的k2o、0~5%的li2o、2~15%的mgo、0~6%的cao和0~5%的zro2,sio2和al2o3的含量的合计为75%以下、na2o和k2o的含量的合计为12~25%、mgo和cao的含量的合计为7~15%的玻璃。

(iii)以氧化物基准的摩尔%表示的组成含有68~80%的sio2、4~10%的al2o3、5~15%的na2o、0~1%的k2o、0~5%的li2o、4~15%的mgo和0~1%的zro2的玻璃。

(iv)以氧化物基准的摩尔%表示的组成含有67~75%的sio2、0~4%的al2o3、7~15%的na2o、1~9%的k2o、0~5%的li2o、6~14%的mgo和0~1.5%的zro2,sio2和al2o3的含量的合计为71~75%、na2o和k2o的含量的合计为12~20%、含有cao时其含量小于1%的玻璃。

(v)以氧化物基准的摩尔%表示的组成含有56~73%的sio2、10~24%的al2o3、0~6%的b2o3、0~6%的p2o5、2~7%的li2o、3~11%的na2o、0~2%的k2o、0~8%的mgo、0~2%的cao、0~5%的sro、0~5%的bao、0~5%的zno、0~2%的tio2、0~4%的zro2的玻璃。

玻璃板例如适当地进行化学强化处理,其玻璃组成中的li2o和na2o的含量的合计优选为12摩尔%以上。进而,如果玻璃组成中的li2o的含有率增加,则玻璃化转变温度下降,成型变得容易,因此li2o的含有率优选为0.5摩尔%以上,更优选为1摩尔%以上,进一步优选为2摩尔%以上。进而,为了增大表面压缩应力(compressivestress;以下也简称为cs)和表面压缩应力层深度(depthoflayer;以下也简称为dol),优选玻璃组成含有60摩尔%以上的sio2、8摩尔%以上的al2o3。

进而,在对玻璃板进行着色而使用时,可以在不阻碍期望的化学强化特性的实现的范围内添加着色剂。例如可举出在可见光区域具有吸收的作为co、mn、fe、ni、cu、cr、v、bi、se、ti、ce、er和nd的金属氧化物的co3o4、mno、mno2、fe2o3、nio、cuo、cu2o、cr2o3、v2o5、bi2o3、seo2、tio2、ceo2、er2o3、nd2o3等。

玻璃板使用着色玻璃时,玻璃中以氧化物基准的摩尔百分率表示计可以以7%以下的范围含有着色成分(选自co、mn、fe、ni、cu、cr、v、bi、se、ti、ce、er和nd的金属氧化物中的至少1个成分)。如果着色成分超过7%,则玻璃容易失透。该含量优选为5%以下,更优选为3%以下,进一步优选为1%以下。另外,玻璃板可以适当含有so3、氯化物、氟化物等作为熔融时的澄清剂。

在此,对可作为弯曲基材10的原材使用的平板状玻璃即预成型件基材10p的制造方法进行说明。首先,将各成分的原料以成为上述组成的方式进行调合,在玻璃熔融窑中进行加热熔融。利用鼓泡、搅拌、澄清剂的添加等将玻璃均质化,通过公知的成型法制作规定厚度的玻璃板,并进行缓冷。作为玻璃的制作方法,例如可举出浮法、压制法、熔化法、下拉法和轧制法。特别优选适于大量生产的浮法。另外,也优选浮法以外的连续制成法,即,熔化法和下拉法。通过任意的制作方法制作成平板状的玻璃板在缓冷后被切断成期望的尺寸,得到平板状玻璃。应予说明,在需要更准确的尺寸精度的情况下等,可以对切断后的玻璃板实施研磨·磨削加工、端面加工、开孔加工。由此,在加热工序等操作中能够减少破裂、缺欠,能够提高成品率。

弯曲基材10可以具有处理层。处理层没有特别限制。作为处理层,例如可举出防眩层,该防眩层使反射光散射而带来减少因光源的映入引起的反射光的眩光的效果。处理层可以对弯曲基材10自身的主面11、12进行加工而形成,也可以另行通过堆积处理方法而形成。作为处理层的形成方法,例如只要对弯曲基材10的至少一部分通过化学处理或物理处理实施表面处理即可。在防眩层的情况下,可以使用形成期望的表面粗糙度的凹凸形状的方法。另外,也可以通过涂布或喷雾处理液的堆积处理方法、成型等热处理方法在弯曲基材10的至少一部分形成凹凸形状。作为处理层,除此以外,也可以形成防反射层(ar层)、耐指纹擦拭层(afp层)。

弯曲基材10为玻璃时,作为成型中使用的玻璃的厚度t,优选为0.5mm~5mm。如果为具备该下限值以上的厚度的玻璃,则弯曲基材10可得到高强度和良好的质感。另外,作为玻璃的厚度t,更优选为0.7mm~3mm,进一步优选为1mm~3mm。

图4是弯曲基材10和预成型件基材10p的立体图。图5是弯曲基材10和预成型件基材10p的平面图。

如图4和图5所示,弯曲基材10通过使平坦的预成型件基材10p弯曲而得到。预成型件基材10p是由作为成型品的弯曲基材10的形状进行逆计算而得到的平坦的玻璃板。具体而言,预成型件基材10p是通过模拟以等分布载荷使弯曲基材10平坦而得到的,如图5所示是在平面观察时具有比弯曲基材10大的外形的平坦的玻璃板。

接下来,对制造弯曲基材10的成型装置进行说明。

图6是将预成型件基材10p成型为弯曲基材10的成型装置20的立体图。图7是将预成型件基材10p成型为弯曲基材10的成型装置20的平面图。图8是成型装置20和引导构件50的立体图。

如图6和图7所示,成型装置20具备成型模具30和引导构件50。成型装置20是使作为弯曲基材10的原材料的平坦的预成型件基材10p弯曲而成型为弯曲基材10的装置。

成型模具30在其上表面具有成型面31,在该成型面31的周围设置有引导构件50。成型面31形成为沿着y方向和x方向分别向下方弯曲成凹状的三维形状。成型面31是通过与作为弯曲基材10的原材料的预成型件基材10p的一个主面11密合,从而将预成型件基材10p成型为弯曲基材10的形状的成型面。引导构件50是将预成型件基材10p向成型面31引导并定位的构件。在具有该成型面31的成型模具30,从成型面31的上方载置有预成型件基材10p。载置于成型模具30的预成型件基材10p利用引导构件50进行引导并在成型面31上定位。具体而言,在本实施方式中,由于预成型件基材10p为大致矩形形状,因此多个引导构件50分别配置于预成型件基材10p的长边方向(y方向)两侧和预成型件基材10p的短边方向(x方向)两侧。

在成型面31形成有多个抽吸孔32。在这些抽吸孔32连接有来自真空泵(图示略)的抽吸软管(图示略),能够通过真空泵进行抽吸。在成型模具30中,在其上表面的成型面31的周围形成有多个嵌合凹部33,在这些嵌合凹部33嵌合安装有引导构件50。由此,在成型模具30中,在成型面31的周围留出间隔而直立设置有多个引导构件50。

成型模具30的材质优选为不锈钢等具有耐氧化性的金属、熔融石英玻璃等玻璃、陶瓷、碳,更优选为熔融石英玻璃等玻璃和碳。熔融石英在高温且氧化气氛下的耐性高,并且不易在与成型面31接触的预成型件基材10p形成缺陷,可得到划痕少的表面的弯曲基材10。碳的导热率高,能够高效地生产弯曲基材10。应予说明,在成型模具30的成型面31可以形成金属、氧化物、碳等的被膜。

如图8所示,引导构件50形成为销状,具有直部51和倾斜部52。直部51形成为圆柱状,倾斜部52形成为圆锥状。由此,引导构件50成为其倾斜部52向下方而截面积逐渐变大的形状。

引导构件50通过使直部51嵌合于成型模具30的嵌合凹部33而直立设置于成型模具30的成型面31的周围。引导构件50在嵌合于嵌合凹部33的状态下,直部51的上端部分从成型模具30的上表面略微突出。该直部51的从成型模具30的上表面的突出尺寸在与成型面31最接近的部位为0mm以上,优选为与预成型件基材10p的厚度t相同尺寸以下。

引导构件50在直部51嵌合于成型模具30的嵌合凹部33并安装于成型模具30的状态下,倾斜部52的成型面31侧成为线状的引导部53。引导部53从成型面31的外侧向成型面31的边缘部倾斜,预成型件基材10p的周缘部与该引导部53点接触。

引导构件50的引导部53在将预成型件基材10p成型为弯曲基材10时的成型温度下的静摩擦系数为0.5以下。作为将预成型件基材10p成型为弯曲基材10时的成型温度,优选玻璃化转变温度~熔点,或者预成型件基材10p的平衡粘性成为1017pa·s以下的温度,例如优选为500℃~700℃。此外,引导部53的静摩擦系数优选为0.5以下,更优选为0.3以下。这是为了抑制由与引导部53的接触阻力引起的预成型件基材10p的局部变形。另外,引导部53的静摩擦系数的下限值没有特别限制,优选为0.01以上,更优选为0.05以上。这是为了在预成型件基材10p的初始设置时使预成型件基材10p的位置不会极端地偏移。应予说明,静摩擦系数可以通过jisk7125中记载的方法测定。

引导部53的表面粗糙度为50nm~1000nm。应予说明,引导部53的表面粗糙度ra优选为1000nm以下,更优选为500nm以下。这是为了与预成型件基材10p的接触面具有一定程度的面强度。另外,引导部53的表面粗糙度ra优选为50nm以上,更优选为100nm以上。这是为了减少与预成型件基材10p的真实接触面而减少因摩擦引起的阻力,防止预成型件基材10p的局部变形。

引导部53相对于直部51的底面的倾斜角度为45°~89°。应予说明,引导部53的倾斜角度优选为89°以下,更优选为80°以下。这是为了减少成型时的预成型件基材10p与引导部53的垂直应力而减少摩擦力,抑制预成型件基材10p的局部变形。另外,引导部53的倾斜优选为45°以上,更优选为50°以上。这是为了防止预成型件基材10p最终成为骑上引导部53的状态而局部变形。

引导构件50的材质优选为不锈钢等具有耐氧化性的金属、熔融石英玻璃等玻璃、陶瓷、碳。另外,引导构件50优选在至少预成型件基材10p的周缘部接触的引导部53预先涂布低摩擦材料。作为该低摩擦材料的涂布,优选为二硫化钨(ws2)、二硫化钼(mos2)、氮化硼(bn)等。作为引导构件50,例如可以在外周面形成碳等的被膜,另外,也可以由碳单质形成。另外,也可以涂布于玻璃的边缘部。作为低摩擦材料的涂布,优选为二硫化钨(ws2)、二硫化钼(mos2)、氮化硼(bn)、碳(c)等。而且,通过至少在引导部53涂布低摩擦材料,或者涂布于玻璃边缘部,或者选择引导构件50自身的材质,从而引导部53成为期望的静摩擦系数。

将弯曲基材10成型的成型装置20的成型模具30将具有运出运入区域、加热区域和缓冷区域的加热炉(图示略)的内部设为一个循环进行移动。而且,成型模具30通过反复进行加热炉的运出运入区域、加热区域和缓冷区域的移动而连续生产弯曲基材10。

接下来,对使用上述成型装置20的弯曲基材10的成型方法进行说明。

图9是对使用成型装置20的弯曲基材10的成型方法进行说明的图,图9的(a)~(c)分别是成型工序中的成型装置20的立体图。图10是对通过成型得到的预成型件基材10p的外形的变动和定位进行说明的成型装置20的一部分的平面图。

(预成型件基材的成型)

首先,准备通过模拟使弯曲基材10以等分布载荷平坦而得到的外形的预成型件基材10p(参照图4、图5)。

(基材载置工序)

在加热炉的运出运入区域中,如图9的(a)所示,在成型装置20设置预成型件基材10p。具体而言,使预成型件基材10p通过搬运机构(图示略)从成型装置20的成型模具30的上方载置于多个引导构件50的内侧。此时,平坦的预成型件基材10p的平面观察的外形大于平面观察的外形与弯曲基材10相同的成型面31。因此,如图10所示,预成型件基材10p的周缘部从成型面31突出,与直立设置于成型面31的周围的引导构件50的倾斜部52的引导部53抵接而卡止(参照图10中虚线)。由此,预成型件基材10p的周缘部被引导构件50的倾斜部52支承,配置于相对于成型面31向上方分开的位置。应予说明,成型模具30成为利用加热炉加热到400℃左右的状态。

(成型工序)

成型模具30向加热炉的加热区域移动。由此,将预成型件基材10p加热到成型温度。

如图9的(b)所示,预成型件基材10p通过加热到成型温度而软化。然后,预成型件基材10p由于周缘部与引导构件50的引导部53接触,因此其中央部分通过自重而垂下。由此,预成型件基材10p的平面观察时的外形逐渐变小,与引导部53接触的周缘部一边与引导部53接触一边通过自重而滑落。由此,如图9的(c)所示,预成型件基材10p通过引导部53向成型面31进行引导,从而如图10所示一边与成型面31对准一边因自重而垂下配置在成型模具30的成型面31上(参照图10中实线)。应予说明,预成型件基材10p的中央部通过自重而垂下时,可以从预成型件基材10p的上表面对至少一部分进行按压。

在该成型工序中,例如如果预成型件基材10p的重心从中央偏移,或者预成型件基材10p倾斜而设置,则预成型件基材10p的重心侧、倾斜的下方侧先滑落,一个端部的边缘部与引导构件50的直部51接触。此时,如果其后预成型件基材10p软化而因自重引起的挠曲增大,则预成型件基材10p以与直部51的接触部位作为基点,中央部分向成型面31接近,一个端部以外的边缘部一边与引导部53接触一边滑落,与成型面31对准并配置在成型面31上。应予说明,可以通过对引导构件50施加振动而提高滑动性。

(吸附工序)

在预成型件基材10p配置在成型模具30的成型面31上的状态下驱动真空泵,从形成于成型面31的抽吸孔32抽吸成型面31与预成型件基材10p之间的空气。由此,预成型件基材10p在高精度地定位于成型面31的状态下与成型面31密合,成型面31的曲面形状被转印而成为期望的弯曲形状的弯曲基材10。应予说明,预成型件基材10p不仅通过利用真空泵的抽吸来赋予曲面形状,而且可以从预成型件基材10p的上表面对至少一部分进行按压,也可以将它们组合。

(缓冷和取出工序)

其后,弯曲基材10与成型面31密合的成型模具30向缓冷区域移动,由此,弯曲基材10被冷却至应变点以下。然后,被冷却的弯曲基材10通过搬运机构从成型模具30取出。在弯曲基材10被取出的成型模具30中载置接下来的用于弯曲基材10的成型的预成型件基材10p。

在此,对将厚度t为1.8mm的预成型件基材10p通过成型装置20成型而制成弯曲基材10时的成型的具体例进行说明。应予说明,将成型模具30的引导部53的静摩擦系数设为0.1,将成型温度设为630℃。

图11的(a)~图13的(f)是对将预成型件基材10p成型为弯曲基材10的成型的具体例进行说明的图。图11的(a)~(f)分别是成型工序中的成型装置20的示意立体图,图12的(a)~(f)分别是成型工序中的成型装置20的示意侧面图,图13的(a)~(f)分别是成型工序中的成型装置20的示意平面图。

如果从将预成型件基材10p设置于成型模具30的状态(参照图11(a)、图12(a)和图13(a))将预成型件基材10p加热到成型温度(630℃),则周缘部被引导部53支承的预成型件基材10p在从安装时起约1秒后,中央侧因自重而略微挠曲,平面观察时的外形略微变小。

然后,预成型件基材10p的重心侧先滑落,一个端部的边缘部与引导构件50的直部51接触(参照图11(b)、图12(b)和图13(b))。

从设置时起约3秒后,预成型件基材10p进一步软化,从而因自重引起的挠曲变大,其中央部分向成型面31接近(参照图11(c)、图12(c)和图13(c)),一个端部以外的边缘部一边与引导部53接触一边滑落。

从设置时起约10秒后,预成型件基材10p定位于成型面31,其周缘部与引导构件50的直部51接触,主面11的外周侧与成型面31接触(参照图11(d)、图12(d)和图13(d))。

从设置时起约110秒后,预成型件基材10p相对于成型面31在中央部分略微留出间隙,成为除该中央部分之外的其它的部分密合的状态(参照图11(e)、图12(e)和图13(e))。

在该状态下,如果利用真空泵以0.08mpa从抽吸孔32抽吸成型面31与预成型件基材10p之间的空气,则预成型件基材10p的下方侧的主面11的整体与成型面31在高精度地定位的状态下密合(参照图11(f)、图12(f)和图13(f))。由此,预成型件基材10p转印有成型面31的曲面形状而成为期望的弯曲形状的弯曲基材10。

如此,根据本实施方式的弯曲基材10的制造方法,通过使预成型件基材10p垂下并沿着成型面31,能够容易地将至少一部分弯曲的高品质的弯曲基材10成型。而且,将预成型件基材10p通过自重而成型为弯曲基材10时,通过引导构件50的引导部53使预成型件基材10p的周缘部向成型面31的周缘进行引导,因此,能够将预成型件基材10p精度良好地定位于具有与弯曲基材10的外形相同外形的成型面31。由此,能够不需要在成型后进行磨削而将外形精加工成最终外形的繁琐的后加工。如此,能够向成型模具30的成型面31高精度地定位预成型件基材10p而容易地将高品质的弯曲基材10成型。具有与弯曲基材10的外形相同外形的成型面31不需要弯曲基材10的外形与成型面31的外形完全相同,只要至少一部分一致即可,优选50%以上一致,更优选70%以上一致。

特别是,通过设置于夹持使预成型件基材10p弯曲的方向的成型面31的对置位置的引导构件50的引导部53,能够使因自重而垂下的预成型件基材10p的周缘部向成型面31的周缘顺利地引导而将预成型件基材10p精度良好地定位于成型面31。

而且,通过预先对预成型件基材10p的周缘部的角部13进行倒角,从而能够使预成型件基材10p的周缘部相对于引导构件50的引导部53的滑动良好。由此,将预成型件基材10p的周缘部利用引导部53顺利地向成型面31的边缘部进行引导。

另外,通过使引导构件50的引导部53的静摩擦系数在成型工序的温度下为0.5以下,能够使预成型件基材10p的周缘部相对于引导构件50的引导部53的滑动良好。由此,将预成型件基材10p的周缘部利用引导部53顺利地向成型面31的边缘部进行引导。

另外,通过将预成型件基材10p预先形成为使弯曲基材10平坦时的外形,在将预成型件基材10p成型而制成弯曲基材10时,能够将成型的弯曲基材10准确地形成目标外形。

进而,通过吸附工序将预成型件基材10p可靠地与成型面31密合。由此,能够进一步提高成型精度而提高品质。

另外,在成型工序中,预成型件基材10p的周缘部的一部分被卡止于引导构件50的直部51。由此,即使因重心的偏移、载置时的倾斜而预成型件基材10p倾斜垂下,下方侧的边缘部也卡止于直部51,其后,周缘部的其它部分被引导构件50的引导部53引导而定位于成型面。由此,能够向成型面31可靠地定位预成型件基材10p。

另外,一边使预成型件基材10p的周缘部与形成为销状的引导构件50的线状的引导部53点接触一边向成型面31的边缘部准确地引导。

而且,根据通过本实施方式的弯曲基材10的制造方法制造的弯曲基材10,由于至少一部分被弯曲且周缘部的角部13被倒角,因此,能够在不对周缘部进行磨削而倒角的情况下作为例如平视显示器的镜、车载品的盖玻璃等的各种基材使用。

(其它实施方式)

接下来,对其它实施方式进行说明。

应予说明,与上述实施方式相同的构成部分标记相同符号而省略说明。

图14是其它实施方式中使用的成型装置20的立体图。图15是其它实施方式中使用的成型装置20的平面图。图16是成型装置20和引导构件70的立体图。

如图14和图15所示,其它实施方式中,使用具有形成为销状的引导构件50、以及形成为块状的一对引导构件70的成型模具30将弯曲基材10成型。引导构件70配置于相互对置的位置。引导构件70也具有直部71和倾斜部72,倾斜部72成为向下方而截面积逐渐变大的形状。

如图16所示,引导构件70在成型模具30的嵌合凹部33嵌合直部71并安装于成型模具30的状态下,倾斜部72的成型面31侧成为面状的引导部73。预成型件基材10p的周缘部与引导构件70的引导部73接触。引导部73从成型面31的外侧向成型面31的边缘部倾斜。该引导部73形成为宽幅形状,由此,预成型件基材10p的周缘部与引导部73线接触。

接下来,对使用上述的成型模具30的成型方法进行说明。

图17是对使用成型装置20的弯曲基材10的成型方法进行说明的图,图17的(a)~(c)分别是成型工序中的成型装置20的立体图。

(预成型件基材的成型)

首先,准备通过模拟使弯曲基材10以等分布载荷平坦而得到的预成型件基材10p(参照图4、图5)。

(基材载置工序)

在加热炉的运出运入区域中,如图17(a)所示,通过搬运机构将预成型件基材10p设置于成型装置20的成型模具30。具体而言,从成型模具30的成型面31的上方在直立设置于成型模具30上的多个引导构件50、70的内侧载置预成型件基材10p。此时,相对于弯曲基材10平面观察的外形大的平坦的预成型件基材10p的周缘部与直立设置于成型面31的周围的引导构件50、70的倾斜部52、72的引导部53、73抵接而卡止。

(成型工序)

使成型模具30向加热炉的加热区域移动,预成型件基材10p被加热到成型温度。预成型件基材10p如果通过加热到成型温度而软化,则如图17的(b)所示,周缘部与引导构件50、70的引导部53、73接触,因此,其中央部分因自重而垂下。然后,预成型件基材10p的平面观察时的外形逐渐减小,与引导部53、73接触的周缘部一边与引导部53、73接触一边通过自重而滑落。由此,如图17的(c)所示,预成型件基材10p通过引导部53、73向成型面31引导,由此一边与成型面31对准一边因自重而垂下配置在成型模具30的成型面31上。此时,引导构件70由于形成为宽幅形状,因此,预成型件基材10p的两端的边缘部一边与由引导构件70的面构成的引导部73线接触一边滑落。

在该成型工序中,例如如果预成型件基材10p的重心从中央偏移,或者预成型件基材10p倾斜而设置,则预成型件基材10p的重心侧、倾斜的下方侧先滑落,一个端部的边缘部与引导构件70的直部71接触。而且,如果通过其后的预成型件基材10p的软化因自重引起的挠曲变大,则预成型件基材10p以与直部71的接触部位作为基点,中央部分向成型面31接近,一个端部以外的边缘部一边与引导部53、73接触一边滑落,与成型面31对准并配置在成型面31上。

(吸附工序)

在预成型件基材10p配置在成型模具30的成型面31上的状态下驱动真空泵,从形成于成型面31的抽吸孔32抽吸成型面31与预成型件基材10p之间的空气。由此,预成型件基材10p在高精度地定位于成型面31的状态下与成型面31密合,成型面31的曲面形状被转印而成为期望的弯曲形状的弯曲基材10。

(缓冷和取出工序)

其后,弯曲基材10与成型面31密合的成型模具30向缓冷区域移动,由此,弯曲基材10被冷却至应变点以下。然后,被冷却的弯曲基材10通过搬运机构从成型模具30取出。在弯曲基材10被取出的成型模具30中载置接下来的用于弯曲基材10的成型的预成型件基材10p。

在其它实施方式的情况下,也在将预成型件基材10p通过自重而成型为弯曲基材10时,通过引导构件50、70的引导部53、73使预成型件基材10p的周缘部向成型面31的周缘进行引导,他因此,能够将预成型件基材10p精度良好地定位于具有与弯曲基材10的外形相同外形的成型面31。由此,能够不需要在成型后进行磨削而将外形精加工成最终外形的繁琐的后加工。如此,其它实施方式能够向成型模具30的成型面31高精度地定位预成型件基材10p而容易地将高品质的弯曲基材10成型。

特别是,成型模具30一边使预成型件基材10p的周缘部与形成为块状的引导构件70的面状的引导部73线接触一边向成型面31的边缘部准确地引导。

应予说明,在上述实施方式中,例示了通过向下方凹陷的成型面31将弯曲形状的弯曲基材10成型的情况,但也可以通过向上方凸起的成型面31将弯曲形状的弯曲基材10成型,另外,也可以通过向上下弯曲的成型面31将向表背面弯曲成凹凸状的弯曲基材10成型。

另外,作为引导构件50、70的倾斜部52、72的引导部53、73,只要是将预成型件基材10p的周缘部向成型面31的边缘部引导的平滑的形状即可,并不限于直线状。作为引导部53、73,例如可以为平缓地凹陷的弯曲形状,另外,也可以为平缓地凸起的弯曲形状。

另外,作直立设置于在成型模具30的引导构件,只要是具有将预成型件基材10p的边缘部向成型面31的边缘部引导的引导部的形状,则并不限于圆锥形的销状的引导构件50或宽幅的块状的引导构件70,例如可以为三角锥等。

另外,在上述实施方式中,例示了将沿着x方向和y方向分别弯曲的弯曲基材10成型的情况,但也可以将沿着一个方向(例如y方向)弯曲的弯曲基材10成型。此时,作为成型模具30,可以仅在弯曲的方向(y方向)的端部侧具备引导构件50或引导构件70。

另外,作为成型的弯曲基材10,并不限于玻璃板,也可以为陶瓷、树脂、木材、金属等的板。

另外,本发明的成型装置可以如图6所示的实施方式那样多个引导构件具有相同形状,也可以如图14所示的其它实施方式那样多个引导构件具有不同的形状。

另外,预成型件基材可以在设置于成型装置的阶段与多个引导构件全部接触。或者,预成型件基材也可以在设置于成型装置的阶段与多个引导构件的一部分接触,在预成型件基材垂下的阶段增加所接触的多个引导构件的个数。

如上所述,本说明书中公开了以下的事项。

(1)一种弯曲基材的制造方法,是将预成型件基材沿着成型模具的成型面成型为至少一部分弯曲的弯曲基材的制造方法,

在上述成型面的任意的点的垂直方向中,将上述预成型件基材在成型时弯曲的方向设为下方,将相反方向设为上方,将俯视观察时上述成型面以外设为外侧时,包括如下工序:

基材载置工序,从具有与上述弯曲基材的外形相同外形的上述成型面的上方载置上述预成型件基材,以及

成型工序,通过加热上述预成型件基材而使其软化,从而通过自重将上述预成型件基材沿着上述成型面成型为上述弯曲基材;

在上述基材载置工序中,使上述预成型件基材载置于具备引导构件的成型模具,所述引导构件具有从上述成型面的外侧向上述成型面的边缘部倾斜的引导部,

在上述成型工序中,通过使上述预成型件基材的周缘部与上述引导部接触并滑动,从而使上述预成型件基材的周缘部向上述成型面的边缘部进行引导。

根据该弯曲基材的制造方法,通过使预成型件基材垂下并沿着成型面,能够容易地将至少一部分弯曲的高品质的弯曲基材成型。而且,在将预成型件基材通过自重成型为弯曲基材时,通过引导构件的引导部使预成型件基材的周缘部向成型面的周缘进行引导,因此,能够将预成型件基材精度良好地定位于具有与弯曲基材的外形相同外形的成型面。由此,能够不需要在成型后进行磨削而将外形精加工成最终外形的繁琐的后加工。如此,该制造方法能够向成型模具的成型面高精度地定位预成型件基材而容易地将高品质的弯曲基材成型。

(2)根据(1)所述的弯曲基材的制造方法,其中,将上述引导构件设置于至少夹持上述成型面的对置位置。

根据该弯曲基材的制造方法,通过设置于夹持使预成型件基材弯曲的方向的成型面的对置位置的引导构件的引导部,能够使因自重而垂下的预成型件基材的周缘部向成型面的周缘顺利地引导而将预成型件基材精度良好地定位于成型面。

(3)根据(1)或(2)所述的弯曲基材的制造方法,其中,预先对上述预成型件基材的周缘部的角部进行倒角。

根据该弯曲基材的制造方法,通过预先对预成型件基材的周缘部的角部进行倒角,能够使预成型件基材的周缘部相对于引导构件的引导部的滑动良好。由此,将预成型件基材的周缘部通过引导部顺利地向成型面的边缘部引导。

(4)根据(1)~(3)中任一项所述的弯曲基材的制造方法,其中,上述引导构件的上述引导部在上述成型工序的温度下的静摩擦系数为0.5以下。

根据该弯曲基材的制造方法,通过使引导构件的引导部的静摩擦系数在成型工序的温度下为0.5以下,能够使预成型件基材的周缘部相对于引导构件的引导部的滑动良好。由此,将预成型件基材的周缘部通过引导部顺利地向成型面的边缘部引导。

(5)根据(1)~(4)中任一项所述的弯曲基材的制造方法,其中,将上述预成型件基材预先形成为使上述弯曲基材平坦时的外形。

根据该弯曲基材的制造方法,在将预成型件基材成型而制成弯曲基材时,能够将成型的弯曲基材准确地形成目标外形。

(6)根据(1)~(5)中任一项所述的弯曲基材的制造方法,其中,在上述成型工序中使上述预成型件基材沿着上述成型面后,进行从设置于上述成型面的吸附孔进行抽吸而使上述预成型件基材吸附于上述成型面的吸附工序。

根据该弯曲基材的制造方法,通过吸附工序将预成型件基材可靠地与成型面密合。由此,能够进一步提高成型精度而提高品质。

(7)根据(1)~(6)中任一项所述的弯曲基材的制造方法,其中,在上述引导构件的根部设置上述预成型件基材的边缘部能够卡止的直部。

根据该弯曲基材的制造方法,在成型工序中,预成型件基材的周缘部的一部分卡止于引导构件的直部。由此,即使因重心的偏移、载置时的倾斜而预成型件基材倾斜地垂下,下方侧的边缘部也卡止于直部,其后,周缘部的其它部分被引导构件的引导部引导而定位于成型面。由此,能够向成型面可靠地定位预成型件基材。

(8)根据(1)~(7)中任一项所述的弯曲基材的制造方法,其中,作为上述引导构件,将向下方而截面积变大的销状的引导构件设置于上述成型模具,使上述预成型件基材的周缘部与上述引导构件的形成为线状的上述引导部进行点接触。

根据该弯曲基材的制造方法,一边使预成型件基材的周缘部与形成为销状的引导构件的线状的引导部点接触一边向成型面的边缘部准确地引导。

(9)根据(1)~(7)中任一项所述的弯曲基材的制造方法,其中,作为上述引导构件,将向下方而截面积变大的块状的引导构件设置于上述成型模具,使上述预成型件基材的周缘部与上述引导构件的形成为面状的上述引导部进行线接触。

根据该弯曲基材的制造方法,一边使预成型件基材的周缘部与形成为块状的引导构件的面状的引导部线接触一边向成型面的边缘部准确地引导。

(10)根据(1)~(9)中任一项所述的弯曲基材的制造方法,其中,利用玻璃板将上述预成型件基材成型。

根据该弯曲基材的制造方法,通过利用玻璃板将预成型件基材成型,能够容易地将至少一部分弯曲的由玻璃板构成的高品质的弯曲基材成型。

(11)一种弯曲基材的成型模具,是将预成型件基材沿着成型模具的成型面成型为至少一部分弯曲的弯曲基材的成型模具,具备:

具有与上述弯曲基材的外形相同外形的上述成型面,以及

具有从上述成型面的外侧向上述成型面的边缘部倾斜的引导部的引导构件,

上述引导构件通过使上述预成型件基材的周缘部与上述引导部接触并滑动,从而将上述预成型件基材的周缘部向上述成型面的边缘部进行引导。

根据该弯曲基材的成型模具,通过使预成型件基材垂下并沿着成型面,从而能够容易地将至少一部分弯曲的高品质的弯曲基材成型。而且,在将预成型件基材通过自重成型为弯曲基材时,通过引导构件的引导部使预成型件基材的周缘部向成型面的周缘进行引导,因此,能够将预成型件基材精度良好地定位于具有与弯曲基材的外形相同外形的成型面。由此,能够不需要在成型后进行磨削而将外形精加工成最终外形的繁琐的后加工。如此,该成型模具能够向成型模具的成型面高精度地定位预成型件基材而容易地将高品质的弯曲基材成型。

(12)根据(11)所述的弯曲基材的成型模具,其中,上述引导部的表面粗糙度为50nm~1000nm。

根据该弯曲基材的成型模具,与预成型件基材的接触面能够具有一定程度的面强度,另外,能够减少与预成型件基材的真实接触面而减少因摩擦引起的阻力,能够防止预成型件基材的局部变形。

(13)根据(11)或(12)所述的弯曲基材的成型模具,其中,上述引导部的倾斜角度为45°~89°。

根据该弯曲基材的成型模具,能够减少成型时的预成型件基材与引导部的垂直应力而减少摩擦力,能够抑制预成型件基材的局部变形,另外,能够防止预成型件基材最终成为骑上引导部的状态而局部变形。

(14)根据(11)~(13)中任一项所述的弯曲基材的成型模具,其中,上述引导部的在将上述预成型件基材成型为上述弯曲基材时的成型温度下的静摩擦系数为0.5以下。

根据该弯曲基材的成型模具,能够抑制因与引导部的接触阻力引起的预成型件基材的局部变形。

(15)根据(14)所述的弯曲基材的成型模具,其中,上述引导部的静摩擦系数为0.01~0.5。

根据该弯曲基材的成型模具,能够抑制因与引导部的接触阻力引起的预成型件基材的局部变形,另外,能够在预成型件基材的初始设置时使预成型件基材的位置不会极端地偏移。

虽然详细并且参照特定的实施方式对本发明进行了说明,但对本领域技术人员而言显而易见的是可以在不脱离本发明的精神和范围的情况下进行各种变更、修正。

本申请基于2017年11月10日申请的日本专利申请特愿2017-217135,其内容作为参照并入本说明书中。

符号说明

10弯曲基材

10p预成型件基材

13角部

30成型模具

31成型面

32抽吸孔

50引导构件

51直部

53引导部

70引导构件

71直部

73引导部

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1