净化含有n的制作方法

文档序号:3430828阅读:165来源:国知局
专利名称:净化含有n的制作方法
技术领域
本发明涉及一种净化低温流体中的特别是其N2O、CnHm和/或NOx杂质的方法,所述低温流体如氮、氧、氦、氢或氩。
低温流体如氧、氮、氦、氢或氩,特别是在电子领域具有很高的工业价值。
因而在印刷电路的制备过程中常规作法是使用氮使之呈惰性或冷却,而氦常用来冷却热的光导纤维。
在目前,各种低温流体是通过对环境空气或含有这些低温流体的气体混合物进行低温蒸馏来获得,或者是通过非低温分离技术如变压吸附方法、通常称为PSA方法来获得,或通过膜渗透来获得。
然而,对于某些应用来说,特别是在电子领域,低温流体必须是高纯度的,也就是说,它必须含有最小数量的杂质和其它不希望的污染物,以防止这些杂质引起不希望的物理-化学反应或与预定目的不相容的反应。
因而,通常的作法是对低温流体进行彻底纯化,也就是说,低至纯度值低于几十ppb(相对于每十亿份的份数)或甚至1ppb。
截止目前,已提出了许多纯化低温流体的方法。
可提到的是文献EP-A-662595,其中叙述了制备高纯度液氮的方法,在该方法中通过在沸石物质或多孔金属氧化物类物质上吸附来除去在液氮中存在的一氧化碳、氧、和氢杂质。
再有,文献US-A-4746332叙述了通过在5A沸石类上吸附来除去在液氮中存在的一氧化碳。
另外,EP-A-590946提出了在90°K至150°K的温度下通过使用TSA(变温吸附)类方法对在气体氮中存在的一氧化碳进行预净化,随后通过对如此预净化的氮进行蒸馏来进行超净化。
文献EP-A-750933涉及通过在过渡金属氧化物如hopcalite(钴、铜、银、锰等氧化物的混合物)上吸附来除去在液体或气体氮或氩中存在的一氧化碳和氧。
再有,文献US-A-4717406提出了通过在吸附剂、特别是在分子筛、活性炭或二氧化硅类物质上机械过滤和吸附来对物流进行净化。
文献WO-A-98/28226建议通过机械过滤呈晶体形态的杂质和吸附呈溶解或气体形态的杂质来净化低温流体如氦、氢、或氩,以获得含杂质少于1ppb的净化流体。
此外,文献US-A-4425143叙述了具有增强吸附性能的沸石,其特征在于具有高的Si/Al比值以耐受酸,这种沸石不含Fe2O3。
文献EP-A-747118提出通过浸有碱或碱土金属氧化物的载体来从隋性气体中除去氧杂质。
最后,文献US-A-3597169涉及采用经钙或银阳离子高度交换的沸石X来除去在液氧中所含的甲烷杂质的方法。
在实际中,在各种方法中使用的吸附剂颗粒的平均尺寸通常为约2mm至5mm。
然而,尽管这些方法能够较为充分地脱除低温流体中所含的一些杂质、特别是如一氧化碳、二氧化碳或氧杂质,但看起来有效除去在低温流体中可能大量存在的一些其它杂质的问题至今没有解决,或仅非彻底地解决。
因而本发明的目的是通过提出可有效地除去在低温流体如氮、氧、氦、氢或氩中易于存在的特别是N2O、CnHm和/或NOx杂质的低温流体净化方法改进现有的方法。
在本发明的上下文中,NOx应理解为是指NO和/或NO2,CnHm应理解为是指一或多种烃,如具有饱和或不饱和碳主链的分子。
因而,本发明涉及对含有选自N2O、CnHm(烃)和NOx中的杂质的低温流体进行净化的方法,在该方法中(a)通过使要净化的所述低温流体与至少一种吸附剂颗粒接触来除去所要净化的低温流体中所含的至少一些杂质,所述颗粒的平均尺寸低于或等于1.5mm;和(b)回收含所述杂质的数量少于100ppb,优选少于10ppb的净化过的低温流体。
其理由是本发明的发明人证实,吸附剂颗粒的尺寸对性能、也就是净化方法的有效性有很大的影响。
如以下实施例所示可看出,通过减小在净化方法中所用的吸附剂颗粒的尺寸可获得对方法的性能有益的效果,这很可能是由于吸附剂的杂质吸附动力学得到改进。
根据具体情况,本发明的方法包括一或多种如下特性-所述颗粒的平均尺寸小于或等于1.4mm,优选小于或等于1.3mm,更优选小于或等于1.2mm,并可有利的为约0.8mm至1.1mm;-所述低温流体选自氧、氢、氩、氮、氢和氦;-所述低温流体呈液体和/或气体形态;-所要净化的低温流体中所含的至少一些杂质是通过在吸附剂颗粒上的吸附或化学吸附来除去;-所述杂质的除去在低于约-120℃、优选低于-150℃的温度下进行-所述杂质的除去在105Pa至3×106Pa的压力下进行;-低温流体与吸附剂颗粒的接触时间少于或等于300秒、优选为70至200秒,-吸附剂颗粒的孔径为0.5至2.5mm和/或孔体积为0.2至0.mml/g和/或比表面积为100至1500m2/g,优选为600至850m2/g;-吸附剂颗粒呈球珠、挤出物、粉碎物或椭圆形态;-吸附剂颗粒由选自硅胶、沸石、金属氧化物如hopcalite、和碳物质的物质制成;-回收杂质含量最多为1ppb的净化过的低温流体;-所述方法是PSA(变压吸附)或TSA(变温吸附)类型,优选TSA类型;-所述低温流体可含有选自H2、CO、CO2和H2O的一或多种杂质,这些杂质也被除去;-所述吸附剂是沸石类型,特别是X、LSX(低二氧化硅X)或A型沸石,它们是用金属阳离子,特别是钙、银、铜、钴、镍、钯、或铂阳离子交换或未交换过的。
现在借助实施例和附图对本发明进行详细描述,这些实施例是示例性的,并非意味着对本发明加以限制。
实施例如下试验的目的是证实本发明吸附净化方法的有效性。
更具体而言,在这些不同的试验中,实施净化方法的条件如下-所要净化的流体液氩-所要除去的杂质N2O-N2O杂质(作为输入原料)含量1至8.5ppm-净化温度-185℃-净化压力8×105Pa-接触时间70至200秒-净化产量约1Sm3/h。
再有,所采用的吸附剂具有如下的特性-吸附剂种类硅胶-颗粒形状球形-平均颗粒尺寸1.1,2或2.5mm-平均孔体积约0.40ml/g-平均孔径2nm-比表面积750m2/g。
试验No.1在2.5mm颗粒上净化液体氩使含有8.5ppmN2O杂质的所要净化的液体氩物流与平均尺寸为2.5mm的吸附剂颗粒接触。
在这一试验中,接触时间约为130秒。
所得结果绘于

图1中,清楚地表明在2.5mm颗粒上在仅4小时后发生N2O的穿透。
因而穿透中止容量为0.9Scc/g。
试验No.2在2mm颗粒上净化液体氩使含有1ppmN2O杂质的所要净化的液体氩物流与平均尺寸为2mm的吸附剂颗粒接触。
在这一试验中,接触时间约为200秒。
所得结果绘于图2中,清楚地表明在2mm颗粒上在47小时后发生N2O穿透。
因而穿透中止容量(break-through stopping capacity)为0.85Scc/g。
试验No.3在1.1mm颗粒上净化液体氩使含有1.5ppmN2O杂质的所要净化的液体氩物流与平均尺寸为1.1mm的吸附剂颗粒接触。
在这一试验中,接触时间约为70秒。
所得结果绘于图3中,清楚可见在1.1mm颗粒上在300小时后发生N2O的穿透。
因而,在本发明的实施例3中,穿透中止容量高于22Scc/g。试验1至3的结果列于以下对比表中对比表
由以上试验清楚可见,减小吸附剂颗粒(在这种情况下为硅胶)的尺寸导致吸附剂动力学的改进,并出人预料地导致更有效地净化低温流体(在这种情况下为液氩)。
这是因为,通过减小吸附剂颗粒的尺寸,发现对于相同的吸附容量,增加了穿透时间,也就是说,通过使用尺寸小于通用尺寸的吸附剂颗粒,延长了生产时间,甚至当所要净化的流体与吸附剂的接触时间减少时也是如此。
此外,可见到,将吸附剂的尺寸减小约二分之一(比较实施例3),意外且不可预料的引起中止容量增加约24倍,甚至将接触时间减小三分之一也是如此(比较实施例3)。
本发明的净化方法是基于使用小尺寸(<1.5mm)的吸附剂颗粒,因而使得净化循环的生产阶段显著增加,这又使得可通过降低吸附反应器的尺寸、所要使用的吸附剂的数量、吸附剂再生频率以及能量消耗和所使用的再生流体的数量而降低方法的总成本。
权利要求
1.含有选自N2O、CnHm和/或NOx的杂质的低温流体的净化方法,其中(a)通过使要净化的所述低温流体与至少一种吸附剂颗粒接触而脱除在要净化的所述低温流体中所含的至少一些杂质,所述颗粒的平均尺寸小于或等于1.5mm;和(b)回收所述杂质含量少于100ppb的净化过的低温流体。
2.如权利要求1的方法,其特征在于所述颗粒的平均尺寸小于或等于1.3mm,优选小于或等于1.2mm,有利的是约为0.8mm至1.1mm。
3.如权利要求1或2中任一项的方法,其特征在于所述低温流体选自氧、氩、氢、氮和氦。
4.如权利要求1至3中任一项的方法,其特征在于所述低温流体呈液体和/或气体形态。
5.如权利要求1至4中任一项的方法,其特征在于在所要净化的低温流体中所含的至少一些杂质是通过在吸附剂颗粒上的吸附或化学吸附来除去。
6.如权利要求1至5中任一项的方法,其特征在于所述杂质的除去是在低于-120℃、优选低于-150℃的温度下、和/或105Pa至3×106Pa的压力下进行。
7.如权利要求1至6中任一项的方法,其特征在于低温流体与吸附剂颗粒的接触时间少于或等于300秒,优选为70至200秒。
8.如权利要求1至7中任一项的方法,其特征在于吸附剂颗粒的孔径为0.5至2.5mm和/或孔体积为0.2至0.8ml/g和/或比表面积为100至1500m2/g。
9.如权利要求1至8中任一项的方法,其特征在于所述吸附剂颗粒呈球珠、挤出物、粉碎物或椭圆形。
10.如权利要求1至9中任一项的方法,其特征在于吸附剂颗粒由选自硅胶、沸石、金属氧化物和碳物质的物质制成。
11.如权利要求1至10中的方法,其特征在于回收杂质含量最多为10ppb、优选最多为1ppb的净化过的低温流体。
全文摘要
本发明涉及一种含有N
文档编号C01B3/50GK1255621SQ99125028
公开日2000年6月7日 申请日期1999年10月19日 优先权日1998年10月20日
发明者D·盖里, S·莫利奥, D·弗尔尼斯 申请人:液体空气乔治洛德方法利用和研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1