电流发生系统的制作方法

文档序号:3430975阅读:207来源:国知局
专利名称:电流发生系统的制作方法
技术领域
本发明涉及一种用于产生电流的燃料电池。具体地说,本发明涉及一种基于燃料电池的发电系统,该系统采用压力回转吸收方法来增大所述燃料电池的效率。
首先,为了从燃料电池中获取一个持续的电能源,必须为该燃料电池提供一个持续的氧气和氢气源。然而,如果利用大气作为氧气的直接来源而输送到阴极通道中,那么氧气的低分压和氮气的浓差极化,将严重影响PEM燃料电池的性能,同时,碱性燃料电池还需要一个预处理提纯系统来将二氧化碳从送入的空气中去除。还有,由于大气原料在阴极通道中的平均氧气浓度一般仅为15%左右,所以为了提供工业应用所需的充足能量,该燃料电池就必须被制成具有异乎寻常的大尺寸。
为了在流经阴极通道的氧气中获得足够大的分压,以从PEM燃料电池系统中得到较大的电流密度,尤其用于机动车辆的发动机,那么就必须在原料空气被供送到阴极通道中之前,将其压缩到至少3个大气压。应该明白,对原料空气进行充分压缩所需输入的能量将会降低该燃料电池系统的总效率。已经提出了利用聚合物隔膜来对氧气进行浓缩,但是这种隔膜实际上却降低了氧气的分压,总压力的减小量要大于可获得的有限浓缩补偿量。
其次,氢气的外部制备、净化、分配以及存储(以压缩气体或低温液体的形式)均需要昂贵的基础条件,同时在车辆中对氢气燃料的储存还存在相当的技术与经济障碍。因此,对于稳定的能量发生而言,氢气最好是通过蒸气重整或局部氧化后再进行水煤气转化而由天然气生成。对于采用液体燃料的燃料电池车辆而言,氢气最好是通过蒸气重整由甲醇生成,或者是通过部分氧化或自热重整后再进行水煤气转换而由汽油生成。然而,最终的氢气中仍包含有一氧化碳和二氧化碳杂质,当这些杂质在微量级时,将分别不能被PEM燃料电池中的催化电极和碱性燃料电池中的电解质所容许。
从送入PEM燃料电池的氢气中去除残留的一氧化碳的常规方法是选择性催化氧化,由于低温氧化消耗了一氧化碳和一部分氢气,因此该方法会影响其效率,并且无法对任何燃烧热进行回收。钯扩散膜可以用于氢气净化,但是却存在着在低压下会输送提纯后的氢气的缺点,并且还需要利用稀有和昂贵的材料。
第三,压力回转吸收系统(PSA)具有这样一个显著特点,即其能够在不含有明显量的杂质的条件下提供持续的氧气和氢气源。PSA系统和真空压力回转吸收系统(真空-PSA)通过调整压力循环并在吸附床上反转流动来从气体混合物中分离出气体成分,其中该吸附床相对于混合物中较不易被吸收的气体组分来说优先吸收较易被吸收的气体组分。当气体混合物从第一端部通过吸收床流向其第二端部时,吸收床中气体混合物的总压力将会增大,而当气体混合物从第二端部通过吸收床的流回其第一端部时,总压力将会减小。随着PSA循环的重复,较不易被吸收的组分在靠近吸收床的第二端部处聚集,而较易被吸收的组分在靠近吸收床的第一端部处聚集。结果,“轻质”产物(在较易被吸收的组分中减少而在较不易被吸收的组分中浓缩的气体成分)被从吸收床的第二端部处输出,而“重质”产物(在非常易被吸收的组分中浓缩的气体成分)被从该吸收床的第一端部处排出。
然而,用于执行压力回转吸收或者真空压力回转吸收的常规系统是利用两个或更多的平行固定吸收床,在每一个吸收床的每一端部均带有换向阀,用于以交替的次序将吸收床与压力源和交换器相连通。由于所需的阀系统非常复杂,所以操作该系统通常困难并且成本昂贵。
还有,常规的PSA系统对提供给它的能量利用率较低,这是因为对原料气体的增压是由一压缩机提供的,而该压缩机所传输的压力是所述循环中的最高压力。在PSA中,通过调节阀门,在吸附器和高压供应源之间的瞬间压力差消耗了用于增压而对原料气体进行压缩所需的能量。同样,在真空-PSA中,其中循环中的较低压力是通过一真空泵在所述压力下抽取气体而形成的,通过在吸附器的逆流排气过程中对阀门进行调节而消耗了能量,其中所述吸附器中的压力被降低。在这两个系统中另一能量消耗发生在净化,均化,顺流排放,产品增压或回流步骤中对轻质回流气体进行调节时。这些能量损失均减少了整个燃料电池系统的效率。
另外,常规的PSA系统通常只能在相对较低的循环频率下进行工作,这就需要利用大量的吸附剂。这种PSA系统所必然会具有的较大尺寸和重量,也使得它们不适用于车辆上的燃料电池应用领域。
因此,就需要一种基于燃料电池的高效发电系统,该系统可以产生足够的能量用于工业应用,并且该系统适用于机动车辆应用领域。
本发明的概述根据本发明,在此提供了一种基于燃料电池的发电系统,此系统旨在克服现有燃料电池发电系统中所存在的不足之处。
根据本发明中第一个实施例的电流发生系统包括有一燃料电池和一氧气传输系统。该燃料电池包括有一阳极通道,其具有一个用于接收氢气供应的阳极气体入口,一阴极通道,其具有一个阴极气体入口和一个阴极气体出口,以及一种与阳极和阴极通道相连通的电解质,以利于在阳极和阴极通道之间进行离子交换。氧气传输系统连接于阴极气体入口上,用以将氧气输送到阴极通道中。
该电流发生系统还包括有与所述阴极气体出口相连接的气体再循环装置,用于将从该阴极气体出口排出的阴极排出气体的一部分再循环回到所述阴极气体入口中。
在第一实施例的优选实施方式中,氧气传输系统包括有一个氧气分离系统,用于从空气中抽取出浓缩的氧气。最好,该氧气分离系统还包括有一个氧气压力回转吸收系统,该回转吸收系统包括一具有一定子和一相对于该定子可转动的转子的旋转组件。所述转子包括有多条用于在其内接收吸附材料的流动路径,用于响应于该流动路径中压力的增大而相对于第二气体成分优先吸收第一气体成分。该压力回转吸收系统还包括有连接于旋转组件上的压缩设备,以有利于气体流经所述流动路径,从而将第一气体成分与第二气体成分分离开。所述定子包括有一个第一定子阀表面,一个第二定子阀表面和多个开口于所述定子阀表面上的功能腔室。所述功能腔室包括有一气体送入腔室,一轻质回流液排出腔室和一个轻质回流液返回腔室。
在一变型实施例中,压缩设备包括一用于向气体送入腔室供送压缩气体的压缩机;和一个连接在轻质回流液腔室与轻质回流液返回腔室之间的轻质回流液膨胀器。气体再循环装置包括有一个连接于轻质回流液膨胀器上的压缩机,用于在朝向阴极气体入口的压力作用下对从阴极气体出口排出的氧气进行供送。其结果,从压力回转吸收系统中回收的能量可以用于增大向阴极气体入口进行供送的氧气压力。
在另一变型实施例中,在轻质回流液排出腔室与轻质回流液返回腔室之间设置有一些限流孔,用于代替所述轻质回流液膨胀器来降低压力。气体再循环装置包括一个连接于阴极气体出口上的压缩机,用于向阴极气体入口供送氧气;和一个设置在阴极气体出口与一压缩腔室之间的限流孔,用于将一部分氧气作为原料气体再循环回到所述压力回转吸收系统中。其结果,从阴极气体出口回收的能量可以被用来经由该PSA系统对阴极气体入口进行协助施压。
根据本发明第二实施例的电流发生系统,包括有一燃料电池;一氧气传输系统;和一个氢气传输系统。该燃料电池包括有一个具有一阳极气体入口和一阳极气体出口的阳极通道,一个具有一阴极气体入口和一阴极气体出口的阴极通道,以及一种与阳极和阴极通道相连通的电解质,以有利于在阴极与阳极通道之间进行离子交换。
氧气传输系统连接在阴极气体入口上,并且将氧气传送到阴极通道中。氢气传输系统包括一个用于接收从阳极气体出口送入的第一原料氢气的氢气入口;和一个连接于该阳极气体入口上的氢气出口,用于将从第一原料氢气中所接收到的氢气提高纯度后送入所述阳极通道中。
在第二实施例的一优选实施方式中,氧气分离系统包括有一氧气压力回转吸收系统,而氢气分离系统包括一用于由碳氢化合物燃料产生第二原料氢气的反应器;和一连接于该反应器上的氢气压力回转吸收系统,用于对从第一和第二原料氢气中所接收到的氢气进行提纯。两种压力回转吸收系统均包括有一个旋转组件,该旋转组件中具有一个定子和一个相对于该定子可转动的转子。所述转子包括有多条用于在其内接收吸收材料的流动路径,用于响应于该流动路径中压力的增大而相对于第二气体成分优先吸收第一气体成分。功能腔室包括有一气体送入腔室和一重质产品腔室。
在一变型实施例中,氧气压力回转吸收系统包括一个连接于气体送入腔室上的压缩机,用于将压缩气体送入气体送入腔室中;和一个连接于该压缩机上的真空泵,用于将氮产出气从重质产品腔室中抽取出来。反应器包括有一蒸汽重整装置,该蒸汽重整装置又包括一用于产生混合气体(syngas)的燃烧器;和一个连接在该蒸汽重整装置上的水煤气转换发生器(water gas shift reactor),用于将所述混合气体转换成第二原料氢气。氢气压力回转吸收系统包括有一个真空泵,用于将燃料气体从重质产品腔室送入燃烧器中。所述燃料气体在燃烧器中进行燃烧,并且从其中所产生的热量被用于供给蒸汽重整反应所必需吸收的反应热量。最终的混合气体被传送到水煤气转换发生器中,以去除杂质,并随后作为第二原料氢气送入氢气压力回转吸收系统中。
在另一变型实施例中,本发明包括有一个用于燃烧燃料的燃烧器。反应器中包括一用于产生混合气体的自热式重整装置;和一个连接在该自热式重整装置上的水煤气转换反应器,用于将所述混合气体转换成第二原料氢气。氧气压力回转吸收系统中的压缩机将压缩空气送入燃烧器中,并且将重质产出气体作为需要在燃烧器中进行燃烧的尾气而从氢气压力回转吸收系统中排出。氧气压力回转吸收系统中的压缩设备还包括有一个连接在所述压缩机上的膨胀器,用于利用从燃烧器中所放出的燃烧热气体来驱动所述压缩机。从燃烧器中放出的热量还可以用于对送入自热式重整装置的空气和/或燃料进行预加热。
对附图的简要说明现在将参照附图对本发明的优选实施例进行描述,但仅作为示例的目的,其中

图1是适用于本发明的一旋转PSA组件的剖视图,示出了所述定子和位于该定子中的转子;图2是图1中所示组件的剖视图,为了清楚起见去除了所述定子;图3是图1中所示定子的剖视图,为了清楚起见去除了所述转子;图4是图1中所示组件的一轴向剖视图;图5示出了一种由图1至4中所示PSA系统所能够获得的典型PSA回路;图6示出了一种由图1至4中所示PSA系统所能够获得的并利用重质回流液的PSA回路变型图;图7示出了一种用于从空气中分离出氧气的压力回转吸收设备,该设备适用于本发明中,并且描绘出了图1中所示的旋转组件和一连接于该旋转组件上的压缩设备;图8示出了一种用于提纯氢气的压力回转吸收设备,该设备适用于本发明,并且描绘出了图1中所示的旋转组件和一个连接在该旋转组件上的压缩设备;图9示出一个根据本发明中第一实施例的电流发生系统,该系统包括有一个氧气分离PSA系统,用于利用从轻质回流液膨胀过程中所回收的能量将浓缩后的氧气送入燃料电池阴极通道中,用以提高该燃料电池阴极回路中的氧气循环压力;图10示出了图9中所示电流发生系统的第一变型结构,该结构中的PSA系统包括有一个逆流排气膨胀器,由其驱动一用于真空PSA操作的自由转子式排气真空泵;图11示出了图9中所示电流发生系统的第二变型结构,其中从燃料电池阴极排出的一部分富氧气体被用于所述PSA系统的一增压步骤中;图12示出了一个根据本发明中第二实施例的电流发生系统,该系统包括有一个用于向燃料电池阴极通道供送浓缩后的氧气的氧气分离PSA系统,和一个用于向燃料电池阳极通道供送浓缩后的氢气的氢气分离PSA系统,并且利用所述氢气分离PSA系统从一蒸汽重整装置中接收送入的原料气体;而图13示出了一个根据图12中所示电流发生系统一变型实施例的电流发生系统,但其利用所述氢气分离PSA系统从一自热式重整装置中接收送入的原料气体。
图14示出了一个向一碱性燃料电池供送已去除二氧化碳并且氧气浓度较高的气体的电流发生系统,该系统带有一个氧气收集器。
对优选实施例的详细描述为了理解本发明,首先将参照附图1至6对适用于本发明中的一压力回转吸收工艺及相关设备进行描述。然后,将分别参照附图7和8对一氧气分离压力回转吸收系统和一氢气分离压力回转吸收系统进行描述。随后,将从图9开始对本发明中的两个实施例,以及在其上所进行的变型一起进行描述。附图1,2,3和4在附图1、2、3和4中示出了一个适于用作本发明中部件的旋转组件10。该组件包括有一在定子14中围绕轴12以箭头13所示方向进行旋转的转子11。但是,应该明白的是本发明并不局限于具有旋转组件的PSA系统。在不脱离本发明范围的条件下也可以利用其他方案。例如,如果需要,本发明可以利用多个平行排布的固定吸附床,并且在各个吸附床的各个端部处利用换向阀来将这些床以交替的次序连接到压力源和转换器上。但是,正如将会明白的那样,由于旋转组件能够提供非常合乎需求的高效性和紧凑性特征,所以旋转组件10是优选的。
通常,旋转组件10可以被构造成,用于相对于转子轴以径向,轴向或者斜锥方向流经吸附元件。为了在较高的循环频率下工作,径向流动具有这样的优点,即向心加速度将平行于流动路径,从而非常有益于浮力驱动自由对流的稳定性,同时利用均匀的流动分布对粒状吸附剂进行离心吸附。在另一方面,轴向流动构造最好用于较小生产能力的组件,而径向流动构造最好用于较大生产能力的组件。
正如图2中所示那样,转子11具有环形断面,并且具有与轴12同心的一外部圆柱形侧壁20,该侧壁20的外表面为第一阀表面21,和一内部圆柱形侧壁22,该侧壁22的内表面为第二阀表面23。该转子具有(在由附图4中箭头15和16所限定断面的平面内)总计为“N”个的径向流动吸附元件24。相邻的一对吸附元件25和26由隔板27隔开,该隔板27在结构上被密封连接在外部侧壁20和内部侧壁22上。相邻吸附元件25和26相对于轴12以360°/N的角度成角度间隔设置。从而,由于由吸附元件与所述阀表面整体构成一独立单元,并且该吸附元件在最小的固定容积内贴近于所述阀表面进行定位,所以与常规PSA系统相比该旋转组件10更紧凑而且效率更高。
吸附元件24具有一由支撑隔屏板31形成的第一端部30和一由支撑隔板33形成的第二端部32。吸附剂可以是粒状吸附剂,其填料间隙在吸附器的第一和第二端部之间限定出一个用于与吸附剂相接触的流动路径。但是,正如在未审定的美国专利申请No.08/995,906中所描述的那样,将其中所描述的内容引入本文作为参考,最好吸附元件为一排在吸附器的第一和第二端部之间延伸的层压薄片,这些薄片含有一种诸如沸石那样的吸附剂,该吸附剂被支撑在一补强基质上,并且通过垫片在这些薄片之间形成流体连通。具有大约150微米的薄片厚度并且利用X型沸石的层压薄片状吸附剂,与常规粒状吸附器相比质量交换和压降阻抗均明显下降,以便在大约为1秒并且最低为0.4秒的PSA循环周期内能够获得令人满意的氧气浓缩操作。因此,与大约1分钟的常规PSA循环周期相比,所需吸附剂的总量明显减少,并且与具有等效生产能力的常规PSA设备相比,组件的尺寸也小了大约两个数量级。其结果,一个非常紧凑的PSA组件可被利用,使得本发明尤其适用于车辆的燃料电池动力装置。
第一开口或者孔34提供了一个从第一阀表面21经侧壁20至吸附器24中第一端部30的流动路径。第二开口或者孔35提供了从第二阀表面23经侧壁22至吸附器24中第二端部31的流体连通。支撑隔板31和33分别在吸附元件24中第一开口34与第一端部30之间,和第二开口35与第二端部32之间形成流量分配装置32。
正如在图3中所示,定子14是一个耐压壳体,包括有一位于环形转子11外侧的外部圆柱形壳体或者第一阀定子40,和一位于环形转子11内侧的内部圆柱形壳体或者第二阀定子41。外部壳体40上承载有与第一阀表面21密封配合的轴向延伸条形密封件(比如42和43),同时内部壳体41上承载有与第二阀表面23密封配合的轴向延伸条形密封件(比如44和45)。最好,所述条形密封件的水平密封宽度大于开口于第一和第二阀表面上的第一和第二开口34和35的直径或者水平宽度。
在外部壳体中,一系列第一腔室分别在一角形扇区内朝向第一阀表面开口,并且各个均在第一阀表面中的角形扇区与该组件外部的歧管之间形成流体连通。该腔室中的角形区域要比吸附元件上的角形分隔部分宽得多。第一腔室在第一密封表面上由条形密封件(比如42)分隔开。沿图3中的顺时针方向,即沿转子的转动方向,一第一送入增压腔室46由导管47与第一送入增压歧管48相连通,该增压腔室48中保持第一中间送入压力。同样,一第二送入增压腔室50与第二送入增压歧管51相连通,该增压歧管51中保持第二中间送入压力,该压力高于第一中间送入压力但低于较高的工作压力。
更概括地说,所示出的组件10带有用于依次供送两种送入混合物的装置,第一原料气体相对于第二原料气体具有较低的更易吸收成分浓度。第一送入腔室52与第一送入歧管53相连通,该歧管53中大体保持在较高的工作压力下。同样,第二送入腔室54与第二送入歧管55相连通,该歧管55中大体保持在较高的工作压力下。第一逆流排气腔室56与第一逆流歧管57相连通,该歧管57中保持第一逆流排气中间压力。第二逆流排气腔室58与第二逆流排气歧管59相连通,该歧管59中保持一高于较低工作压力的第二逆流排气中间压力。一重质产品腔室60与重质产品排出歧管61相连通,该歧管61中大体保持在较低的工作压力下。应该指出的是腔室58由条形密封件42和43限定而成,同样,所有腔室均由条形密封件限定而成并且相互隔离。
在内部壳体中,一系列第二腔室分别在一角形区域内朝向第二阀表面开口,并且各个均在第二阀表面中的角形区域与该组件外部的歧管之间形成流体连通。第二腔室在第二密封表面上由条形密封件(比如44)分隔开。沿图3中的顺时针方向,即再次沿转子的转动方向,轻质产品腔室70与轻质产品歧管71相连通,并且大体上在较高的工作压力下接收轻质产出气体,经过吸附剂和第一与第二孔后摩擦压降较小。根据腔室70相对于腔室52和54的角度范围,轻质产物可以仅从吸附器中获得,并且与此同时从腔室52中接收第一原料气体,或者是从吸附器中接收第一与第二原料气体。
一第一轻质回流排出腔室72与第一轻质回流排出歧管73相连通,该歧管73中保持第一轻质回流排出压力,此时较高的工作压力只有很小的摩擦压降。第一顺流排气腔室74(实质上是第二轻质回流排出腔室),与第二轻质回流排出歧管75相连通,该歧管75中保持一低于较高工作压力的第一顺流排气压力。第二顺流排气腔室或者第三轻质回流排出腔室76与第三轻质回流排出歧管77相连通,该歧管77中保持一低于第一顺流排气压力的第二排气压力。一第三顺流排气腔室或者第四轻质回流排出腔室78与第四轻质排出歧管79相连通,该歧管79中保持一低于第二顺流排气压力的第三顺流排气压力。
一排气腔室80与第四轻质回流歧管81相连通,该歧管81用于供送第四轻质回流气体,该气体已经从第三顺流排气压力大体上膨胀到了较低的工作压力下,并且具有一用于摩擦压降的容许量。轻质回流压缩步骤的顺序可以与轻质回流排出或者顺流排气步骤相调换,以便可以保持一合乎需要的轻质回流气体包“先入后出”分层现象。因此,一第一轻质回流增压腔室82与第三轻质回流返回歧管83相连通,由该歧管83供送第三轻质回流气体,其中所述第三轻质回流气体已经从第二顺流排气压力膨胀到了高于较低工作压力的第一轻质回流增压压力上。一第二轻质回流压缩腔室84与第二轻质回流返回歧管85相连通,由该歧管85供送第二轻质回流气体,其中所述第二轻质回流气体已经从第一顺流排气压力膨胀到了高于第一轻质回流增压压力的第二轻质回流增压压力。最后,一第三轻质回流压缩腔室86与第一轻质回流返回歧管87相连通,由该歧管87供送第一轻质回流气体,该第一轻质回流气体已经从接近较高的工作压力膨胀到了第三轻质回流增压压力,该第三轻质回流增压压力高于第二轻质回流增压压力,但在该示例中低于第一送入增压压力。
在图4中示出了一些辅助部件。导管88将第一腔室60与歧管61连通,并利用多个导管来在腔室60中提供良好的轴向流量分布。同样,导管80将第二腔室80与歧管81连通。定子14具有带有轴承91和92的基体90。环形转子11支撑在一端盘93上,并且其轴94由轴承91和92来支撑。电动机95连接在轴94上,用于驱动转子11。该转子也可以交替地象一环形滚筒那样进行转动,由围绕其周缘成角度定位的若干个辊轴支撑并且在其周缘处进行驱动,从而无需再利用轴。周缘驱动可以由一安装在所述转子上的环形齿轮来提供,或者由一其定子可以与所述周缘的圆弧相啮合的直线型电磁电动机来提供。尤其对于氢气分离应用领域来说,转子驱动装置可以被牢牢地密封在定子壳体中,以消除与密封泄漏相关的危害性。外部圆周密封件96对外部条形密封件42的端部及第一阀表面21的边缘进行密封,而内部圆周密封件97对内部条形密封件44的端部及第一阀表面21的边缘进行密封。转子11在外侧壁20与内侧壁22之间具有一入孔管塞,由其提供用于在吸附器24中放置和取出吸附剂的通道。附图5和6
图5示出了一种典型的PSA循环,其可以利用前述的气体分离系统而获得,而图6也示出了一类似的PSA循环,其通过对所述第一产出气体的一部分进行重质回流再压缩操作来向所述工艺提供第二原料气体。
在图5和6中,垂直轴150表示了吸附器中的工作压力和第一与第二腔室中的压力。因在吸收元件内的流动所致的压降可被忽略。用虚线151和152分别表示出了较高的和较低的工作压力。较低的工作压力可以是额定的或者接近于外界的大气压力,或者可以是由真空泵所形成的负压。较高工作压力一般可以以绝对压力为基础为较低工作压力的二至四倍。
图5和6中的水平轴155表示时间,PSA的循环周期由点156与157之间的时间间隔而定。在时间156和157处,一特定吸附器中的工作压力为压力158。从时间156开始,用于一特定吸附器(比如24)的循环从该吸附器上开口于第一送入压缩腔室46的第一开口34处开始,其中所述第一送入压缩腔室46由第一原料供应装置160在第一中间送入压力161下送入气体。该吸附器中的压力在时间157处从压力158升高到第一中间送入压力161。向前行进,第一开口跨过一密封条,第一密闭吸附器24后到达腔室46处,并随后与第二送入压缩腔室50相连通,该第二送入压缩腔室50由第二原料供应装置162在第二中间送入压力163下送入气体。该吸附器的压力升高到第二中间送入压力。
吸附器24中的第一开口34接着与第一送入腔室52相连通,该第一送入腔室52由第三原料供应装置165大体保持在较高压力。一旦该吸附器的压力大体上升高达到较高工作压力,其上的第二开口35(其自时间156开始与所有第二腔室相阻断)朝向轻质产品腔室70开启,从而传送轻质产品166。
在图6所示的循环中,吸附器24中的第一开口34接着与第二送入腔室54相连通,该第二送入腔室54也由一第四原料供应装置167而大体保持在较高压力上。总的来说,由第四原料供应装置供送第二原料气体,该第二原料气体通常含有比由第一、第二和第三原料供应装置所供送的第一原料气体更多的易被吸收成分。在图6中所示的特定循环中,第四原料供应装置167是一个“重质回流”压缩机,将重质产品的一部分再压缩回所述设备中。在图5所示的循环中,没有第四原料供应装置,并且可以通过将腔室52延伸到所述定子的一较宽角形弧的上方而将腔室54省去或者与其合为一体。
伴随着原料气体被从腔室52或者54中供送到吸附器24的第一端部,吸附器24的第二端部与轻质产品腔室70相阻断并且与第一轻质回流排出腔室72相连通,同时将“轻质回流”气体(经浓缩的不易被吸收成分,类似于第二原料气体)传送到第一轻质回流压力降低装置(或者膨胀器)170中。随后吸附器24中的第一开口34与所有第一腔室相阻断,同时将第二开口35依次(a)与第二轻质回流排出腔室74相连通,在将轻质回流气体传送到第二轻质回流压力降低装置172的同时将吸附器中的压力降低到第一顺流排气压力171,(b)与第三轻质回流排出腔室76相连通,在将轻质回流气体传送到第三轻质回流压力降低装置174的同时将吸附器中的压力降低到第二顺流排气压力173,以及(c)与第四轻质回流排出腔室78相连通,在将轻质回流气体传送到第四轻质回流压力降低装置176的同时将吸附器中的压力降低到第三顺流排气压力175。然后将第二开口35阻断一定的时间,直至逆流排气步骤之后的轻质回流返回步骤开始时。
轻质回流压力降低装置可以是机械式膨胀器或者用于回收膨胀能量的膨胀阶段,也可以是限流孔或者节流阀,用于进行不可回复的压力降低。
无论是在最后轻质回流排出步骤之后第二开口关闭时(如图5和6所示),或者是稍早一些轻质回流排出步骤仍在进行时,第一开口34均会与第一逆流排气腔室56相连通,在向第一排气装置181释放“重质”气体(经浓缩的较易被吸收的成分)的同时将吸附器中的压力降低到第一逆流排气中间压力180。然后,第一开口34与第二逆流排气腔室58相连通,在向第二排气装置183释放重质气体的同时将吸附器中的压力降低到第一逆流排气中间压力182。最后达到较低的工作压力时,第一开口34将与重质产品腔室60相连通,在向第三排气装置184释放重质气体的同时将吸附器中的压力降低到较低工作压力152。一旦吸附器中的压力大体上达到较低工作压力,并且同时第一开口34与腔室60相连通,那么第二开口35将与清除腔室80相连通,该腔室80接收来自第四轻质回流压力降低装置176中的第四轻质回流气体,以便将更多的重质气体送入第一产品腔室60中。
在图5中,来自第一、第二和第三排气装置中的重质气体被作为重质产品185进行传送。在图6中,该气体作为重质产品185被部分释放,与此同时剩余部分被作为“重质回流”187反向导引回作为第四送入供应装置167的重质回流压缩机中。正如轻质回流能够在轻质产品中形成高纯度不易被吸收(“轻质”)成分一样,重质回流也能够在重质产品中形成高纯度的易被吸收(“重质”)成分,以便可以对不易被吸收(“轻质”)产品进行高效回收。
然后,在第一和第二开口与腔室60和80阻断后,吸附器由轻质回流气体进行再次压缩。在与第一开口34至少在初始时保持关闭的同时,依次(a)将第二开口35与第一轻质回流压缩腔室82相连通,在从第三轻质回流压力降低装置174中接收第三轻质回流气体的同时将吸附器中的压力增大到第一轻质回流压缩压力190,(b)第二开口35与第二轻质回流压缩腔室84相连通,在从第二轻质回流压力降低装置172中接收第二轻质回流气体的同时将吸附器中的压力增大到第二轻质回流压缩压力191,(c)将第二开口35与第三轻质回流压缩腔室86相连通,在从第一轻质回流压力降低装置170中接收第一轻质回流气体的同时将吸附器中的压力增大到第三轻质回流压缩压力192。除非送入压缩操作已经开始,并且同时用于轻质回流压缩操作的轻质回流返回过程仍在进行,那么一旦第三轻质回流压缩步骤结束,工艺(基于图5和6)将在时间157之后开始对下一循环进行送料增压。
如果在第一和第二阀中没有被节流,那么各个吸附器中的压力变化波形将是一个矩形阶梯。这种节流是实现平滑压力和流动过渡所必需的。为了提供均衡的性能,最好所有的吸附元件和开口相互之间均非常相似。
在各个增压或者排气步骤中压力变化的速率将由第一和第二阀装置中的排气口(或者缝隙或者迷宫式密封间隙)的节流性能所限制,或者由吸附器中第一和第二端部处的开口的节流性能所限制,最终形成图5和6中所描绘的典型的压力波形。可选择地,所述开口可以由密封条缓慢地开启,以在开口与密封条之间提供受约束的节流性能,所述开口与密封条之间具有狭长渐缩的缝隙通道,以便只能够逐步地将所述开口开启到完全流通状态。压力变化速率过快将使得吸附器经受机械应力,同时还会导致流动不稳定,从而使得吸附器中聚集波前的轴向位移增大。通过利用大量吸附器来同时运行循环中的各个步骤可以使得流动和压力的波动最小,并且通过在功能腔室和相关歧管中提供足够大的体积,以便它们可以在压缩设备与第一和第二阀装置之间被有效地用作冲击吸收器。
应该明白,所述循环可以通过在送入增压,逆流排气,或者轻质回流的各个主要步骤中设置具有或多或少中间阶段的多个变型实施例中总结出来。如果必要,可以在中间压力下同时从第一和第二阀中执行送入与产生增压的组合步骤(或者顺流和逆流的排气步骤)。送入增压步骤开始时的压力可以与逆流排气步骤开始时的压力不同。另外,在空气分离或者空气提纯应用中,送入增压阶段(一般为第一阶段)可以与作为所述循环中的中间压力的大气压相一致而执行。同样,逆流排气阶段也可以通过与作为所述循环中的中间压力的大气压相一致而执行。附图7图7是一个PSA系统的简化示意图,该系统利用氮优先沸石吸附剂来从空气中分离出氧气。轻质产品为浓缩的氧气,而重质产品为通常作为废气排出的富氮空气(nitrogen-enriched air)。虽然可以象图8所示那样利用一真空泵,但是图示出的循环较低压力152为外界大气常压。原料气体经由过滤进气口200导入到送入压缩机201中。该送入压缩机包括有压缩机第一分级装置202,中间冷却器203,压缩机第二分级装置204,第二中间冷却器205,压缩机第三分级装置206,第三中间冷却器207以及压缩机第四分级装置208。所描述的送入压缩机201可以是一个四级轴向压缩机,并具有一通过轴210连接的用作原动机的电动机209。中间冷却器可以是任选的。参照附图5,该送入压缩机的第一和第二分级装置为第一送入供应装置160,其在第一中间送入压力161下经由导管212和水冷凝分离器213将原料气体传送到第一送入增压歧管48中。送入压缩机第三分级装置206为第二送入供应装置162,其在第二中间送入压力163下经由导管214和水冷凝分离器215将原料气体传送到第二送入增压歧管51中。送入压缩机的第四分级装置208为第三送入供应装置165,其在较高压力151下经由导管216和水冷凝分离器217将原料气体传送到送入歧管53中。由导管218从轻质产品歧管71中送出的轻质产品氧气体流大体上保持在低粘滞压降的较高压力。
图7中所示PSA系统包括有通过轴222连接于送入压缩机201上的能量回收膨胀器,该膨胀器又包括有轻质回流膨胀器220(在此包括有四个分级装置)和逆流排气膨胀器21(在此包括两个分级装置)。该膨胀器的分级装置可以设置成比如径流式涡流分级装置,带有独立轮子的全(开)进气式轴向流涡流分级装置,或者是组合在一单一轮子上的局部进气式脉冲涡流装置。
来自第一轻质回流排出歧管73的轻质回流气体在较高压力下经由导管224和加热器225流入第一轻质压力降低装置170中,其中该第一轻质压力降低装置170在此处为第一轻质回流膨胀器分级装置226,并且随后在第三轻质回流增压压力192下经由导管227流入第一轻质返回歧管87中。来自第二轻质回流排出歧管75的轻质回流气体在第一顺流排气压力171下经由导管228和加热器225流入第二轻质压力降低装置172中,其中该第二轻质压力降低装置172在此处为第二膨胀器分级装置230,并且随后在第二轻质回流增压压力191下经由导管231流入第二轻质返回歧管85中。来自第三轻质回流排出歧管77的轻质回流气体在第二顺流排气压力173下经由导管232和加热器225流入第三轻质压力降低装置174中,其中该第三轻质压力降低装置174在此处为第三膨胀器分级装置234,并且随后在第一轻质回流增压压力190下经由导管235流入第三轻质返回歧管83中。最后,来自第四轻质回流排出歧管79的轻质回流气体在第三顺流排气压力175下经由导管236和加热器225流入第四轻质压力降低装置176中,其中该第四轻质压力降低装置176在此处为第四膨胀器分级装置238,并且随后大体在较低压力152下经由导管239流入第四轻质返回歧管81中。
来自第一逆流排气歧管57的重质逆流排出气体在第一逆流排气中间压力180下经由导管240流入加热器241中,并进而进入作为第一排气装置181的逆流排气膨胀器221中的第一分级装置242中,并且大体在较低压力152下从膨胀器排入排气歧管243中。来自第二逆流排气歧管59的逆流排出气体在第二逆流排气中间压力182下经由导管244流入加热器241中,并进而进入作为第二排气装置183的逆流排气膨胀器221中的第二分级装置244中,并且大体在较低压力152下从膨胀器排入排气歧管243中。最后,来自重质产品排气歧管61的重质气体经由作为第三排气装置184的导管246而流入排气歧管243中,并大体在较低压力152下对需要排出的重质产出气体进行传送。
任选的加热器225和241对进入膨胀器220和221的气体进行加热,从而增大对膨胀能量的回收,并且增加了经由轴222从膨胀器220和221向送入压缩机201传递的能量,而且减小了原动机209所需的功率。与加热器225和241为向膨胀器提供热量的装置同时,中间冷凝器203,205和207为从送入压缩机中去除热量的装置,并且起到减少较高的压缩机分级装置所需的功率。中间冷凝器203,205和207是附加技术特征。
如果轻质回流加热器249在足够高的温度下工作,从而使得轻质回流膨胀阶段的排出温度高于经由导管212,214和216传送到送入歧管中原料气体的温度时,吸附器24中第二端部的温度将高于其第一端部34的温度。从而,该吸附器沿流动路径具有一温度梯度,并且相对于其第一端部在其第二端部处具有较高的温度。这是由Keefer在美国专利No.4702903中所介绍的“热耦合压力回转吸收”(TCPSA)原理的延伸。正如在具有一压缩机201和一膨胀器220的回热式气体涡流发动机中那样,吸附器中的转子11被用作一热旋转回热器。由加热器225供给PSA系统的热量有助于为根据一回热式热动能循环的工艺提供动力,其类似于利用在压缩侧进行中间冷凝而在膨胀侧进行级间加热而大体实现Ericsson热动循环的先进回热式气体涡流发动机。在将PSA应用于从空气中分离出氧气时,由于氮气被大量吸收,所以总的轻质回流量远小于送入的气体流量。因此从膨胀器中可回收的能量远小于压缩机所需能量,但是仍将明显有助于提高产生氧气的效率。
如果高的能量效率并不是最重要的,那么轻质回流膨胀器阶段和逆流排气膨胀器阶段可以由限流孔或者节流阀代替用于降低压力。图7中的示意图示出了一支撑所述压缩机分级装置,逆流排气或者排出膨胀器的分级装置,以及轻质回流分级装置,以及将压缩机连接在原动机上的单轴。但是,应该明白的是独立的轴和甚至独立的原动机可以用于本发明范围内的不同压缩与膨胀分级装置。附图8图8示出了一真空PSA系统,并且也利用重质产品回流来实现在用于一燃料电池动力装置的氢气净化过程中进行高效回收。原料氢气可以在特定的固定设备中通过化学工艺或者石油精炼废气中提供。但是,在大多数燃料电池应用中,原生的氢气将可以通过对碳氢化合物类或者含碳燃料进行处理而提供,比如通过对天然气进行蒸汽重整,或者通过对液态燃料进行自热式重整或者不完全氧化而提供。这种氢气原气一般包含有30%至74%的氢气。利用常用的吸附剂,比如沸石,二氧化碳,一氧化碳,氮气和硫化氢或者其他微量杂质将比氢气更易于被吸收,以便经提纯的氢气将是在较高工作压力下的轻质产品传送,所述较高工作压力仅略微低于送入供应压力,同时杂质将被聚集成重质产品,并且在较低工作压力下从PSA工艺中作为“PSA尾气”排出。这种尾气将被用作燃料气体,用于产生氢气的燃料工艺反应中,或者也可以用于一燃烧涡轮来向用于燃料电池动力装置的PSA压缩设备供送能量。
图8中所示PSA系统具有进给导管300,用于大体在较高压力下将原料气体导入第一送入歧管53中。在该例子中,除了最终增压步骤之外的所有步骤均利用轻质回流气体来实现,而最终送入增压步骤经由歧管55来完成。
所述的PSA系统包括有一个多级真空泵301,该真空泵301通过轴210由原动机209进行驱动,也可以通过轴309由轻质回流膨胀器220进行驱动。该真空泵301包括有一第一分级装置302,来通过导管246从第一产品排出歧管61中抽取出重质气体,并将该气体经由中间冷凝器303压送到第二分级装置304中。真空泵的第二分级装置304经由导管244从第二逆流排气歧管59中抽取出重质气体,并通过中间冷凝器305将该气体传送到第三分级装置306中,该第三分级装置306也可以经由导管240从第一逆流排气歧管57抽取出重质气体。该真空泵的第三分级装置306对所述重质气体进行压缩达到一高于外界大气压的足够压力,来将该气体(重质煤气或者PSA尾气)的一部分被作为燃气在重质传送导管307中进行传送。剩余的重质气体从真空泵301中进入重质回流压缩机308中,从而大体上达到PSA循环中的较高工作压力。
受压缩的重质气体通过导管310从压缩机第四分级装置308传送到凝液分离器311中。如果需要(比如在图13中所示实施例中那样在一膨胀涡轮中燃烧),所有的重质产品蒸汽将经由压缩机308进行压缩,以便可以由其他重质产品传送导管312在最高的工作压力下对重质产出气体进行传送,其中传送导管312的外部大体保持在低粘滞压降的较高压力上。经过冷凝的蒸汽(比如水)经由导管313在大体上与导管312中重质产品的压力相同的压力下被去除。在去除第一产出气体后,剩余的重质气体流经由导管314流入第二送入歧管55中,作为向各个吸附器进行送入步骤后向所述吸附器供送的重质回流。重质回流气体为第二原料气体,其比第一原料气体聚集了更多的易被吸收成分或者部分。附图9和10现在来参照图9和10,示出了根据本发明中第一实施例的基于燃料电池的电流发生系统,该系统利用了一个类似于图7中所示的旋转PSA系统作为其基本结构单元。但是,应该明白,本发明并不局限于具有旋转PSA组件的电流发生系统。在不脱离本发明范围的条件下可以采用其他方案。
在图9中,PSA系统如前所述那样利用氮优先沸石吸附剂从空气中分离出氧气。轻质产品为浓缩的氧气,而重质产品为通常作为废气排出的富氮气体。循环中的较低压力152为外界的常大气压,除非象附图8中所示那样提供一任选的真空泵。原料空气经由过滤进气口200而导入一送入压缩机201中。送入压缩机包括有压缩机第一分级装置202,压缩机第二分级装置204,压缩机第三分级装置206,以及压缩机第四分级装置208。所描述的送入压缩机201可以是一个四级轴向压缩机,并通过轴210连接一个用作原动机的电动机209。所述压缩机的分级装置可以是所示出的串联形式,也可以是并联形式。位于压缩机分级装置中间的中间冷却器可以是任选的。送入压缩机的第一和第二分级装置在第一中间送入压力161下经由导管212和水冷凝分离器213将原料气体传送到第一送入增压歧管48中。送入压缩机第三分级装置206在第二中间送入压力163下经由导管214和水冷凝分离器215将原料气体传送到第二送入增压歧管51中。送入压缩机第四分级装置208在较高压力151下经由导管216和水冷凝分离器217将原料气体传送到送入歧管53中。由导管218从轻质产品歧管71中送出的轻质产品氧气体流大体上保持在低摩擦压降的较高压力上。
图9中所示的设备包括有能量回收膨胀器,该膨胀器又包括有轻质回流膨胀器220(在此包括有四个分级装置)和逆流排气膨胀器221(在此包括两个分级装置)。膨胀器221通过轴222连接于送入压缩机201上。所述膨胀器的分级装置可以设置成比如径流式涡流装置,带有独立轮子的全开进气式轴向流涡流装置,或者是组合在一单一轮子上的局部进气式涡流装置。如果高的能量效率不是最重要的,那么轻质回流膨胀器分级装置和/或逆流排气膨胀器分级装置将可以由限流孔或者节流阀代替用于降低压力。
来自第一轻质回流排出歧管73的轻质回流气体在较高压力下经由导管224和加热器225流入第一轻质回流膨胀器分级装置226中,并随后在第三轻质回流增压压力192下经由导管227流入第一轻质回流返回歧管87中。来自第二轻质回流排出歧管75的轻质回流气体在第一顺流排气压力171下经由导管228和加热器225流入第二膨胀器分级装置230中,并随后在第二轻质回流增压压力191下经由导管231流入第二轻质回流返回歧管85中。来自第三轻质回流排出歧管77的轻质回流气体在第二顺流排气压力173下经由导管232和加热器225流入第三膨胀器分级装置234中,并随后在第一轻质回流增压压力190下经由导管235流入第三轻质回流返回歧管83中。最后,来自第四轻质回流排出歧管79流出的轻质回流气体在第三顺流排气压力175下经由导管236和加热器225流入第四轻质回流膨胀器分级装置238中,并随后大体在较低压力152下经由导管239流入第四轻质回流返回歧管81中。
来自第一逆流排气歧管57的重质逆流排出气体在第一逆流排气中间压力180下经由导管240流入加热器241中,并进而进入逆流排气膨胀器221中的第一分级装置242中,并且大体在较低压力152下从膨胀器中排入到排气歧管243中。来自第二逆流排气歧管59的逆流排出气体在第二逆流排气中间压力182下经由导管244流入加热器241中,并进而进入逆流排气膨胀器221中的第二分级装置245中,并且大体在较低压力152下从膨胀器中排入到排气歧管243中。最后,来自重质产品排气歧管61的重质气体经由导管246流入排气歧管243中,并大体在较低压力152下对需要排出的重质煤气进行传送。
任选的加热器225和241对进入膨胀器220和221的气体进行加热,从而增大对膨胀能量的回收,并且增加经由轴222从膨胀器220和221向送入压缩机201传递的能量,而且减小了原动机209所需的能量。
当将PSA应用于从空气中分离出氧气时,由于氮气被大量吸收,所以总的轻质回流量远小于送入的气体流量。因此,从膨胀器中可回收的能量将远小于压缩机所需能量,但是仍然能够明显有助于增强产生氧气的效率。通过在适度地升高温度(比如40度至60度)来操作吸收器并且利用较强的氮优先吸附剂,比如Ca-X,Li-X或者锂菱沸石,PSA氧气产生系统将可以在较好的性能和效率下工作。钙或者锶置换后的菱沸石可以在较高的温度甚至可以在超过100℃的温度下工作,,反映出了这些用于氮气的吸附剂的超常性能,它们的氮气吸收量非常接近于较低温度下的饱和量,其中所述较低温度接近于用于进行适宜工作的环境。
与吸附剂的温度越高将会降低氮气吸收量及各种沸石吸附剂选择性的同时,等温线将更线性,而湿度抑制将更早发生。利用诸如Ca-X和Li-X这样的吸附剂,目前传统实践活动是在所谓“真空回转吸收法”(VSA)中的负压下对常温PSA进行操作,以便高选择性的吸附剂在氮气吸收没有饱和时很好地工作,并且在一相对线性的等温线范围内具有一较大的工作能力。在较高的温度下,氮气吸收的饱和量将向更高的压力偏移,从而更好地优化PSA循环,而较低的压力也向上偏移。
富含氧气的煤气经由导管218,单向阀250和导管251传送到氧气产品压缩机252的入口中,该压缩机252对由导管253所送入的产品氧气压力进行提升。压缩机252可以是单级离心式压缩机,通过轴254经由轻质回流膨胀器220或者一电动机直接驱动。轻质回流膨胀器220可以是压缩机252的独立能源,在这种情况下膨胀器220和压缩机252一起构成了一个自由转子式涡轮推进器255(free rotor turbo-booster)。由于在膨胀器220和压缩机252中的工作流体均为浓缩氧气,所以该自由转子式涡轮推进器具有这样一个重要的安全特征,即无需对外部电动机进行轴密封。最好,将从轻质回流膨胀过程中所回收的能量用于提高在此为氧气的轻质产品的传送压力。
向一燃料电池260进行传送的受压缩浓缩氧气,通过导管253而传送到燃料电池阴极通道262的阴极入口261中。燃料电池260可以具有聚合物电解质隔膜(PEM),利用电解质265将阴极通道262与阳极通道266隔离开来。氢气燃料通过氢气进给导管268供送到阳极通道266的阳极入口267中。
经浓缩的氧气体流经阴极通道262进入阴极排出口270,作为氧气的一部分与穿过所述隔膜的氢离子发生反应,来产生电能,并且通过反应而生成副产品--水。在导管280中从阴极排出口270(在该最佳实施例中)移出阴极通道的阴极排出气体中的氧气仍然明显高于常规气体中的21%。该气体中的次要部分被作为阴极废气而经由排气阀285和排气管286从导管280中排出,并且剩余的阴极排出气体被保留下来作为阴极再循环气体。该阴极再循环气体经由导管281送入水冷凝分离器282中,在此将过多的液态水从阴极排出气体中去除,剩余下来的气体中含有饱和的水蒸汽。潮湿的阴极再循环气体随后通过与导管251相连的导管283来与从PSA系统中送入的浓缩氧气相混合。
从而导管251,253,280,281及283形成一带有阴极通道262,压缩机252及水冷凝分离器282的阴极回路。在膨胀器220中发生膨胀之前,通过从燃料电池阴极回路中去除废热,来对轻质回流气体进行加热,热交换器225可以对需要经压缩机252进行压缩的富氧气体进行冷却。通过排气阀285将足够的阴极排出气体排出,以避免在阴极回路中形成过多的氩气和氮气杂质。在一实际的例子中,在导管218中浓缩的产品氧气可达90%,并具有等量的氩气和氮气杂质。随着微量杂质的流走,在阴极入口261处和阴极出口270处的氧气浓度分别可以达到60%和50%。
正如上面所讨论的那样,一利用大气作为氧化剂的PEM燃料电池通常需要将空气压缩到至少3个大气压,才能够在阴极上方获得一足够高的氧气分压,从而在燃料电池堆中获得足够的电流密度。在阴极入口处的氧气浓度可以为21%,而在阴极出口处通常仅具有大约10%的氧气。本发明可以在该燃料电池阴极通道的上方获得非常高的平均氧气浓度,比如相对于大约15%的55%。因此,工作压力可以减小到大约1.5个大气压,同时仍能够在阴极上方保持一个显著提高的氧气分压。利用阴极上方较高的氧气分压,燃料电池堆的功率密度和效率可以得以提高,在机动车动力装置应用中这一点尤其关键。本发明中设备(利用高性能的吸附剂,比如Li-X)所需的机械压缩功率远小于在3个大气压的气体送入压力下工作的-PEM燃料电池系统中空气压缩机所需的能量,进一步提高了整个动力装置的效率。
该示例性设备的一个重要优点在于,进入阴极入口261中的富氧气体通过与大量的饱和阴极再循环气体蒸汽相混合而被湿润。另外一个优点在于,从PSA单元中回收的能量可以用于提高压力和在阴极回路中促进循环流通,同时燃料电池的废热可用于对交换器225和241进行加热,来提高在PSA单元中回收的膨胀能量。再一优点在于利用适当的阴极通道循环流速来确保可以轻易地将水分从PEM燃料电池中令人满意地去除。
参照图10,示出了一个类似于图9中所示燃料电池的氧气分离基于PSA的燃料电池系统,但是具有一用于驱动一自由转子式排气真空泵的逆流排气膨胀器。在图10所示的实施例中,去除了用于将逆流排气膨胀器221连接到送入压缩机201上的轴222。代之以利用真空泵301将循环中的较低压力降低到大气压之下,并经由导管246和任选的加热器302从重质产品排气腔室61中抽取出富氮废气。泵302由逆流排气膨胀器304供以能量,经由导管240和任选的加热器241从第一逆流排出歧管57中膨胀逆流排出气体。真空泵301和膨胀器304由轴305连接起来,并且共同构成一个自由转子式真空泵装置306。这样一个自由转子式真空泵提供了有吸引力的效率与资本优势。可选择地,一电动机可以连接在轴305的一延展部分上。
根据与导管244相关的节流约束量,从第二逆流排出歧管59流出的逆流排出气体在一大致等于大气压或者略微高于大气压的压力下从该歧管中排出。附图11图11示出了一个类似于图9中所示电流发生系统的基于燃料电池的电流发生系统,但是无需回收轻质回流能量,并且从该燃料电池阴极排出的富氧气体的一部分被用于一增压步骤。图示出的轻质回流压力降低的四个阶段可以在可调节孔350,351,352,及353上单向获得,其中可调节孔350,351,352,和353分别与导管224和227,228和231,232和235,及236和239相连。孔350,351,352,和353由驱动装置355通过联动装置354而被驱动。当燃料电池动力装置在部分载荷条件下工作时,所述孔希望被调节到能够对该PSA设备进行调整,用以在减小的循环频率和减小的流量下工作。
燃料电池具有一个阴极再循环回路,该回路(沿回路中的流动方向)由水冷凝分离器360,将浓缩氧气运送到阴极通道入口261中的导管361,阴极通道262,将从阴极通道出口270流出的阴极排出气体运送到阴极再循环导管365中的导管362限定而成,其中阴极再循环导管365中包括有阴极再循环鼓风机363,用以对阴极再循环气体进行再压缩而送入凝液分离器360中。分离器360将燃料电池水分排出凝液从阴极再循环回路中去除,同时还经由导管218对从PSA系统导管中导入的干燥聚集氧气进行湿润。
一部分阴极废气经由导管371从导管362中去除,从阴极再循环导管365的分流出去。这部分阴极废气被再循环到PSA设备(或者真空PSA设备)的送入端部,并且经由导管371运送到水冷凝分离器373中,并进而进入与第一阀表面21相连通的第一增压歧管48中。在导管371中可以设置一个节流阀371,根据需要从阴极出口270处的压力向第一增压歧管48中的压力形成一压力下降。
将一部分阴极废气再循环到PSA单元中具有若干优点,包括(1)减小了待压缩原料气体的体积,(2)无需从阴极回路中清除任何阴极废气,和(3)通过利用该气体帮助从其送入端部对所述燃料电池进行协助增压,可以从燃料电池阴极回路中回收一部分废弃能量。由于这些富氧气体中含有饱和的水蒸气,而如果将其直接导入产品端部的第二阀表面将减小吸附剂的活性,所以必需将其导入所述PSA单元的送入端部。通过低压步骤之后但通过送入空气来进行直接增压之前将其导入到吸附床的送入端部,由于该气体中不仅比送入空气中含有更多的氧气,而且比所产生的富氧气体含有更多的杂质,所以可以形成较好的浓度分布。
由于利用所述PSA单元氩气会与氧气一起聚集,所以在本实施例中氩气将会在阴极回路和该PSA中富氧产品中聚集。如果没有进行阴极清除,那么氩气将仅能够经由该PSA单元中的排气管从该系统中排出。当利用普通空气来作为仅向第一阀表面增压的原料气体时,由于该PSA单元通常可以达到大约60%的氧气和氩气回收率,所以在各个循环中大约40%与原料气体一起导入的氩气被排出。由于主要的原料气体被随后导入以将再循环氩气较深地推入吸附器中,所以与初始送入增压步骤一起导入的再循环氩气分步排除将会降低。因此,所希望仅有少量被从所述阴极回路中清除。回收到该PSA单元中的阴极废气也可以与在等于或者低于阴极通道出口270的压力下导入的原料气体直接进行混合。附图12图12示出了根据本发明中第二实施例的一基于燃料电池的电流发生系统400,其包括有一个燃料电池402,一个氧气产生PSA系统404,及一个氢气发生系统406。该燃料电池包括一个包括有一阳极气体入口410和一阳极气体出口412的阳极通道408,一个包括有一阴极气体入口416和一阴极气体出口418的阴极通道414,以及一个与所述阳极通道408和阴极通道414相连通的PEM420,以利于在阳极通道408与阴极通道414之间进行离子交换。
所述氧气PSA系统404从送入空气中抽取出氧气,并且包括有一旋转组件10,和一用于将受压送入空气传送到所述旋转组件10中送入腔室424中的压缩机422。最好,该氧气PSA系统404包括有一个连接在压缩机422上的真空泵426(或者逆流排气膨胀器),用于将富氮气体作为重质产出气体从旋转组件10的排气腔室428中抽出。该氧气PSA系统404还包括有一连接于阴极气体入口416上的轻质产出气体功能腔室430,用于将富氧气体传送到阴极通道414中。阴极再循环可以被设置成象附图9至11所示的实施例那样。
氢气发生系统406包括有一个氢气发生PSA系统432,和一个连接在该氢气发生PSA系统432上的燃料处理反应器434,用于将第一氢气原料提供给氢气PSA系统432。该氢气PSA系统432包括有一个旋转组件10,而该组件10又包括有一第一送入气体腔室436,用于接收从反应器434送入的第一氢气,一增压腔室438,用于接收从阳极气体出口412送入的氢气,一轻质产品腔室440,用于将氢气传送到阳极气体入口410,以及一排气腔室441,用于将尾气作为重质气体传送到反应器434。最好该氢气PSA系统432包括有一个真空泵442(或者一逆流排气膨胀器),该真空泵442设置在排气腔室441与反应器434之间,用于将尾气从该排气腔室441中抽出。
根据从阳极气体出口412回收的氢气纯度,增压腔室438将与该旋转组件中的第一或第二阀协同工作,如果该气体流的纯度相对较高最好与第二阀协同工作。该氢气PSA系统432还可以包括有一重质回流压缩机443,用于将重质回流气体传送到第二送入气体腔室444中,以改善对氢气的分步回收。氢气发生系统406中生热的燃料气体需要量将决定氢气的合适回收率。
反应器434包括有一个蒸汽重整装置445和一个水煤气转换反应器448,其中装置445中又包括有一个燃烧器446和多个催化剂管道(未示出)。该燃烧器446包括有一个第一燃烧器入口450,用于接收来自排气腔室442的尾气,和一个第二燃烧器入口452,用于接收来自阴极通道414的空气或者湿润的富氧气体。蒸汽重整装置444经由一燃料入口454供送一碳氢化合物燃料,比如甲烷气体,并在一送入压力,即该燃料电池的工作压力下加入水,再加上经由该系统406的压降容差。所述燃料被预先加热并通过热交换器455加热而产生蒸汽,从燃烧器446中的废气中回收热量。随后甲烷燃气与蒸汽的混合物流经所述催化剂管道,同时在燃烧器446中将尾气和富氧气体燃烧,用以将甲烷燃气混合物的温度升高到该甲烷燃气混合物进行吸热型蒸汽重整反应所必需的温度(通常800℃)
将最终的混合气体(大约70%的H2,作为主要杂质的等量CO与CO2,以及作为次要杂质的未反应CH4与N2)冷却到大约250℃,并随后流经水煤气转换反应器448,用于使大部分CO与蒸汽反应,来生成更多的H2和CO2
随后将最终的气体反应物传送到氢气PSA系统432的第一送入腔室436中,进行氢气提纯,同时重质产品尾气被从排气腔室442中返回到蒸汽重整装置434中,用于在燃烧器446中进行燃烧。
在一变型实施例中,反应器434包括有一不完全氧化反应器,并且取代所述甲烷气体混合物被进行蒸汽重整,甲烷气体混合物在该不完全氧化反应器中与一部分湿润的富氧气体发生反应,来对甲烷气体进行不完全氧化,其中所述湿润的富氧气体是经由一任选导管456从阴极通道414中接收到的
再次将最终的混合气体冷却到250℃,并且随后将其流经水煤气转换反应器448,使得大部分CO与蒸汽发生反应,以生成H2和CO2
接着将最终气体反应物传送到氢气PSA系统432的第一送入腔室436中,进行氢气提纯,同时将重质产品尾气从该氢气PSA系统432中排出。
在另一变型实施例中,反应器434包括有一个自热式重整装置和一个水煤气转换反应器448,并且取代所述甲烷气体混合物进行吸热式蒸汽重整或者放热式不完全氧化,该甲烷气体混合物在自热式重整装置中通过那些反应作用的热平衡组合而进行反应,紧接着在水煤气转换反应器448中进行反应。由于氢气PSA重质产品尾气即使在非常高的重质回流范围内也通常具有一定的燃烧值,所以可以设置一个燃烧器446,对送入一自热式反应器的空气和/或燃料进行有效预热。除非所述燃料处理反应装置包括有一吸热式重整组件,作为用于尾气燃烧的能量有效散热器(energy-efficient sink),只要所述基本燃料处理反应装置是强吸热性的,就必需象简单地不完全氧化那样提供另一种经济用途(如图13所示实施例中那样)。附图13应该明白,所述电流发生系统400的不足之处在于,必需利于由该燃料电池所产生的一部分电能来驱动压缩机422和真空泵426,444。图13中示出了一种燃料电池基电流发生系统500,该系统旨在解决这个缺陷。
该电流发生系统500大体上类似于电流发生系统400,包括有燃料电池402,一氧气发生PSA系统504,及一氢气发生系统506。该氧气PSA系统504从送入空气中抽取出氧气,并且包括有一旋转组件10,一用于将经压缩空气送入该旋转组件10的送入腔室524中的压缩机522,一连接在该压缩机522上的燃烧膨胀器523,一连接在该压缩机522上的起动电动机(未示出),以及一连接在阴极气体入口416上的轻质气体功能腔室530,用于将富氧气体送入阴极通道414中。氧气PSA系统504也可以具有一逆流排气或者重质产品排出腔室531,该腔室531如先前实施例中所示那样与一真空泵和/或膨胀器协同工作。
氢气发生系统506包括有一氢气发生PSA系统532,和一连接在该氢气发生PSA系统532上的反应器534,用于向该氢气PSA系统532供送一第一氢气。该氢气PSA系统532包括有一旋转组件10,该旋转组件10又包括一第一送入气体腔室536,用于接收从蒸汽重整装置534送入的第一氢气,一增压腔室538(与第一或者第二阀相连通),用于接收从阳极气体出口412送入的一第二氢气,一轻质产品腔室540,用于将氢气送入阳极气体入口410中,以及一排气腔室541,用于将尾气作为重质产品燃料气体送入反应器534中。正如在先前实施例中那样,排气腔室541可以与一真空泵和/或膨胀器(未示出)协同工作,用以将尾气从排气腔室541中抽出。
反应器534包括有一自热式重整装置544,一燃烧器546,和一水煤气转换反应器548。该燃烧器546包括有多个加热管道549,一用于接收从排气腔室542送入的尾气的第一燃烧入口550,一用于接收从压缩机522第二分级装置送入的压缩空气的第二燃烧入口552。从附图13可以看出,压缩机522第二分级装置对没有被送入到氧气发生PSA系统504的那部分送入空气进行压缩。
膨胀器523和压缩机522一起组成一燃气涡轮机,并对从燃烧器546中排出的煤气进行膨胀燃烧,以便增大流向送入腔室524的送入空气压力。将会明白,氢气PSA尾气的燃烧热能被用于对燃料电池附属气体提纯和压缩设备提供动力。如附图13所示,经过预热交换器555可以从水煤气转换反应器548所放出的反应热量中获得额外的原料气体压缩能量。
自热式重整装置544经由一燃料入口554供送一碳氢化合物燃料气体,比如甲烷,并且在所示例子中,与通过增压器鼓风机556在压力作用下从阴极通道414所接收到的富氧气体进行反应。阴极再循环将无需重述,或者至少可以被约简,如果从阴极出口送出的富氧气体能够被利用,对燃料的加工处理将大有裨益(降低氮气的含量并且增强燃烧)。然后对所得到的混合气体进行冷却,并随后将其流经水煤气转换反应器548,用于使大部分CO与蒸汽发生反应,生成H2和CO2。最终的气体反应物被随后送入氢气PSA系统532的第一送入腔室536中,进行氢气提纯。附图14实施例600示出了本发明的另一方面。对于碱性燃料电池来说,关键问题是如何从送入氧化剂和氢气体流中去除CO2。由于CO2比其它永久性气体杂质更易于被吸收,所以如前所述本发明中的氧气PSA和氢气PSA系统可以非常有效地去除CO2。虽然除了在较高的电流密度在通常无需进行调整,但是氧气浓缩对于所有类型的燃料电池来说在提高电压效率方面均有益处。碱性燃料电池可以利用一个小型的氧气PSA来与适度的氧气浓缩一起非常高效地去除二氧化碳,或者可以使用同一PSA设备利用一缺乏氮气/氧气优先性(比如活性炭,或者高硅沸石)的吸附剂来在无需进行氧气浓缩的条件下将二氧化碳清除掉。本发明中的旋转PSA组件和压缩设备均完全适用于此要求。
靠外界空气来工作的碱性燃料电池通常在接近大气压的压力下以大约70℃的温度进行工作。在这种条件下,富氮气体中含有饱和水蒸气的阴极废气体流可用来在保持电解质水平衡的同时去除燃料电池所产生的水。碱性燃料电池在较高温度下工作对于高效利用低成本电催化物质来说是所希望的,或者说对于向一甲醇重整装置进行热积分来说是所希望的,利用燃料电池废弃热量来对反应物质进行气化,并甚至可以为吸热式反应提供能量。但是随着大量废气温度的升高,利用外界空气混合物所进行的工作将会很快地不再可行。在较高的温度,富氮的阴极废气仅能够从该系统中带走过多的水分,除非总的压力被不经济地提升或者包括有一用于回收水分的冷凝器。
随着氧气的浓缩,阴极废气的体积将被调整达到任何碱性燃料电池的水平衡。适当的较低堆置工作压力将是实际可行的,比如用于一温度为120℃的阴极排出口的压力约为3个大气压。如果氧气浓缩在氧气PSA的全额能力下进行,比如接近于95%的氧气纯度,那么阴极废气气体流将变成带有一适中浓度永久气体的干燥蒸汽。该蒸汽产品可以用于各种应用领域,包括对碳氢化合物原料进行燃烧处理来生成氢气。
实施例600示出了一个如附图12中所示那样的氧气PSA(也执行CO2去除操作)。在该例子中系统的氢气侧被简化成仅示出了纯氢气的阳极气体入口。纯度超过90%的氧气被供送到阴极气体入口416中,同时浓缩的水蒸气被从阴极气体出口418中排出,并直接被送入蒸汽膨胀器610中。该膨胀器610将蒸汽排入真空冷凝器612中,在该冷凝器612中可以利用泵614来将液态凝液从其中去除。同时永久气体杂质被氧气PSA中的真空泵426从导管中抽出。膨胀器610可以协助电动机616驱动氧气PSA压缩设备,从而可以将该燃料动力装置的总效率提高大约2%至3%。
本发明的最后一方面(对于任何类型的燃料电池而言)是用于PSA单元的任选轻质产出气体收集器装置,并且尤其是用于图14所示的氧气PSA。氧气产品收集器660包括有一氧气存储容器661,该容器661大体上在PSA工艺的较高压力下或者是在由一小型收集充气压缩机663所产生的升高压力下,经由单向阀662从轻质产品腔室430中收集气体。在单向阀667的两侧设置有一峰化氧气排气阀665和一返冲阀666,以便能够将从所述存储容器排出的氧气分别向前送入该燃料电池的阴极入口或者向回送入该氧气PSA单元中。
该氧气存储容器在正常工作过程中被充入气体,尤其是在所述氧气PSA达到最高氧气纯度时的待机或者空转时间段内。所述任选的充气压缩机可以在所述装置空转时,或者(在车辆应用领域)作为能量回收式制动中一动载荷应用时进行工作。峰化氧气排气阀665在峰化能量定值的时间间隔内开启,以便能够在更大需求时增大供送到阴极中的浓缩氧气量。如果氧气收集器足够大,那么氧气PSA压缩机422和真空泵426将在峰化的能量定值简短时间间隔内空转,以便释放由内部附件通常所消耗的能量,来满足外部需求。随后,燃料电池组(为了满足偶然发生的额定峰值功率而在一动力装置中所需的)的尺寸将可以减小,从而大大节省了成本。
当燃料电池动力装置关闭时,氧气PSA压缩机422首先停机,来降低内部压力从而使得所有吸附器进行初始排气。随后返冲阀666开启来释放出一清洗用氧气体流,用以在一较短的时间间隔内从所述吸附器中置换出所吸收的氮气和一些所吸收的水蒸气。随后,该吸附器在大气压下利用干燥的氧气进行预填充,从而能够使得所述氧气PSA快速响应下一次工作的开始。
前面的描述仅对本发明中优选的实施例进行了描述。虽然在此没有具体描述或指出,但本技术领域中的普通熟练人员可以想象到,在不脱离由所附权利要求所限定的本发明的精神或范围内,可以对所描述的实施例在一定程度上进行添加,删除或者变型。
权利要求
1.一种电流发生系统,包括一燃料电池,该燃料电池包括一个包括一阳极气体入口的阳极通道,所述阳极气体入口用于接收供给的氢气;一个包括一阴极气体入口和一阴极气体出口的阴极通道;和一与所述阳极和阴极通道相连通的电解质,以利于在所述阳极与阴极通道之间进行离子交换;一氧气传送系统,该系统连接在所述阴极气体入口上,用于将氧气送入所述阴极通道中;以及连接在所述阴极气体出口上的第一气体再循环装置,用于将从阴极通道排出的阴极废气的第一部分再循环回所述阴极气体入口中。
2.根据权利要求1中所述的电流发生系统,其中所述第一气体再循环装置包括有一个压缩机,用于将第一阴极废气部分在压力作用下供送到所述阴极气体入口中。
3.根据权利要求2中所述的电流发生系统,其中所述第一气体再循环装置包括一凝液分离器,该凝液分离器连接于所述阴极气体出口与压缩机之间,用于去除所述第一阴极废气部分中的水分。
4.根据权利要求1中所述的电流发生系统,其中所述氧气传送系统包括一个用于从空气中抽取出氧气的气体分离系统,该气体分离系统包括一用于接收原料空气的第一原料气体入口;和一连接于所述阴极气体入口上的氧气出口,用于将浓缩后的氧气供送到所述阴极通道中。
5.根据权利要求4中所述的电流发生系统,其中所述气体再循环装置将所述第一阴极废气部分作为原料气体导入所述气体分离系统中。
6.根据权利要求4中所述的电流发生系统,其中所述气体分离系统包括有一个第二原料气体入口,并且该电流发生系统包括有第二气体再循环装置,该装置连接于所述阴极气体出口上,用于将所述阴极废气的第二部分再循环回第二原料气体入口中。
7.根据权利要求6中所述的电流发生系统,其中所述再循环装置包括有一限流孔,用于在一低于原料空气压力的压力下将所述第二阴极废气部分送入所述气体分离系统中。
8.根据权利要求4中所述的电流发生系统,其中所述气体分离系统包括有一压力回转吸收系统。
9.根据权利要求8中所述的电流发生系统,其中所述压力回转吸收系统包括有一旋转组件和压缩设备,该旋转组件又包括有一定子和一相对于该定子可转动的转子,所述转子包括有多个流动路径,用于在其内接收吸附材料,来响应于流动路径中增大的压力而相对于第二气体成分优先吸收第一气体成分,并且所述压缩设备连接于该旋转组件上,以利于气体流流经所述流动路径,用于将所述第一气体成分与第二气体成分分开。
10.根据权利要求9中所述的电流发生系统,其中所述定子包括有一第一定子阀表面,一第二定子阀表面,多个开口于该第一定子阀表面上的第一功能腔室,以及多个开口于该第二定子阀表面上的第二功能腔室,而所述转子包括有一与所述第一定子阀表面相连通的第一转子阀表面,一与所述第二定子阀表面相连通的第二转子阀表面,及多个设置在所述转子阀表面上的孔,并且这些孔与所述流动路径和功能腔室的相应端部相连通。
11.根据权利要求10中所述的电流发生系统,其中所述压缩设备被连接在一部分所述功能腔室上,用于将这部分功能腔室保持在位于一较高压力和一较低压力之间的多个离散的压力水平上,从而保持气体流均匀地流经这部分功能腔室。
12.根据权利要求10中所述的电流发生系统,其中所述功能腔室包括一个轻质回流排出腔室和一个轻质回流返回腔室,所述压缩设备包括有一连接在所述轻质回流排出与返回腔室之间的轻质回流膨胀器,而所述第一气体再循环装置包括有一个连接在该轻质回流膨胀器上的压缩机,用于将第一阴极废气部分在压力作用下供送到所述阴极气体入口中。
13.根据权利要求12中所述的电流发生系统,其中所述压力回转吸收系统包括有一个设置在所述轻质回流排出腔室与轻质回流膨胀器之间的加热器,用于提高对从所述轻质回流排出腔室中所排出的轻质回流气体的能量回收率。
14.根据权利要求12中所述的电流发生系统,其中所述功能腔室包括有一气体送入腔室和一逆流排气腔室,而所述压缩设备包括一连接在所述第一原料气体入口上的压缩机,用于将压缩后的空气送入所述气体送入腔室中;和一连接在所述压缩机上的膨胀器,用于经由所述逆流排气腔室将第一气体腔室中浓缩的重质产出气体排出。
15.根据权利要求12中所述的电流发生系统,其中所述功能腔室包括有一个逆流排气腔室和一个重质产品腔室,而所述压缩设备包括一个连接在所述逆流排气腔室上的膨胀器;和一个连接在该膨胀器上的真空泵,用于在负压下经由所述重质产品腔室将第一气体成分中浓缩的重质产出气体抽出。
16.根据权利要求10中所述的电流发生系统,其中所述功能腔室包括有一个气体送入腔室,而所述气体再循环装置将所述第一阴极废气部分作为原料气体导入所述气体送入腔室中。
17.根据权利要求10中所述的电流发生系统,其中所述功能腔室包括有一个气体送入腔室,而所述电流发生系统包括有连接在所述阴极气体出口上的第二气体再循环装置,用于将所述阴极废气的第二部分再循环回所述气体送入腔室中。
18.根据权利要求17中所述的电流发生系统,其中所述第二气体再循环装置包括有一限流孔。
19.根据权利要求9中所述的电流发生系统,其中所述吸附材料是Ca-X,Li-X,锂菱沸石,钙置换菱沸石及锶置换菱沸石中的一种。
20.由根据权利要求1中所述的电流发生系统所产生的电流。
21.一种电流发生系统,包括一燃料电池,该燃料电池包括一个包括一阳极气体入口的阳极通道,所述阳极气体入口用于接收供给的氢;一个包括一阴极气体入口和一阴极气体出口的阴极通道;和一与所述阳极和阴极通道相连通的电解质,以利于在所述阳极与阴极通道之间进行离子交换;一氧气传送系统,该系统连接在所述阴极气体入口上,用于将氧气送入所述阴极通道中;以及一氢气传送系统,该系统包括一氢气入口,用于接收从所述阴极气体出口送入的第一原料氢气;和一连接在所述阳极气体入口上的氢气出口,用于将从所述第一原料氢气中所接收到的氢气提高纯度后送入所述阳极通道中。
22.根据权利要求21中所述的电流发生系统,其中所述氧气传送系统包括一个用于从空气中抽取出氧气的氧气分离系统,该气体分离系统包括有一接收原料空气的第一原料气体入口;和一个连接于所述阴极气体入口上的氧气出口,用于将浓缩后的氧气供送到所述阴极通道中。
23.根据权利要求22中所述的电流发生系统,其中所述氢气传送系统包括一个用于从碳氢化合物燃料中产生第二原料氢气的反应器;和一个连接在该反应器上的氢气分离系统,用于对从所述第一和第二原料氢气中所接收到的氢气进行提纯。
24.根据权利要求21中所述的电流发生系统,其中所述氢气传送系统包括一个用于从碳氢化合物燃料中产生第二原料氢气的反应器;和一个连接在该反应器上的氢气分离系统,用于对从所述第一和第二原料氢气中所接收到的氢气进行提纯。
25.根据权利要求24中所述的电流发生系统,其中所述氢气分离系统接收所述第一和第二原料氢气,并且从其中生成经提纯的氢气。
26.根据权利要求25中所述的电流发生系统,其中所述氢气分离系统包括一用于接收第一原料氢气的第一原料气体入口;和一用于接收第二原料氢气的第二原料气体入口。
27.根据权利要求26中所述的电流发生系统,其中所述第一原料氢气在不同于第二原料氢气压力的压力下供送。
28.根据权利要求24中所述的电流发生系统,其中所述反应器包括一蒸汽重整装置;和一连接在该蒸汽重整装置上的水煤气转换反应器,用于生成所述的第二原料氢气。
29.根据权利要求28中所述的电流发生系统,其中所述蒸汽重整装置包括有一个燃烧器,该燃烧器又包括一个连接在所述阴极气体出口上的第一燃烧器入口,用于接收湿润的富氧气体;和一个第二燃烧器入口,用于从所述氢气分离系统中接收氢气,来在该燃烧器中进行燃烧,从而提供所述碳氢化合物燃料进行蒸汽重整反应时所要吸收的热量。
30.根据权利要求24中所述的电流发生系统,其中所述反应器包括一个自热式重整装置;和一个连接在所述蒸汽重整装置上的水煤气转换反应器,用于生成所述的第二原料氢气。
31.根据权利要求30中所述的电流发生系统,其中所述氧气传送系统包括一个用于从空气中抽取出氧气的氧气分离系统,该气体分离系统包括有一接收原料空气的第一原料气体入口;和一个连接于所述阴极气体入口上的氧气出口,用于将从所述原料空气中抽出的氧气供送到阴极通道中,而所述反应器包括有一个燃烧器,该燃烧器又包括用于接收空气的第一燃烧器入口;和一个用于从所述氢气分离系统中接收氢气的第二燃烧器入口,用于将所接收的氢气在该燃烧器中进行燃烧,从而回收热能来对所述原料空气进行增压。
32.根据权利要求23中所述的电流发生系统,其中至少所述氧气分离系统和氢气分离系统中的一个包括有一压力回转吸收系统。
33.根据权利要求32中所述的电流发生系统,其中至少所述压力回转吸收系统中的一个包括有一旋转组件和压缩设备,该旋转组件又包括有一定子和一相对于该定子可转动的转子,所述转子包括有多个流动路径,用于在其内接收吸附材料,来响应于流动路径中增大的压力而相对于第二气体成分优先吸收第一气体成分,而所述压缩设备连接于该旋转组件上,以利于气体流流经所述流动路径,用于将所述第一气体成分与第二气体成分分开。
34.根据权利要求33中所述的电流发生系统,其中所述定子包括有一第一定子阀表面,一第二定子阀表面,多个开口于该第一定子阀表面上的第一功能腔室,以及多个开口于该第二定子阀表面上的第二功能腔室,而所述转子包括有一与所述第一定子阀表面相连通的第一转子阀表面,一与所述第二定子阀表面相连通的第二转子阀表面,及多个设置在所述转子阀表面上的孔,并且这些孔与所述流动路径和功能腔室的相应端部相连通。
35.根据权利要求34中所述的电流发生系统,其中所述压缩设备被连接在一部分所述功能腔室上,用于将这部分功能腔室保持在位于一较高压力和一较低压力之间的多个离散的相应压力水平上,从而保持气体流均匀地流经这部分功能腔室。
36.由权利要求21中所述电流发生系统所产生的电流。
37.一种用于产生一电动势的方法,包括如下各步骤提供一燃料电池,该燃料电池包括一具有一阳极气体入口的阳极通道;一具有一阴极气体入口和一阴极气体出口的阴极通道;和一与所述阳极和阴极通道相连通的电解质,以利于在所述阳极和阴极通道之间进行离子交换;向所述阳极气体入口供送氢气;向所述阴极气体入口供送氧气,与所述氢气发生反应;以及将从所述阴极气体出口排出的一部分阴极气体再循环回所述阴极气体入口中。
38.根据权利要求37中所述的方法,其中所述再循环步骤包括在增高的压力下将所述废气部分送入阴极气体入口中。
39.根据权利要求38中所述的方法,其中所述再循环步骤还包括对剩余的废气进行清除。
40.根据权利要求38中所述的方法,其中供送氧气的步骤包括将原料空气供送到一氧气压力回转吸收设备中的步骤;和将从该原料空气中抽取出的富氧气体作为轻质产出气体送入所述阴极气体入口的步骤,而所述再循环步骤还包括从所述燃料电池中回收废弃的热量,来提高从该压力回转吸收设备中对膨胀能量的回收率。
41.根据权利要求38中所述方法,其中供送氧气的步骤包括将原料空气作为第一原料气体供送到一氧气压力回转吸收设备中的步骤;和将从该第一原料气体中抽取出的富氧气体作为轻质产出气体送入所述阴极气体入口的步骤,而所述再循环步骤还包括将所述废弃的剩余部分作为第二原料气体送入所述压力回转吸收设备中。
42.一种用于产生电动势的方法,包括如下步骤提供一燃料电池,该燃料电池包括一具有一阳极气体入口的阳极通道;一具有一阴极气体入口和一阴极气体出口的阴极通道;和一与所述阳极和阴极通道相连通的电解质,以利于在所述阳极和阴极通道之间进行离子交换;向所述阳极气体入口供送氢气;向所述阴极气体入口供送氧气;以及将从所述阳极气体出口排出的一部分阳极气体再循环回所述阳极气体入口中。
43.根据权利要求42中所述的方法,其中供送氢气的步骤包括将碳氢化合物燃料供送到一重整装置中的步骤;使得所述燃料与从所述阴极气体出口排出的富氧气体发生反应的步骤;将从所述重整装置中排出的原料氢气作为第一原料气体送入一氢气压力回转吸收设备中的步骤;以及将从所述第一原料气体中抽取出的富氢气体作为轻质产出气体送入所述阳极气体入口的步骤。
44.根据权利要求43中所述的方法,其中所述再循环步骤包括将排出的阳极气体作为第二原料气体送入所述氢气压力回转吸收设备中。
45.根据权利要求43中所述的方法,其中所述重整装置包括一个具有一燃烧器的蒸汽重整装置,而所述的反应步骤包括将所述燃料送入该燃烧器中,并通过将从所述氢气压力回转吸收设备中抽出的尾气作为重质产出气体,来与所述燃烧器中的富氧气体一起燃烧,从而向所述燃烧器提供热能。
46.根据权利要求43中所述的方法,其中所述供送氧气的步骤包括将一受压缩原料空气供送到一氧气压力回转吸收设备中的步骤;和将从所述原料空气中抽取出的富氧气体作为轻质产出气体送入所述阴极气体入口的步骤。
47.根据权利要求46中所述的方法,其中所述重整装置包括有一个具有一水煤气转换反应器的自热式重整装置,并且供送一受压缩原料空气的步骤包括将空气送入一燃烧器中的步骤;使得从所述氢气压力回转吸收设备中抽出的尾气作为重质产出气体与燃烧器中的送入空气一起燃烧的步骤;以及从燃烧器中回收燃烧热量,来在压力作用下将空气送入氧气压力回转吸收设备中的步骤。
48.一种电流发生系统,包括一燃料电池,该燃料电池包括一个包括一阳极气体入口和一阳极气体出口的阳极通道;一个包括一阴极气体入口和一阴极气体出口的阴极通道;及一与所述阳极与阴极通道相连通的电解质,以利于在所述阳极与阴极通道之间进行离子交换;一氧气传送系统,该系统连接在所述阴极气体入口上,用于将浓缩后的氧气送入所述阴极通道中,该氧气传送系统包括有一个压力回转吸收系统,用以对氧气进行浓缩并且将二氧化碳从原料大气中去除;以及一氢气传送系统,该系统连接在所述阳极气体入口上,用于将提纯后的氢气送入所述阴极通道中。
49.根据权利要求48中所述的电流发生系统,还包括有一设置在所述氧气传送系统与阴极气体入口之间的氧气收集器。
50.根据权利要求48所述的电流发生系统,其中所述电解质为碱性的,并且保持在一比大约100℃高的工作温度上,所述氧气传送系统被用于将纯度约为90%的氧气供送到所述阴极气体入口中,以便所述燃料电池所产生的水分作为浓缩后的干燥蒸汽而从所述阴极气体出口排出;该系统包括一个用于将所述蒸汽从阴极气体出口送入一真空冷凝器的蒸汽膨胀器;一用于将液体从冷凝器中排出的凝液泵;及一真空泵,该真空泵与所述氧气压力回转吸收系统协同工作,并且从所述真空冷凝器上排出永久性的气体杂质。
全文摘要
一种由一燃料电池和一氧气传送系统所组成的电流发生系统。所述燃料电池包括一具有一阳极气体入口的阳极通道,用于接收一定量的氢气,一具有一阴极气体入口和一阴极气体出口的阴极通道,及一种与所述阳极通道和阴极通道相连通的电解质,以利于在阳极与阴极通道之间进行离子交换。所述氧气传送系统连接于阴极气体入口上并将氧气送入阴极通道中。该电流发生系统还包括有连接于阴极气体出口上的气体再循环装置,用于将从阴极气体出口排出的一部分阴极废弃再循环回阴极气体入口中。
文档编号C01B13/02GK1318210SQ99810869
公开日2001年10月17日 申请日期1999年9月14日 优先权日1998年9月14日
发明者伯威·G·基佛, 克里斯多夫·麦克里恩, 迈克尔·J·布朗 申请人:探索空气技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1