用于铺路粘结剂的硫添加剂及其生产方法

文档序号:3657208阅读:240来源:国知局
专利名称:用于铺路粘结剂的硫添加剂及其生产方法
技术领域
一般来说,本发明涉及可用在铺路粘结剂组合物中的增塑硫材料及生产这种组合物的方法。更具体地说,本发明涉及随后可加入到沥青和骨料(aggregate)中的增塑硫组合物的制备方法。这种增塑硫材料可以独立于加入其中的沥青而制备,可以运送到制备改性沥青基铺路粘结剂用的沥青容易得到的地方。另外,对于沥青,特别是高质量沥青难以得到的遥远的地方,这种增塑硫材料可以和沥青及微细矿物组分混合,生产有用的沥青基粘结剂,这种粘结剂在很宽的环境温度下能够保持非流动性能。本发明还涉及增塑硫组合物的生产方法及用这些组合物生产沥青基铺路粘结剂的方法。
背景技术
铺路材料通常包括粘结剂和骨料。尽管粘结剂在铺路材料中一般是少量组分,但是与其寿命和性能相关的大多数铺路性能取决于粘结剂的性能。
粘结剂组分一般是可包括各种添加剂的沥青基组合物。沥青描述为暗褐色至黑色的粘结材料,其具有固体、半固体或液体稠度,其主要组分是天然沥青(bitumen),或者可以是石油炼制中得到的残渣。多孔岩中产生沥青的天然沉积物公知为岩沥青或焦油砂。石油沥青是蒸馏石油时得到的部分残余物。具体来说,沥青水泥是炼制后满足铺路、工业和特殊用途规定的石油沥青。
一般来说,铺路材料的骨料组分是所有能够混合在分级碎片中的硬质惰性矿物材料。骨料组分可以包括砂子、石砾、粉碎的石块、珊瑚和渣石。沥青作为粘结剂用于铺路材料时的一个限制条件是应当能够在很宽的环境温度范围内软化和流动。这个限制条件使得这种传统的沥青基材料难以运输,还可能造成严重的环境问题。另外,因为沥青在环境温度下也能软化,所以加入各种添加剂对沥青进行改性在本领域是公知常识。一般用沥青添加剂使粘结剂材料在环境温度下更不易流动。
硫是作为少量粘结剂组分加入粘结剂中的这些添加剂中的一种。但是,沥青与硫的混合将产生许多问题。为了用硫对沥青进行有效地改性,必须有效地将硫塑化或聚合。这种塑化可以在硫与热沥青混合时进行。但是,当液态硫、液态沥青和骨料混合时,硫的塑化常常产生一些问题。
在某些混合物中,硫和沥青可由于各自密度的不同而分离,这将导致塑化硫的不均匀分散。结果,粘结剂的贫硫部分仍然保持沥青的软化和流动性能。粘结剂中贫硫部分的存在不仅抵消了沥青作为粘结剂的整体效果,而且使粘结剂难以处理和运输。也有人尝试用化学物质如二聚环戊二烯和庚烷使硫均匀地分散在沥青中。另外,粉碎的石灰石也用于此目的。但是,钙基材料的使用将导致硫化钙和多硫化物的形成,这些物质对路面寿命均是不利的。
此外,如果液态硫、液态沥青和骨料,即使还有其它组分同时或接近同时混合,硫的塑化也能产生其它问题。具体来说,在用沥青将其完全塑化前,部分液态硫与骨料反应,非塑化的硫和骨料粘结在一起,不能完成其塑化反应。这种非塑化的硫将减弱整个材料的强度,而不会增强其强度。
即使能够成功地制备最终的硫改性沥青粘结剂,该工艺也要求现场处理液态硫。液态硫的存在将造成潜在的环境和材料处理方面的问题。
长期以来,人们一直认为富硫粘结剂对铺路材料的性能和寿命将产生不利的影响。另外,硫一直被认为是不可接受的组分,因为如果粘结剂中的硫含量超过某一上限值,则粘结剂材料的成本将极其昂贵。
除考虑用硫作为铺路粘结剂中的添加剂的经济因素外,沥青的使用也与经济因素有关。例如,沥青在铺路粘结剂中作为主要组分的应用常受到石油生产方式波动的负面影响。另外,有限的石油供应也长期威胁着其中的主要组分是沥青的铺路粘结剂的生存竞争力。石油产品的有利利用是严重影响在铺路粘结剂中用沥青作为主要组分的另一个因素。例如在美国,表面光整的高速路和街道的保养、修复和保护每年大约需要三千万吨沥青水泥。沥青水泥在过去能够以合理的价格得到,因为沥青水泥是石油炼制中的残余物,某些石油炼制残余物只被经济地用于生产沥青水泥。但是,现在更大比例的石油被用于生产利润更大的其它形式的石油产品。随着这种趋势的继续,即使在恒定需求的情况下,沥青水泥的价格也有望攀升。这一推论受到过去32年内沥青水泥平均价格的变化所支持,在这期间,其价格从1968年的约$23/ton升至2000(截至到2月份)的约$152/ton,其上涨幅度约为561%。但是一般都认为目前还没有经济的铺路粘结剂可替代沥青水泥,还没有低价格的沥青铺路粘结剂能有效取代高价格的沥青铺路粘结剂。
因此,目前需要能够提供易于和沥青混合以有效地对沥青改性的固体预塑化硫。这种预塑化硫改性剂能够降低粘结剂制备时的复杂性,不需要处理与液态沥青结合的液态硫,还需要提供均匀性增加的粘结剂,不需要考虑非塑化硫将弱化铺路材料的问题。另外,尺寸更小、非粘结性、非流动性和非熔融材料形式的固态预塑化硫添加剂材料的运输能力有助于将预塑化硫添加剂材料运送到易于和沥青混合以产生符合特定工程标准的材料的地方。目前需要生产能够加入预塑化硫中且在很宽的环境温度范围内能够保持固态、非粘结性、非流动性和非熔融形式的粘结剂添加剂,使得该粘结剂添加剂能够用运输普通固体物质的传统工具在长距离内方便地运送。
因此,还需要改善铺路粘结剂,在利用沥青时比单独使用沥青的性能更好。通过将这些添加剂加入沥青应当易于生产这些铺路添加剂。这些添加剂材料包括下述性能。首先,在不需要进行反应或改性的情况下这些添加剂材料易于使用。这些添加剂材料还可以在能够有效储存和运输的很宽环境温度范围内以非粘结性、非熔融性和非流动性的形式生产。具有这些非粘结性、非流动性和非熔融性能的添加剂材料可以方便地运送很长距离,同时还能够避免由于其它形式的在环境温度下能够软化和流动的粘结剂的排放和喷溅所造成的污染问题。第二,当使用时,这些添加剂材料应当能够大幅降低最终铺路粘结剂中的沥青用量,以降低对石油的依赖性和成本。第三,铺路粘结剂中使用的添加剂不应当掺入(无论是直接或和其它粘结剂组分组合时)大量的已知对铺路质量和寿命有不利影响的组分。
还需要生产最终塑化硫加沥青基粘结剂组合物,其中,硫是主要组分,这种粘结剂组合物由于在很宽的环境温度范围内能够保持固态、非粘结性、非流动性和非熔融性而易于运送到很远的距离。这种材料还应当改善铺路性能和强度。

发明内容
本发明因应现有技术的情况而开发,更具体地说,本发明因应目前尚未解决的问题和需求而开发。
根据此处体现的和广泛描述的本发明,通过加入浓度至少为0.25%的碳塑化液态硫,为了生产更易于处理的塑化硫添加剂,还可以用浓度至少约为0.08%的乙酸戊酯处理。塑化硫一旦制备出来,就可以形成可使用的固体颗粒,一般是小颗粒如球体或团块。这些固体颗粒在很宽的环境温度范围内不流动、不熔融,不粘结,因此,易于运送到任何指定的地方,和热沥青水泥混合,以产生改性的沥青基粘结剂热混合铺路材料。
同样,一经制备,塑化硫可以作为主要组分与沥青基材料和微细矿物组分如粉煤灰或细二氧化硅混合(立即进行或形成固体颗粒后进行)以生成完全的粘结剂材料,富硫粘结剂本身可以形成为有用的固体颗粒,通常是小颗粒如如球体或团块。这种富硫固体粘结剂材料在很宽的环境温度范围内不流动、不熔融,不粘结。因此,该富硫固体粘结剂易于运送到任何指定的地方,在这些地方和任何给定的骨料混合,而无需运送液态沥青和液态硫。本发明的这些及其它目的、特点和优点由下面的说明、附图和附加的权利要求书能够更清楚地理解,或者由下面本发明的附图简述为了得到本发明的上述和其它优点和目的,参考附图中所示的具体实施方案可以更详细地描述前面简述的本发明。应当理解的是,这些附图仅描述本发明的典型实施方案,而不是限制本发明的保护范围,下面用附图更详细而具体地描述和解释本发明,其中


图1是用于生产本发明的铺路粘结剂中使用的塑化硫添加剂材料的生产方法的一个实施方案的示意性方框图。
图2是生产富硫粘结剂材料的方法的一个实施方案的示意性方框图。
具体实施例方式
本发明涉及能够用于生产改善的沥青或烃基铺路粘结剂的塑化硫添加剂的生产和应用。本发明的塑化硫添加剂是通过加入用于塑化(或聚合)液态硫的碳制备的。另外,为了改善塑化硫的处理性能和气味性能,还可以向组合物中加入乙酸戊酯。这种塑化硫然后可以在混合循环内和各种浓度的沥青基材料以及骨料、砂子或其它材料混合,以产生所需的产品性能。一旦制成,塑化硫添加剂就可形成锭剂、板块、球体、碎块、团块或其它小尺寸形式的产品,因为在很宽的环境温度范围内具有不流动、不熔融、不粘结的性能,所以它们在环境温度下适于储存和运输。这样就可以堆积或层叠固体产品,不用担心各锭剂、板块、球体、碎块或团块熔融或粘结在一起形成一体的不可处理的产品块。本发明最终的塑化硫添加剂可以储存在生产地或远的地方,可以运输并堆放储存或储存在容器如袋囊、储槽和筒中,而各个很小的形式的最终产品保持松散状态,并且不粘结,避免了液态硫产生的气体逸出。
图1示意性示出用在本发明的铺路粘结剂中的塑化硫添加剂材料生产方法的一个可能优选的实施方案的流程图。在该实施方案中,包括硫的塑化硫添加剂材料放在混合槽102中,并被加热成液态硫;碳作为原料储存在容器104中;乙酸戊酯作为原料储存在容器106中。应当理解,适当设计容器104和106的结构,使其能够分别储存和释放碳和乙酸戊酯,适当设计混合槽102的结构,以在其中混合硫、碳和乙酸戊酯。因此,这些槽可以配备图1所示的实施方案中未示出的搅拌器和加热系统,因为硫的熔点是已知的,用于熔融这些物质和将这些物质保持在适当温度下以及将其混合的设备在本领域内也是公知的。
在例示性而非限定性的一个实施方案中,硫优选使用单质硫,单质硫可以是工业级、晶体或无定形硫。作为例示性而非限定性的适于为本发明的组合物和方法提供硫的来源包括原始硫源和回收硫源。也称为碳黑的碳也可以有多种来源。在例示性而非限定性的又一个优选实施方案中,可以使用天然存在的矿产碳黑中发现的颗粒或纤维型碳材料。另外,另一种可能的碳源是人造碳,如燃烧过程中产生的材料或合成反应生产的碳。这种碳的例子包括天然碳材料、燃料残余材料和已知为布基(bucky)球的碳60至碳69。
同样,本领域普通技术人员将认识到乙酸戊酯易于以其工业形式得到,虽然在一个实施方案中最优选使用较纯形式的乙酸戊酯,但是将乙酸戊酯和包括含乙酸酯的有机化合物的其它化合物一起加入硫也在本发明的保护范围内。
在图1所示的本发明的一个实施方案中,盛放在混合槽102中的硫优选保持在足以使硫成为或维持液体形式的温度下,例如大约120℃至约150℃。硫是固体形式还是液体形式释放到混合槽102中只是是否方便的问题。本领域技术人员都知道,流体材料如液态硫可以在管道内通过保持适当温度和压力条件而作为这种流体循环。在大多数环境中,这些条件通过适当地将这些流体循环经由的管道绝热或伴热而实现。能够用于实现相同目标的其它措施在本领域是公知的。
来自容器104的碳以至少约0.25%的浓度加入混合槽102。虽然高于约0.25%的任意浓度的碳黑均能对硫产生所需的聚合效应,但是过多的碳将增加粘结剂的总体成本。因此,碳的优选浓度是约0.25%至约5%,更优选约0.25%至约1.0%,甚至更优选约0.4%至约0.8%。碳有利于与硫进行塑化反应。另外,碳产生紫外线屏蔽效应,有助于防止最终的沥青加骨料产品由于紫外线而降解。如上所述,这些百分数是碳在最终塑化硫组合物中的重量百分数。
盛放在容器106中的乙酸戊酯优选加入硫/碳混合物中,也保持在环境温度下。因此,容器106中的乙酸戊酯优选保持在环境温度范围内。在图1所示的该实施方案中,在混合槽102中还加入来自容器106的乙酸戊酯。在一个实施方案中,乙酸戊酯优选以至少约0.08%的浓度加入硫中,这样有助于消除或至少减少产品中不希望的臭味,从而改善其整体处理性。如上所述,该百分数是乙酸戊酯在最终塑化硫组合物中的重量百分数。虽然高于约0.08%的任意浓度的乙酸戊酯均能对塑化硫产品产生所需的效应,但是过多的乙酸戊酯将增加粘结剂的总体成本。因此,乙酸戊酯的更优选浓度是约0.1%至约1.5%,更优选约0.2%至约0.4%。
在加入乙酸戊酯和碳(可以同时加入,也可以以任意次序加入)的过程中,将混合槽102中的液态硫搅拌或以其它方式混合,直到反应进行完全,此时乙酸戊酯和碳已经产生了塑化硫。肉眼观察液态硫的变化,从浅色变为灰色或黑色(这取决于碳的加入浓度),这样就提供了一种易于判断反应完全的方法。一般来说,一旦碳和乙酸戊酯均加入以后,反应时间是约半分钟至约5分钟。
另外,虽然图1所示的上述方法演示的是间歇法,但是本领域普通技术人员将认识到,连续法将产生同样的效果,连续法也包括在本发明的保护范围内。
硫的塑化一旦发生,则塑化硫可以立即与烃基材料如沥青混合,产生所需的铺路、成型和结构材料或复合粘结剂,也可以形成任意类型的较小的固体颗粒,并且运送到以后使用的任意指定的地方形成所需的粘结剂。这些较小的固体颗粒的非限定性的例子包括锭剂、板块、球体、碎块、团块或其它适于储存和运输的产品形式。在一个实施方案中,这些形式的最终塑化硫添加剂材料具有更小的易于处理的尺寸。仅举例来说,在一个实施方案中,最终塑化硫添加剂材料的尺寸是使得每一个单位暴露的表面积是约0.25平方英寸至约4平方英寸。可以想象可以生产其它各种大小和形式的最终塑化硫添加剂材料。
图1还例示性而非限定性地示出塑化硫材料是如何形成各种固体形式的,这些固体形式例如包括锭剂、板块、球体、碎块、团块或其它适于储存和运输的最终铺路粘结剂产品形式。根据图1所示的实施方案,板块和碎块是用下述方法形成的使混合槽102中产生的塑化硫通过冷却系统150循环,从而当塑化硫借助传送带152传送时,流体硬化成脆性材料,然后将脆性材料粉碎或切割成离散单元,包括上述具有较小尺寸的单元。可以用下述方法形成锭剂使混合槽102中得到的流体经受已知的锭剂制造工艺如转动成型,然后用锭剂成型设备如已知名称为AccuDrop和Sandvik转动成型机的设备进行处理。用下述方法形成球体用传统的造粒机对混合槽102中得到的流体进行处理。用下述方法形成片剂用传统设备如橡胶带、复合带或金属带对混合槽102中得到的流体进行处理。
无论塑化硫是形成用于运输的小颗粒还是直接加入到沥青组分中形成所需材料,沥青和塑化硫的混合方法都是相同的。
举一个非限定性的例子来说,根据本发明,沥青是优选的烃基材料,在所述烃基材料中加入塑化硫,沥青水泥是目前优选的用在本发明的铺路粘结剂的实施方案中的烃基材料形式。沥青水泥一般简称为AC-xx沥青,由石油公司提供。AC沥青中的符号“xx”表示与沥青粘度相关的数字。诸如AC-20和AC-10沥青的沥青是在本发明中用作烃基材料的优选的沥青形式。可以作为本发明的铺路粘结剂配方中组分的其它形式的沥青的非限定性例子包括AC-1.75、AC-2.5、AC-5、AC-30、AC-40、AC-80和AC-120沥青。可以作为本发明的铺路粘结剂配方中组分的其它烃基材料的非限定性例子包括重质原油、燃料油及诸如重质原油和燃料油的物质和至少一种上述AC沥青的混合物。
用AC-xx分级系统表示可用于本发明的沥青的例示性实施方案,这些只是示例,并不是将沥青的类型限定为这些具体的等级。用其它方式表征的沥青,如PG等级也应当认为在本发明的烃基材料的保护范围内。另外,诸如天然沥青和硬沥青的物质也认为是本发明的烃基材料的例子。
可以认为本发明的铺路粘结剂也可以用其它烃基材料制备,在这些烃基材料中,沥青是加入到塑化硫混合物中的主要组分。这些烃基材料的非限定性例子包括来自下述混合物的产品沥青和妥尔油沥青的混合物、沥青和环状饱和烃的混合物、沥青和环状不饱和烃的混合物、沥青和多环饱和烃的混合物、沥青和不饱和多环烃的混合物及沥青和焦油的混合物。
可以作为本发明的铺路粘结剂配方中组分的其它烃基材料非限定性地包括至少一种上述沥青和聚合或可聚合材料的混合物产品,其中,沥青是加入到塑化硫混合物中的主要组分。这些聚合或可聚合材料的非限定性例子包括苯乙烯单体(乙烯基甲苯)、聚对苯二甲酸乙二醇酯(PET)、乙烯乙酸乙烯酯(EVA)、专利材料Exxon 101和Exxon 103,或者其它乙烯基芳香族化合物。
仅举例来说,可以作为本发明的铺路粘结剂配方中组分的其它烃基材料包括至少一种上述AC沥青和至少一种杂环化合物如呋喃、二氢呋喃和这些杂环化合物的衍生物的混合物的产品,其中,沥青是加入到塑化硫混合物中的主要组分。除呋喃和二氢呋喃外,这些杂环化合物还包括糠醛和3-(2-呋喃基)丙烯醛。可以作为本发明的铺路粘结剂配方中组分的其它烃基材料包括至少一种上述AC沥青和至少一种脂族、烯烃或芳香族物质的混合物的产品。
为了使塑化硫与烃基沥青材料混合形成所需的粘结剂或最终产品,必须将塑化硫和沥青简单地液化后与骨料混合。几乎能够以任何混合顺序将塑化硫和沥青及骨料进行这种混合和液化。例如,可以用下述方式首先将塑化硫与沥青混合,然后使硫-沥青粘结剂与骨料混合;首先使沥青和骨料混合,然后再与塑化硫混合;或者使这三种组分同时混合。
在沥青容易得到的地方,塑化硫可以运送到规定地点与沥青混合,形成所需的铺路材料。一般来说,塑化硫以不很大于50wt%的浓度加入沥青中,在目前优选的实施方案中,塑化硫在最终粘结剂材料中占约20%-60%。虽然一般都相信或认为浓度低于20%的塑化硫对沥青强度的提高或者改性产生的作用很小,但是为了提高沥青的用量,还是可以使用浓度低于20%的塑化硫。
本领域普通技术人员应当认识到,为了生产最终所需的铺路粘结剂,能够将沥青加热为液态并使液化沥青与骨料混合的一般的热拌设备(hotmix plant)组件允许向沥青中简单地加入固体塑化硫颗粒。另外,本发明的保护范围还扩展到将与其它添加剂和/或改性剂结合的塑化硫和给定的沥青一起使用以产生所需的粘结剂。
塑化硫的其它用途是形成完整的粘结剂组合物,该粘结剂组合物自身就可直接加入到骨料中,不需要其它任何材料如沥青。这种完整的粘结剂组合物在下述情形下特别有用在沥青、特别是高质量沥青供应不易得到的较远的地方,或者沥青难以运输的地方。为了生产这种完整的粘结剂组合物,塑化硫可以作为主要组分与沥青及微细矿物组分混合,形成最终的富硫铺路粘结剂,该粘结剂具有必需的热拌性能。这种富硫铺路粘结剂也在很宽的环境温度范围内具有不粘结和不流动的性能,能够有效地运送到任何指定的地方。
如图2所示的生产本发明的这种富硫铺路粘结剂的方法的一个可能的实施方案示出设备的组成结构,首先在槽204内将沥青(来自槽200)和微细矿物组分(来自槽202)混合。然后在沥青/矿物组分组合物中加入塑化硫(来自输入管206),最终产品在槽208内混合。塑化硫可以从图1的混合槽102直接加入,也可以是固体或再液化的塑化硫颗粒。每一个阶段的混合都进行到足以使各组分在每一个混合物中都充分相互分散的程度。一旦完成,最终的富硫铺路粘结剂材料可以通过参考图1时所述的相同或类似的方法制成固体颗粒。
在本发明的其它实施方案中,塑化硫、沥青和微细矿物组分同时混合在一起。不管各种材料的加入顺序如何,本领域普通技术人员都将认识到,为了将沥青和塑化硫液化和充分混合,都需要将这些材料加热,并且在适当容器内维持约93℃(约200°F)至约204℃(约400°F)的温度足够长的时间,以确保各组分完全混合并相互作用。更优选地是,硫、沥青和微细矿物组分在适当容器或装置中一起混合的温度范围是约121℃(约250°F)至约160℃(约320°F)。该温度范围最优选是约132℃(约270°F)至约149℃(约300°F)。这些混合温度范围也适用于各组分在混合单元200中的混合温度。根据各组分的组成和性能的不同,在这种间歇模式中的混合可以进行约15分钟,在任何情况下,混合都要进行到各组分在混合物中完全相互分散和形成凝胶为止。
粉煤灰是细粉矿渣,是燃烧粉末烟煤的发电厂中得到的废物。在美国,烧煤的电厂是粉煤灰的主要制造者。这些发电厂每年都必须处理大量粉煤灰,这增加了发电成本,还产生了粉煤灰的处理问题。本发明的铺路粘结剂及其生产方法能够有效利用烧煤发电厂中产生的粉煤灰,用粉煤灰作为铺路粘结剂的组分。虽然粉煤灰是本发明的铺路粘结剂中优选的微细矿物组分,但是也可以用其它微细矿物组分通过本发明的方法制成最终的铺路粘结剂,如二氧化硅基材料,特别是二氧化硅材料及粉煤灰和二氧化硅材料的混合物。尽管在本发明的铺路粘结剂及其生产方法中可以使用很宽粒度范围的微细矿物组分,但是,通过目数200或更细的筛子的成分表征的粒度是优选的,举例但非限定性地说,如石英粉。这种微细矿物组分的例子是A型二氧化硅材料、F型二氧化硅材料、F型粉煤灰和陶瓷粘土如高岭土。
这种最终富硫铺路粘结剂材料将含有至少60%的塑化硫、至少10%的沥青和至少10%的微细矿物组分。在目前优选的实施方案中,已经发现70%的塑化硫、15%的沥青和15%的粉煤灰的组合物能够得到所需的结果。一旦塑化硫、沥青和粉煤灰完全结合,这种最终富硫铺路粘结剂材料自身可以形成图1中所述的任何所需的固体颗粒。再者,虽然图2所示的是间歇法,但是本领域普通技术人员会认识到,连续法也在本发明的保护范围内。另外,虽然图2所示的实施方案利用的方法是在加入塑化硫之前先混合沥青和微细矿物组分,但是这些组分的混合顺序对本发明来说并非关键,无论这些组分是以不同的顺序混合在一起还是同时混合在一起,都能生成相同类型的产品。
应当理解的是,当循环流体的流变学性能需要设备产生或促进这种循环时,图1和2所示框图中的材料流水线在实践中由俄歇(auger)系统或等效设备所体现。另外,用本领域公知的适当端口建立图1和2所示实施方案中的材料流水线的接点。例如,混合单元204中产生的流体混合物可以通过传统的涡流喷嘴供入液态塑化硫中。
为了进一步控制塑化硫材料的粒度并使其标准化,可以将挤压、粉碎、细化设备及其它设备进行适当组合,以此代替或附加于图1所示的传送带152和冷却系统160。
在制备本发明的固体塑化硫颗粒或最终富硫铺路粘结剂材料的方法的一个实施方案中,冷却系统160(图1所示)是水基冷却系统,其包括水浴和流水系统,如淋水系统,当槽102或208中产生的流体通过传送器152传送时,该冷却系统能够降低其温度。在一个实施方案中,水基冷却系统的结构设计为冷却水基本上不与塑化硫或最终富硫铺路粘结剂组合物直接接触。例如可以用下述方法得到该结构使槽102或208中得到的塑化硫或最终铺路粘结剂组合物沿传送器循环,使传送器的外底部与冷却水接触。热量从传送器内的粘结剂组合物经由传送器材料传递给冷却水。本发明使用的传送器的例子包括U型传送器、平板传送器、不锈钢传送器和橡胶传送器。另外还可以用一个或多个风扇作为冷却系统的一部分。根据冷却系统的具体实施方案及来自槽102或208的塑化硫或最终铺路粘结剂组合物的加入冷却系统的方式,固化时间一般约为1分钟至10分钟。
在本发明的一个实施方案中,将槽102或208中产生的流体供入造粒单元如造粒筒单元,生成球体状固体颗粒。
根据本发明实施方案生产的塑化硫颗粒在约77℃(约170°F)以下的温度下具有优异的非流动性,已经观察到在高至约79℃(约175°F)的温度下本发明的铺路粘结剂的各个单元如锭剂、板块、球体或其它形式不会集聚。尽管本发明的铺路粘结剂的熔点取决于各个实施方案的组成,但是熔点一般都在约93℃(约200°F)以上。
在图2所示的最终富硫铺路粘结剂的实施方案中,塑化硫是本发明生产的整个产品组合物中的主要成分,这样的铺路粘结剂在约77℃(约170°F)以下的温度下具有优异的非流动性,已经观察到在高至约79℃(约175°F)的温度下本发明的铺路粘结剂的各个单元如锭剂、板块、球体或其它形式不会集聚。尽管本发明的铺路粘结剂的熔点取决于各个实施方案的组成,但是熔点一般都在约82℃(约180°F)以上。
根据本发明的组合物和方法生产的塑化硫或最终富硫铺路粘结剂组合物是高强度、持久性、低成本的产品,可以储存,将来用在铺路中。一旦冷却到环境温度时,本发明的塑化硫或最终富硫铺路粘结剂组合物在骨料混合物中达到高强度,老化后强度会进一步提高。认为老化时强度提高的可能的原因是基于固态成核化和材料内硫晶体的生长。另外还认为这些材料的塑化剂效应抑制晶体的成长,这些晶体的存在对于其中已经加入了粘结剂和这些晶体的铺路材料来说是有害的。
本发明实施方案的塑化硫或最终富硫铺路粘结剂组合物的强度在固化后已经非常高,在固化约24小时后一般就可达到最终强度的约80%。这种强度使本发明各个实施方案的铺路粘结剂可以堆放贮存,其堆放高度最高可达约12m(40英尺)。
本发明实施方案的塑化硫或最终富硫铺路粘结剂组合物的强度还提供了优异的抗热裂解性能。正如下面详述的那样,在接近和低于0℃的温度下热裂解是主要的失效模式,铺路材料的抗热裂解性能主要取决于生产铺路材料中使用的粘结剂的抗热裂解性能。因为本发明的铺路粘结剂具有很高的内部强度,所以掺入本发明的铺路粘结剂的铺路材料的抗热裂解性能也很高。
本发明的塑化硫或最终富硫铺路粘结剂组合物生产后,以上述任何一种固体形式运送到热拌设备,而不是以传统的热液体形式运送到热拌设备。本发明实施方案的最终铺路粘结剂组合物还可以通过下述方法用在热拌设备里通过再循环沥青铺路轴环将组合物导入间歇工艺热混设备中的筒状热拌设备或搅拌机中,以此降低对热沥青储存和加热的需要。因此还降低了来自热沥青的排放物。
本发明的组合物和生产方法可以有效利用粉煤灰和硫供应,否则硫供应将产生处理问题。例如,硫是石油炼制和天然气加工的副产品,石油炼制和天然气加工是为了提供符合用于其它生产工艺的环境法规的燃料。在过去的25年中回收硫的生产一直稳定增长,目前在硫供应和需求之间造成了不平衡,结果导致过多的可用硫。由于这种不平衡及将来的回收作业以及与沥青价格相反的价格趋势,硫的价格预计将保持下降趋势。自1970年以来,回收硫的成本就一直低于沥青价格的56%,这是一个认为是用沥青代替硫的盈亏平衡点的成本比。目前存在的巨大的价格差异是回收硫的平均价格约为沥青价格的35%。这些平均价格是通过调查得到的,调查报告显示通常其价格随不同的地方变化很大。
上述沥青和硫的价格及其各自的预期趋势的讨论表明本发明解决了新型铺路粘结剂的组成和生产问题。这种解决方法有利地利用了与沥青和硫的缺点相关的经济因素。
成品塑化硫或最终富硫铺路粘结剂组合物产品随后可以储存在生产地或生产地附近或者储存在遥远的地方,可以单独使用,也可以在铺路的地方与其它铺路材料结合使用,可以将其运送到热拌设备,在热拌设备里,本发明的塑化硫或最终富硫铺路粘结剂组合物与其它铺路材料混合,生产沥青铺路材料和表面处理材料。在沥青铺路材料中,沥青混凝土是沥青水泥和良好分级的、高质量的完全挤压成均匀致密料的骨料的高质量的完全受控的热混合物。
本发明实施方案的塑化硫或最终富硫铺路粘结剂组合物由于这些实施方案的固体性质和缺乏温控系统而在储存地点均具有非常长的储存期。另外,这些实施方案的最终富硫铺路粘结剂组合物对于用在遥远地方的粘结剂来说是一种便利的选择,因为将液态沥青运送到遥远的地方一般昂贵而困难。本发明实施方案的塑化硫或最终富硫铺路粘结剂组合物可以按照传统方式通过铁路、卡车、轮船或飞机进行长距离运输,例如可以越洋或跨大陆运输。本发明实施方案的塑化硫或最终富硫铺路粘结剂组合物由于其固体性质而可以使这些材料更安全地运输,从而消除了热沥青运输溅出的危险性。
在制备本发明实施方案的铺路粘结剂时,在热拌设备里用塑化硫对沥青改性降低了在热拌设计工艺中稳定性测试的需要,因为塑化硫和沥青的混合物产生的铺路粘结剂的稳定性高于传统硫改性沥青的稳定性。另外,由于热拌时铺路粘结剂和其它元素导入的各种组分具有工作相容性,所以其稳定性随时间持续增加,不会丧失其热冷温度性能。但是,热拌稳定性不是可以很方便测定的设计性能。因此,热拌性能一般为孔隙和工作性而设计,用传统的设计方法如Marshall、Hveem和Super pave作为起点进行设计。
实施例目前已经制备了各种塑化硫组合物,然后将这些组合物与各种沥青混合,并且进行测试,从而提供了本发明的例示性实施方案。下面是塑化硫组合物和塑化硫加沥青(在有些情况下还加上微细组成材料)组合物的混合物的测试的具体实施例,这些组合物随后与骨料混合,形成沥青水泥和其它铺路材料。另外还包括许多假定的或“预言性的”实施例,这些实施例是基于已经设计的实际铺路粘结剂组合物或者根据经验预期的具有下述性能的组合物。为了区分实际的实施例和假定的实施例,实际的实施例用过去时表达,而假定的实施例用现在时表达。
实施例1(过去时)加热硫,使其在140℃(约284°F)的温度下液化。用0.25%的乙酸戊酯和0.5%的碳处理液化硫,在大约5分钟内,组合物变成亮深灰色,这表示硫的塑化反应完成。然后将这种塑化硫铸造成约0.63cm(约0.25英寸)厚的板块。冷却后,将板块破碎成小块,该小块不大于其长度和宽度均约等于其厚度的形式。将AC-20沥青水泥、骨料和塑化硫混合,使沥青水泥的整体组成中约含有2.7%的AC-20沥青水泥、3.0%的塑化硫和94.3%的骨料,已经发现该混合物的稳定性大于5400磅,在50blows下的流量是12。
实施例2(过去时)如实施例1所述制备塑化硫。将AC-20沥青、骨料和塑化硫混合,使沥青水泥的整体组成中约含有2.0%的AC-20沥青、2.0%的塑化硫和96%的骨料,已经发现该混合物的稳定性大于5800磅,在50blows下的流量是12。
实施例3(过去时)如实施例1所述制备塑化硫。将AC-10沥青、骨料和塑化硫混合,使沥青水泥的整体组成中约含有3.0%的AC-10沥青、1.5%的塑化硫和95.5%的骨料。
实施例4(过去时)如实施例1所述制备塑化硫。然后将70%的塑化硫、15%的F型石英粉和15%的AC-10沥青水泥在约140℃(约284°F)的温度下一起混合约3分钟,然后铸造成约0.63cm(约0.25英寸)厚的板块。冷却后,将板块破碎成小块,该小块不大于其长度和宽度均约等于其厚度的形式。将这种富硫铺路粘结剂与级配矿物骨料混合,其相对量是约5%的富硫铺路粘结剂和95%的骨料。已经发现该混合物的稳定性约为5000磅,在2blows下的流量约为8。
实施例5(过去时)如实施例4所述制备富硫铺路粘结剂。将这种富硫铺路粘结剂与级配矿物骨料混合,其相对量是约10%的富硫铺路粘结剂和90%的骨料。已经发现该混合物的稳定性约为10000磅,在2blows下的流量约为8。
实施例6(过去时)用下述方法制备塑化硫在140℃(约284°F)的温度下在液化硫中加入0.25%的碳和0.1%的乙酸戊酯。不到3分钟,该组合物就变成亮灰色,这表示硫的塑化反应完成。
实施例7(现在式)
用下述方法制备塑化硫在140℃(约284°F)的温度下在液化硫中加入1.5%的碳和1.0%的乙酸戊酯。不到3分钟,该组合物就变成亮深灰色,这表示硫的塑化反应完成。
实施例8(过去时)根据实施例4所述用70%的塑化硫、15%的粉煤灰和15%的AC-10沥青制备富硫铺路粘结剂组合物。
实施例9(现在式)用下述方法制备塑化硫在140℃(约284°F)的温度下在液化硫中加入1.5%的碳。不到3分钟,该组合物就变成深灰色,这表示硫的塑化反应完成。
实施例10(现在式)该实施例描述了一系列涉及各种沥青水泥类型的配方。用AC-1.75、AC-2.5、AC-5、AC-30、AC-40、AC-80和AC-120级配沥青中的至少一种代替AC-10和AC-20沥青,以上述实施例中所述的浓度制备诸如沥青组分是AC-10或AC-20沥青的上述实施例中所述的那些组合物。
在不背离本发明的精神或基本特征的情况下可以用其它具体形式体现本发明。所述的实施方案均应当认为是例示性的,而非限制性的。因此,本发明的保护范围应由附加的权利要求书限定,而非由前面的说明书限定。与权利要求书等同意义和范围内的所有变化均在本发明的保护范围内。
权利要求
1.一种塑化硫产品,是通过混合液态硫、碳和乙酸戊酯得到的,其中,至少一部分所述的液态硫被塑化。
2.根据权利要求1的塑化硫产品,其中,所述碳的加入浓度在约0.25wt%以上。
3.根据权利要求1的塑化硫产品,其中,所述碳的加入浓度是约0.25wt%至约1.0wt%。
4.根据权利要求1的塑化硫产品,其中,所述碳的加入浓度是约0.4wt%至约0.8wt%。
5.根据权利要求1的塑化硫产品,其中,所述乙酸戊酯的加入浓度在约0.08wt%以上。
6.根据权利要求1的塑化硫产品,其中,所述乙酸戊酯的加入浓度是约0.1wt%至约1.5wt%。
7.根据权利要求1的塑化硫产品,其中,所述乙酸戊酯的加入浓度是约0.2wt%至约0.4wt%。
8.一种塑化硫的方法,其中,液态硫与碳混合,并且使所述的硫聚合。
9.根据权利要求8的塑化硫的方法,其中,所述硫保持在约120°F至约150°F的温度下。
10.根据权利要求8的塑化硫的方法,其中,该方法还包括将所述塑化硫冷却成固体颗粒。
11.根据权利要求10的塑化硫的方法,其中,所述固体颗粒在低于175°F的温度下不集聚。
12.一种富硫铺路粘结剂,是通过混合包括下述材料的物质得到的(a)烃基材料;(b)微细矿物组分;和(c)塑化硫。
13.根据权利要求12的富硫铺路粘结剂,其中,所述塑化硫加入到混合物中的重量百分比至少是60%。、根据权利要求12的富硫铺路粘结剂,其中,所述微细矿物组分包括至少一种选自粉煤灰、二氧化硅材料及其混合物的材料。
14.根据权利要求12的富硫铺路粘结剂,其中,所述塑化硫加入到混合物中的重量百分比约为70%,所述烃基材料加入到混合物中的重量百分比约为15%,所述微细矿物组分加入到混合物中的重量百分比约为15%。
15.根据权利要求12的富硫铺路粘结剂,其中,所述粘结剂成型为固体颗粒。
16.根据权利要求15的富硫铺路粘结剂,其中,所述固体颗粒在低于175°F的温度下不集聚。
17.一种铺路产品,是通过混合包括下述材料的物质得到的(a)塑化硫;和(b)烃基材料。
全文摘要
在制备沥青粘结剂时可用作沥青添加剂的硫可以通过加入碳而被塑化,并用乙酸戊酯进一步处理。这种塑化硫可以在形成固体颗粒后,作为次要或主要组分加入沥青中,形成所需的铺路粘结剂组合物。这种固体塑化硫在很宽的环境温度范围内不粘结、不流动,可以作为固体储存,在后续的铺路中使用。
文档编号C08K3/06GK1639275SQ02815533
公开日2005年7月13日 申请日期2002年8月9日 优先权日2001年8月9日
发明者W·R·贝利, N·D·皮尤 申请人:壳牌加拿大有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1