一种聚氨酯接枝聚丙烯酸酯水分散体的制备方法与流程

文档序号:11601984阅读:349来源:国知局
本发明属于化工材料领域,涉及一种聚氨酯接枝聚丙烯酸酯水分散体的制备方法。

背景技术:
聚氨酯(polyurethane,简称PU)是一种由多异氰酸酯、多元醇、有机小分子多元醇(扩链剂)反应制成的重要高分子材料。传统聚氨酯采用有机物做溶剂,产品中常含有苯类、醚类、酮类等有机挥发物质,这些有机物易爆易燃,气味大而且有毒污染环境且危害人们的健康,长期在这类环境中工作会严重伤害人们的身体。水性聚氨酯(WPU)就应运而生。水性聚氨酯(WPU)以水作为分散介质,它不含或含有很少量的有机溶剂,具有不燃、无毒、节能、易贮存、安全等优点。同时也保持了溶剂型聚氨酯耐磨、耐低温、耐疲劳、柔韧性好的优点。但也存在着机械强度不高、尤其是在水性聚氨酯的制备过程中,为提高乳液的稳定性,在分子链中亲水性基团的存在,使得材料的耐水性能、耐候性、耐溶剂性等方面存在缺陷。为了扩大其应用范围和使用领域,人们开始研究对水性聚氨酯进行改性,通常用环氧树脂、有机硅和丙烯酸等对水性聚氨酯进行复合改性。丙烯酸酯类产品具有机械强度高,耐老化、耐磨性、耐溶剂性和耐水性好等优点,同时存在热粘冷脆的缺点。研究表明将丙烯酸酯和聚氨酯复合,能够克服各自的缺点,使两者优势得到互补,做到扬长避短,涂膜性能得到明显的改善。在1995年提出的原子转移自由基聚合(ATRP)以反应条件温和,适用单体范围宽,分子设计能力强而受到了普遍的重视,并被用于制备丙烯酸酯类嵌段共聚物。限制ATRP规模化应用的主要问题是ATRP聚所需的催化剂为低氧化态的金属盐类(最有代表性的是卤化亚铜),易被氧化,使用前需精制且用量很大。大量催化剂的使用不仅提高了成本,聚会后催化剂的脱除和再利用也是一个不易解决的问题,工业化难度大不易进行。电子转移再生催化剂原子转移自由基聚合(ARGETATRP)的出现解决了上述提到的问题。使原子转移自由基聚合向工业化又迈进了一步。它是在体系中加入一种还原剂如辛酸亚锡、抗坏血酸、葡萄糖类等,将体系中少量的高价态金属络合物不断还原为低价态金属络合物。它解决了ATRP易被氧化、用量大、脱除困难能问题,促进了ATRP的工业化生产。在现有水性聚丙烯酸酯-氨酯共聚物的制备方法中,在CN101906192A中公开了《一种水性聚氨酯-丙烯酸酯复合乳液的制备方法》,它是先合成水性聚氨酯预聚体,再往其中滴加溶有引发剂的丙烯酸酯类单体进行聚合,制得高固含量的聚氨酯-丙烯酸酯复合乳液。在CN102153712A中公开了《水性聚氨酯-丙烯酸酯乳液及由其制备的可再分散乳胶粉》,它是先制备水性聚氨酯预聚物,再双键封端预聚物,然后加入丙烯酸酯部分,其中丙烯酸酯部分由硬单体和软单体构成,由此制备水性聚氨酯-丙烯酸酯乳液。在这些方法中都没有用端羟基聚丙烯酸酯接枝聚氨酯。本发明是用ARGETATRP法制备端羟基聚丙烯酸酯,再将端羟基聚丙烯酸酯接枝在聚氨酯上制备聚氨酯接枝聚丙烯酸酯水分散体。

技术实现要素:
本发明要解决的技术问题是:基于上述问题,本发明提供一种聚氨酯接枝聚丙烯酸酯水分散体的制备方法,先用电子转移再生催化剂原子转移自由基聚合(ARGETATRP)法制备端羟基聚丙烯酸酯,再将其接枝到聚氨酯上,制备聚氨酯接枝聚丙烯酸酯水分散体。本发明解决其技术问题所采用的一个技术方案是:一种聚氨酯接枝聚丙烯酸酯水分散体的制备方法,包括以下步骤:(1)端羟基聚丙烯酸酯的制备:将引发剂、单体、催化剂、配体、还原剂和溶剂Ⅰ加入到反应容器中,将反应体系抽真空,充氮气,60~110℃反应0.5~10小时,制得端羟基聚丙烯酸酯,分子量分布﹤2.0;(2)聚氨酯接枝聚丙烯酸酯水分散体的制备:将亲水性扩链剂、二元醇、三元醇和步骤(1)制得的端羟基聚丙烯酸酯加入反应容器中,升温至120~150℃,脱除小分子5~10min;然后降温至60℃,加入二异氰酸酯,升温至80~110℃,保温反应3~8h,反应过程中加入溶剂Ⅱ调节体系粘度,反应结束后降温至10℃,加入中和剂调节体系pH值至6~7;最后将上述制备的聚丙烯酸酯-氨酯预聚体加入到水中分散3~8h,得到聚氨酯接枝聚丙烯酸酯水分散体。进一步地,步骤(1)中单体为丙烯酸酯类单体或甲基丙烯酸酯类单体或含氟丙烯酸酯类单体或含氟甲基丙烯酸酯类单体或丙烯腈类单体中的一种或几种,单体具体为甲基丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸异辛酯、丙烯酸甲酯、甲基丙烯酸二甲胺基乙酯或丙烯腈中的一种或几种。进一步地,步骤(1)中引发剂为一个端基为Br,另一个端基为羟基的有机溴代化合物,有机溴代化合物为α-溴代异丁酸羟乙酯或α-溴代异丁酸羟丁酯。进一步地,步骤(1)中催化剂为氧化态的过渡金属卤化物CuCl2、CuBr2、FeCl3或FeBr3。进一步地,步骤(1)中配体为四甲基乙二胺、五甲基二亚乙基三胺、六甲基三乙四胺、双(二甲基氨基乙基)醚、联二吡啶胺或三-(N,N-二甲基氨基乙基)胺中的一种或几种。进一步地,步骤(1)中还原剂为辛酸亚锡、抗坏血酸或葡萄糖中的一种或几种。进一步地,步骤(1)中溶剂Ⅰ为甲苯、苯甲醚、N,N-二甲基甲酰胺、四氢呋喃、乙酸乙酯或1-甲基-2-吡咯烷酮中的一种或几种。进一步地,步骤(1)中单体:引发剂的摩尔比为20:1~500:1,单体:催化剂的摩尔比为1:0.0005~1:0.00005,催化剂:配体的摩尔比为1:10~1:30,催化剂:还原剂的摩尔比为1:10~1:25,溶剂Ⅰ用量为单体质量的30~100%。进一步地,步骤(2)中亲水性扩链剂为带有羧基、磺酸基或叔胺基的亲水基二元醇中的一种或几种,亲水性扩链剂为二羟甲基丙酸、二羟基半酯、二羟甲基丁酸、氨基酸、二氨基苯甲酸、N-三甲基甘胺酸、N-甲基二乙醇胺、1,4-丁二醇-2-磺酸钠及其衍生物、1,2-丙二醇-3-磺酸钠及其衍生物、氨基乙基氨基乙基磺酸钠、氨基乙基氨基丙基磺酸钠、氨基磺酸钠或聚氧化乙烯二醇中的一种或几种。进一步地,步骤(2)中二元醇为聚酯二元醇、聚醚二元醇、丙烯酸二元醇、蓖麻油类二元醇、聚碳酸酯二元醇或聚四氢呋喃二元醇中的一种或几种;三元醇为聚酯三元醇、聚醚三元醇、丙烯酸三元醇、蓖麻油类三元醇、聚碳酸酯三元醇或聚四氢呋喃三元醇中的一种或几种。进一步地,步骤(2)中二异氰酸酯为二苯基甲烷二异氰酸酯、甲苯二异氰酸酯、异佛尔酮二异氰酸酯、萘-1,5-二异氰酸酯、2,6-二异氰酸酯己酸甲酯、1,6-己基二异氰酸酯中的一种或几种。进一步地,步骤(2)中溶剂Ⅱ为丙酮、丁酮、甲乙酮、二氧六环、N,N-二甲基酰胺或N-甲基吡咯烷酮。进一步地,步骤(2)中中和剂为三乙胺、二甲基乙醇胺、二乙醇胺、甲胺、氨水、氢氧化钠或氢氧化钾。进一步地,步骤(2)中二异氰酸酯、二元醇、三元醇、亲水性扩链剂、端羟基聚丙烯酸酯,按照摩尔比NCO/OH=0.5:1~4:1进行投料,亲水性扩链剂质量占二异氰酸酯、二元醇、三元醇、亲水性扩链剂、端羟基聚丙烯酸酯质量总和的2~20%,溶剂Ⅱ的质量占二异氰酸酯、二元醇、二元醇、亲水性扩链剂、端羟基聚丙烯酸酯质量总和的0~100%,中和剂用量为亲水扩链剂单体摩尔质量的36~120%,端羟基聚丙烯酸酯和聚醚三元醇摩尔比为1:1;制备的聚氨酯接枝聚丙烯酸酯水分散体的固含量大于5%。本发明的有益效果是:(1)利用ARGETATRP法制备端羟基聚丙烯酸酯,可以对聚合物的结构和分子量及分子量分布进行控制,并且反应体系中所用的催化剂浓度用量很低,可以降到几十ppm甚至更低,同时降低了反应体系对空气的敏感性;(2)将聚丙烯酸酯引入到聚氨酯中实现了两者分子间的相容,综合了水性聚氨酯与丙烯酸酯类的特性,从而得到兼具水性聚氨酯与丙烯酸酯共同的优异性能,与水性聚氨酯相比,聚氨酯接枝聚丙烯酸酯水分散体的机械性能、耐水性、耐溶剂性能都得到了有效的提高。具体实施方式现在结合具体实施例对本发明作进一步说明,以下实施例旨在说明本发明而不是对本发明的进一步限定。实施例1:(1)分子量为5000的端羟基聚甲基丙烯酸丁酯的制备在装有温度计的500mL的四口烧瓶中加入甲基丙烯酸丁酯100g、α-溴代异丁酸羟丁酯5.3111g(纯度为90%)、CuBr20.07909g、五甲基二亚乙基三胺(PMDETA)0.6137g、辛酸亚锡Sn(EH)22.1551g、苯甲醚50g,机械搅拌均匀混合,鼓泡5min排除体系中的氧气,在70℃的油浴锅中继续鼓泡反应3.5h,转化率为88%。用凝胶渗透色谱GPC测得分子量Mn=5400,分子量分布PDI=1.36。此反应中催化剂用量为单体摩尔量的500ppm,得到分子量可控,分子量分布较窄的聚合物。(2)聚氨酯接枝聚甲基丙烯酸丁酯水分散体的制备首先将1.5157g二羟甲基丙酸、9g聚醚二元醇、6g聚醚三元醇(N330)、10.8g端羟基聚甲基丙烯酸丁酯(PBMA-OH)加入装有搅拌桨的四口烧瓶中,升温至120℃使之混合均匀。然后降温至60℃,加入5.1726g甲苯二异氰酸酯,控制体系中摩尔比NCO/OH=1.5。升温至80℃反应3h。结束后降温,过程中加入丙酮调节体系黏度。加入0.9148g三乙胺中和,并分散于水中。得到固含量为30wt%的聚氨酯-聚丙烯酸丁酯共聚体水分散体。其中N330与PBMA-OH以摩尔比1:1的比例加入,使得反应体系中单体的平均官能度为2。实施例2:(1)分子量为10000的端羟基聚甲基丙烯酸甲酯的制备在装有温度计的500mL的四口烧瓶中加入甲基丙烯酸甲酯100g、α-溴代异丁酸羟丁酯2.6556g(纯度为90%)、CuBr20.1117g、PMDETA0.8318g、Sn(EH)23.0883g、苯甲醚50g,机械搅拌均匀混合,鼓泡5min排除体系中的氧气,在70℃的油浴锅中继续鼓泡反应3.5h,转化率为86%。用凝胶渗透色谱GPC测得分子量Mn=9800,分子量分布PDI=1.34。此反应中催化剂用量为单体摩尔量的500ppm,得到分子量可控,分子量分布较窄的聚合物。(2)聚氨酯接枝聚甲基丙烯酸甲酯水分散体的制备首先将2.1593g二羟甲基丙酸、9g聚醚二元醇、6gN330、19.6g端羟基聚甲基丙烯酸甲酯(PMMA-OH)加入装有搅拌桨的四口烧瓶中,升温至120℃使之混合均匀。然后降温至60℃,加入6.4004g甲苯二异氰酸酯,控制体系中摩尔比NCO/OH=1.5。升温至80℃反应3h。结束后降温,过程中加入丙酮调节体系黏度。加入1.6190g三乙胺中和,并分散于水中。得到固含量为30wt%的聚氨酯-聚甲基丙烯酸甲酯共聚体水分散体。其中N330与PMMA-OH以摩尔比1:1的比例加入,使得反应体系中单体的平均官能度为2。实施例3:(1)分子量为8000的端羟基聚丙烯酸乙酯的制备在装有温度计的500mL的四口烧瓶中加入丙烯酸乙酯100g、α-溴代异丁酸羟丁酯3.3194g(纯度为90%)、CuBr20.1115g、PMDETA0.8654g、Sn(EH)23.0346g、苯甲醚50g,机械搅拌均匀混合,鼓泡5min排除体系中的氧气,在70℃的油浴锅中继续鼓泡反应3.5h,转化率为89%。用凝胶渗透色谱GPC测得分子量Mn=7800,分子量分布PDI=1.32。此反应中催化剂用量为单体摩尔量的500ppm,得到分子量可控,分子量分布较窄的聚合物。(2)聚氨酯接枝聚丙烯酸乙酯水分散体的制备首先将1.9181g二羟甲基丙酸、9g聚醚二元醇、6gN330、15.6g端羟基聚丙烯酸乙酯(PEA-OH)加入装有搅拌桨的四口烧瓶中,升温至120℃使之混合均匀。然后降温至60℃,加入5.9563g甲苯二异氰酸酯,控制体系中摩尔比NCO/OH=1.5。升温至80℃反应3h。结束后降温,过程中加入丙酮调节体系黏度。加入1.1576g三乙胺中和,并分散于水中。得到固含量为30wt%的聚氨酯-聚丙烯酸乙酯共聚体水分散体。其中N330与PEA-OH以摩尔比1:1的比例加入,使得反应体系中单体的平均官能度为2。实施例4:(1)分子量为7000的端羟基聚丙烯酸丁酯的制备在装有温度计的500mL的四口烧瓶中加入丙烯酸丁酯100g、α-溴代异丁酸羟丁酯3.7937g(纯度为90%)、CuBr20.0871g、PMDETA1.3521g、Sn(EH)23.1598g、苯甲醚50g,机械搅拌均匀混合,鼓泡5min排除体系中的氧气,在75℃的油浴锅中继续鼓泡反应3.5h,转化率为90%。用凝胶渗透色谱GPC测得分子量Mn=7100,分子量分布PDI=1.40。此反应中催化剂用量为单体摩尔量的500ppm,得到分子量可控,分子量分布较窄的聚合物。(2)聚氨酯接枝聚丙烯酸丁酯水分散体的制备首先将1.8376g二羟甲基丙酸、9g聚醚二元醇、6gN330、14.2g端羟基聚丙烯酸丁酯(PBA-OH)加入装有搅拌桨的四口烧瓶中,升温至120℃使之混合均匀。然后降温至60℃,加入5.7995g甲苯二异氰酸酯,控制体系中摩尔比NCO/OH=1.5。升温至80℃反应3h。结束后降温,过程中加入丙酮调节体系黏度。加入1.1090g三乙胺中和,并分散于水中。得到固含量为30wt%的聚氨酯-聚丙烯酸丁酯共聚体水分散体。其中N330与PBMA-OH以摩尔比1:1的比例加入,使得反应体系中单体的平均官能度为2。实施例5:(1)分子量为6000的端羟基聚丙烯腈的制备在装有温度计的500mL的四口烧瓶中加入丙烯腈100g、引发剂α-溴代异丁酸羟丁酯4.4259g(纯度为90%)、CuBr20.2107g、PMDETA1.6349g、Sn(EH)25.7119g、苯甲醚50g,机械搅拌均匀混合,鼓泡5min排除体系中的氧气,在60℃的油浴锅中继续鼓泡反应3.5h,转化率为92%。用凝胶渗透色谱GPC测得分子量Mn=6200,分子量分布PDI=1.33。此反应中催化剂用量为单体摩尔量的500ppm,得到分子量可控,分子量分布较窄的聚合物。(2)聚氨酯接枝聚丙烯腈水分散体的制备首先将1.7303g二羟甲基丙酸、9g聚醚二元醇、6gN330、12.4g端羟基聚丙烯腈(PAN-OH)加入装有搅拌桨的四口烧瓶中,升温至120℃使之混合均匀。然后降温至60℃,加入5.5905g甲苯二异氰酸酯,控制体系中摩尔比NCO/OH=1.5。升温至80℃反应3h。结束后降温,过程中加入丙酮调节体系黏度。加入1.0443g三乙胺中和,并分散于水中。得到固含量为30wt%的聚氨酯-聚丙烯腈共聚体水分散体。其中N330与PBMA-OH以摩尔比1:1的比例加入,使得反应体系中单体的平均官能度为2。各实施例的聚氨酯接枝聚丙烯酸酯机械性能测试结果见下表:
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1