用于改善肌肉质量的化合物及其用途的制作方法

文档序号:12139870阅读:418来源:国知局
用于改善肌肉质量的化合物及其用途的制作方法与工艺
本发明涉及化合物及其治疗用途,尤其是用于改善哺乳动物的肌肉质量的治疗用途。更具体地,本发明允许改善肥胖哺乳动物的肌肉质量。本发明还允许改善患肌少症的哺乳动物的肌肉质量。本发明还涉及这些化合物在治疗和/或预防哺乳动物的肥胖的用途。
背景技术
:肌肉萎缩可能由多种不同原因导致:营养不良、不使用肌肉(例如骨折后固定)、癌症或诱导恶病质或由个体衰老而自然产生(肌少症)的其它严重疾病(心脏衰竭或肾衰竭)。这种萎缩可以由蛋白合成的减少或/和蛋白水解的增加而引起,视情况可能伴随有纤维化和/或脂肪组织浸润。因此,控制肌肉蛋白合成和蛋白水解的因子和机制的鉴定是用于设计这些病理的合适的治疗的先决条件。图1属于现有技术,显示了肌肉中蛋白合成和蛋白水解的主要途径(根据Zhaoetal.,2008和Littleetal.,2009重编)。肌肉蛋白合成是必需的,并且基本上受控于翻译水平。显然,肌肉蛋白合成需要足够的氨基酸的营养摄入。肌肉蛋白合成由身体活动刺激并受许多因子调节,最值得注意的是IGF-1和雄激素(Littleetal.,2009)。表1:作用于肌肉中蛋白合成和蛋白水解的因子和分子肌原纤维的蛋白水解通过蛋白酶体进行,而线粒体被自噬作用破坏(Zhaoetal.,2008)。卫星细胞凋亡的机制也被描述(Murphyetal.,2010)。由肌肉自身通过自分泌方式产生的肌肉生长抑制素是特别重要的因子,因为它通过同时刺激蛋白水解和抑制蛋白合成来起作用。肌肉生长抑制素也刺激纤维化(Lietal.,2008)。衰老伴随着各种调节因子的改变(Walstonetal.,2012):身体活动通常减少,蛋白质/维生素营养可能不足,并且在餐后,循环的氨基酸含量(其增加对于刺激蛋白合成是必需的)显示增加降低,这可能是由于内脏隔离(séquestrationsplanchnique)(Boirieetal.,1997)。此外,衰老伴随着重要的激素变化:尤其注意到肌生成抑制素的增加(Légeretal.,2008),雄激素的减少(Seidman,2007),生长激素增加(Macelletal.,2001;Sattler,2013),以及炎症标记物的增加(IL-6、TNF-α...Schaapetal.,2009;Vergheseetal.,2011)。这些不同的改变不利于蛋白合成,而其有利于蛋白水解,因此肌肉尺寸逐渐减少(肌少症)。这些改变还导致对快肌纤维(fibresrapides)有损害的肌肉纤维类型分布的变化,这导致肌肉力量的降低(动力学减弱(dynapénie))。最后,有助于肌肉内的结缔组织的发育(纤维化)。在肥胖的背景下,情况由于多个互补的原因而加重:肌肉的脂肪浸润加重了炎症状况,胰岛素抗性降低IGF-1对蛋白合成的影响,此外,活动性(mobilité)由于超重而减少(Stenholmetal.,2009)。图2属于现有技术,示出在肥胖的背景下肌少症的加重(根据Quillotetal.,2013)。在所有情况下,在没有治疗的情况下,肌少症是一种只能加重的过程,直到完全丧失活动性。然而,肌少症不是导致骨骼肌萎缩的唯一过程。萎缩还发生在固定期间(例如在骨折之后),在延长的禁食(或节食)期间,或在导致恶病质的严重病状(例如癌症,艾滋病)期间。还可以提及遗传起源的各种肌肉营养不良。这些不同的情况与肌少症具有许多共同的特征,但具有不同权重的触发因子(Tisdale,2007;Sainietal.,2009)。已知可能的治疗因此已经考虑和测试了不同的预防/治疗肌少症的方法。首先涉及体育锻炼,其有效性已被确立(Bonnefoyetal,2000;Bonnefoy,2008;Ryanetal.,2013)。因此,在8周的持续时间内进行的锻炼后观察到肌肉力量增加180%,肌肉重量增加11%(Fiataroneetal.1990)。然而,最佳效果将需要每天几个小时的体育锻炼,因此,在一个长时间段内,很难考虑这种方法。通过提供快速消化蛋白质并根据优化的时间顺序(etal.,2009;Ausseletal.,2013)以及某些氨基酸补充物或其代谢物(亮氨酸、HMB[β-羟基-β-甲基丁酸酯]、瓜氨酸、鸟氨酸)来增加蛋白质合成底物的供应可以增加肌肉蛋白合成(Li&Heber,2011)。各种药物治疗旨在纠正与衰老相关的激素环境的变化(Crenn,2013)。这些药物治疗包括:-性激素如睾酮(Whiteetal.,2013)或其变体,SARM(选择性雄激素受体调节剂),或非性激素如生长激素(Liuetal.,2003)以及IGF-1、生长素释放肽或颗粒体蛋白前体,或维生素D-肌生成抑制素的抑制剂(针对分子或其受体的抗体或肌生成抑制素前体肽)(Murphyetal.,2010;Han&Mitch,2011)-靶向肾素-血管紧张素系统的分子,如ACE抑制剂或血管紧张素1-7(DallaLiberaetal.,2001;Shiuchietal.,2004;Kalupahana&Moustaid-Moussa,2012;Allenetal.,2013)-β-肾上腺素能受体激动剂(Ryalletal.,2004,2007)-各种天然物质,甚至更复杂的植物来源的提取物(例如异黄酮:Aubertin-Leheudreetal.,2007;橄榄油提取物:Piernoetal.,2014;白藜芦醇:Shadfaretal.,2001;Bennettetal.,2013)。这些治疗的巨大多样性证明了治疗多因素病理的困难性,其中多因素病理触发因素没有完全确定。此外,一些候选分子具有副作用(例如性激素、SARM或β-激动剂的情况)或这些候选分子仅在动物模型中进行研究。所有这一切解释了市场上没有可用的药品的原因。到目前为止,研究更具体地集中在肌生成抑制素,并且在研究中抑制肌生成抑制素与例如抗肌生成抑制素抗体或抗受体抗体的作用(Dumonceauxetal.,2010;Greenberg,2012;Sakuma&Yamaguchi,2012;Arounleutetal.,2013;Buehring&Binkley,2013;Collins-Hooperetal.,2014;White&LeBrasseur,2014)。植物蜕皮激素,更具体是20-羟基蜕皮甾酮(20E),已经是许多药理学研究的主题,研究开始于日本,然后在乌兹别克斯坦,然后在不同的其他国家进行。这些研究突出了这种分子的抗糖尿病和合成代谢性质。在大鼠体内(Syrov,2000;Tóthetal.,2008;Lawrence,2012)和体外的鼠科动物C2C12肌管(Gorelick-Feldmanetal.,2008)观察到其对肌肉中蛋白质合成的刺激作用。这涉及翻译水平上的效应,其意味着在Akt/PkB蛋白激酶涉及的级联之后的核糖体蛋白p70S6K的磷酸化,这也是IGF-1用于刺激蛋白合成的途径。借助于相同的C2C12细胞,Zubeldiaetal.(2012)已另外表明富含植物蜕皮激素(20-羟基蜕皮甾酮和土克甾酮)的新疆筋骨草(Ajugaturkestanica)的提取物抑制肌生成抑制素和半胱天冬酶3(参与凋亡过程的蛋白质)的转录。另外,20-羟基蜕皮甾酮具有抗纤维化性质,其未在肌肉上证实,但在肾脏中证实,其中纤维化的机制以非常相似的方式进行(Hungetal.,2012)。因此,纤维化的机制对TGF-β(一种接近于肌生成抑制素的蛋白质)的作用起阻抑作用,特别是对引起该物质的信号转导蛋白Smad2,Smad3的引起的刺激起阻抑作用。因此,可以认为20-羟基蜕皮甾酮可以对肌肉(或心脏)具有类似的作用。20-羟基蜕皮甾酮减少用富含脂肪的餐食喂养的小鼠(Kizelszteinetal.,2009;Foucaultetal.,2012)中或在切除卵巢的大鼠(一种更年期模型)(Seidlova-Wuttkeetal.,2010)中的脂肪量的累积。在临床研究中已经发现了上述动物模型中的某些作用,但仍不是太多。因此,20-羟基蜕皮甾酮增加了体力(Azizovetal.,1995;Gadhzievaetal.,1995)和肌肉质量(Simakinetal.,1988),并引起肥胖和超重志愿者的腹部脂肪量减少(Wuttkeetal.,2013;Foucaultetal.,2014;专利申请PCTWO2013/068704)。然而,20E及其代谢物在小鼠中(Dzhukharovaetal.,1987;Hikinoetal.,1972)、在大鼠(Kapuretal.,2010和Seidlova-Wuttkeetal.,2010)以及在人类(Brandt2003;Bolduc,2006)中具有很差的生物利用度。它们的整体性能在用于改善肌肉质量的应用方面并不完全令人满意。多项研究已经表明,20E衍生的代谢物土克甾酮(11α,20-二羟基蜕皮酮)在体内显示出比20E更大的活性(Syrovetal.,2001:Bathorietal.,2008)。对于旨在改善肥胖哺乳动物和患肌少症的哺乳动物中肌肉质量的治疗应用,现今仍然需要具有良好生物利用度的新化合物,所述生物利用度特别以高血浆暴露系数表示,同时在改善肌肉质量方面表现出比20E更大的总体活性,这种总体活性以肌生成抑制素的基因表达的抑制结合哺乳动物中蛋白质合成的增加的性能来表示。技术实现要素:发明人现在已非常意外地发现,具有特定通式的类固醇家族的某些化合物(其结构与20E及其代谢物的结构不同)具有比20E更高的血浆暴露系数,和等于或大于20羟基蜕皮酮(20E)的通过S6K1蛋白的磷酸化抑制肌生成抑制素和刺激蛋白合成的作用效果。这些作用效果允许改善患肌少症和肌少性肥胖的哺乳动物中的肌肉质量和/或肌肉强度。本发明的化合物不与性激素受体(雄激素和雌激素的受体)相互作用。本发明的化合物在血浆和微粒体中显示出良好的化学稳定性。其中几个最终具有相比20-羟基蜕皮甾酮明显改善的药代动力学性质。本发明的化合物还诱导更好地抑制肌生成抑制素的基因表达和更好地改善蛋白质合成。因此,本发明提供了以下通式(I)的化合物:其中:V-U是碳-碳单键,且Y是羟基或氢,或者V-U是烯键C=C;X选自:氧原子;N-OR5基团,R5选自:氢原子;链上具有或不具有不饱和度的C1-C6烷基;(C1-C6)CO2R6基,其中R6可以是氢或C1-C6基;(C1-C6)OR7基,R7是被烷基或烷氧基、CF3、Cl单取代或多取代的或未取代的芳环或杂芳环;(C1-C6)NR8R9基,R8和R9是C1-C6基,或(C1-C6)N(C1-C6)基或(C1-C6)N(C1-C6)OR6基,其中R6如上所定义,NR8R9也可以是杂环;并且其中:Q是羰基;并且R1选自:(C1-C6)W(C1-C6)基;(C1-C6)W(C1-C6)W(C1-C6)基;(C1-C6)W(C1-C6)CO2(C1-C6)基;(C1-C6)A,A代表可选地被OH、OMe、(C1-C6)、N(C1-C6)、CO2(C1-C6)类基团取代的杂环;CH2Br基团;W是选自N、O和S的杂原子;或,Q是CHOH基;并且,R1选自:(C1-C6)W(C1-C6)基;(C1-C6)W(C1-C6)W(C1-C6)基;(C1-C6)W(C1-C6)CO2(C1-C6)基;W是选自N和S的杂原子;或,Q选自:C=NOR5基,R5如上述定义;CHNR2R3基,并且,R1是(C1-C6)烷基;并且,R2和R3是相同的或不同的,各选自:氢原子;(C1-C6)烷基;(C1-C6)W(C1-C6)基;环烷基;(C1-C6)CHF2基;(C1-C6)A基,其中A代表如上定义的杂环;COR4类基团;R4选自:可选地不饱和的(C1-C6)烷基或环烷基;如上所述的A类杂环基,被OH、OMe、(C1-C6)、N(C1-C6)、CO2(C1-C6)、CF3、OCF3、CN、Cl、F类基团取代的或未取代的芳香基或杂芳基;(C1-C6)W(C1-C6)基;W是选自N、O和S的杂原子;所述化合物为对映异构体、非对映异构体、水合物、溶剂化物、互变异构体、外消旋混合物或药学上可接受的盐的形式。本发明的另一具体形式是实现上述通式(I)的化合物,其中Q代表羰基。本发明的另一具体形式是实现上述通式(I)的化合物,其中:X是氧原子;V-U是碳-碳单键;Y是羟基;Q是羰基;R1选自:(C1-C6)W(C1-C6)基;(C1-C6)W(C1-C6)W(C1-C6)基;(C1-C6)W(C1-C6)CO2(C1-C6)基;(C1-C6)A基,A代表可选地被OH、OMe、(C1-C6)、N(C1-C6)、CO2(C1-C6)类基团取代的杂环;W是选自N、O和S的杂原子。本发明的另一具体形式是实现上述通式(I)的化合物,其中Q代表CHNR2R3基,R2和R3选自:氢原子;(C1-C6)烷基;(C1-C6)W(C1-C6)基;环烷基;(C1-C6)CHF2基;(C1-C6)A基,其中A代表如上定义的杂环;COR4类基团,R4选自:可选地不饱和的(C1-C6)烷基或环烷基;如上定义的A类杂环基,被OH、OMe、(C1-C6)、N(C1-C6)、CO2(C1-C6)、CF3、OCF3、CN、Cl、F类基团取代的或未取代的芳香基或杂芳基;(C1-C6)W(C1-C6)基。本发明的另一具体形式是实现上述通式(I)的化合物,其中:X是氧原子;V-U是碳-碳单键;Y是羟基;R1是甲基;Q是CHNR2R3基,R2和R3选自:氢原子;(C1-C6)烷基;(C1-C6)W(C1-C6)基;环烷基;(C1-C6)CHF2基;(C1-C6)A基,其中A代表如上定义的杂环;COR4类基团,R4选自:可选地不饱和的(C1-C6)烷基或环烷基;如上定义的A类杂环基,被OH、OMe、(C1-C6)、N(C1-C6)、CO2(C1-C6)、CF3、OCF3、CN、Cl、F类基团取代的或未取代的芳香基或杂芳基;(C1-C6)W(C1-C6)基;W是选自N、O和S的杂原子。本发明的另一具体形式是实现上述通式(I)的化合物,其中,Q代表C=NOR5基,R5如上定义。本发明的另一具体形式是实现上述通式(I)的化合物,其中:X是氧原子;V-U是碳-碳单键;Y是羟基;R1是甲基;Q是C=NOR5基,R5如上定义。本发明的另一具体形式是实现上述通式(I)的化合物,其中V-U是烯键C=C。本发明的另一具体形式是实现上述通式(I)的化合物,其中X是N-OR5基,R5如上定义。本发明的另一具体形式是实现上述通式(I)的化合物,其选自以下化合物:-第28号:(2S,3R,5R,10R,13R,14S,17S)-17-(N-丁-3-烯氧基-C-甲基-碳亚氨基)-2,3,14-三羟基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮-第32号:(2S,3R,5R,10R,13R,14S,17S)-17-(N-(2-二乙基氨基乙氧基)-C-甲基-碳亚氨基)-2,3,14-三羟基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮-第41号:2-甲氧基-N-(2-甲氧基乙基)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-10,13-二甲基-6-氧代-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙基]乙酰胺-第42号:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-17-[1-(2-甲氧基乙基氨基)乙基]-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮-第43号:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-10,13-二甲基-17-[1-(3-吡啶基甲基氨基)乙基]-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮-第46号:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-10,13-二甲基-17-[1-(四氢呋喃-2-基甲基氨基)乙基]-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮-第51号:2-乙基-N-(2-甲氧基乙基)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-10,13-二甲基-6-氧代-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙基]丁酰胺-第62号:2-甲氧基-N-(四氢呋喃-2-基甲基)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-10,13-二甲基-6-氧代-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙基]乙酰胺-第63号:N-(四氢呋喃-2-基甲基)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-10,13-二甲基-6-氧代-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙基]呋喃-2-甲酰胺-第67号:N-(2,2-二氟乙基)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-10,13-二甲基-6-氧代-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙基]呋喃-2-甲酰胺-第76号:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-17-[1-(2-甲氧基乙基(甲基)氨基)乙基]-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮-第81号:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-10,13-二甲基-17-(2-吗啉代乙酰基)-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮-第86号:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-17-[2-(3-羟基吡咯烷-1-基)乙酰基]-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮-第88号:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-17-[2-(4-羟基-1-哌啶基)乙酰基]-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮-第89号:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-17-[2-[4-(2-羟基乙基)-1-哌啶基]乙酰基]-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮-第91号:(2S,3R,5R,10R,13R,14S,17S)-17-[2-(3-二甲基氨基丙基(甲基)氨基)乙酰基]-2,3,14-三羟基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮-第92号:2-[2-氧代-2-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-10,13-二甲基-6-氧代-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙基]硫基乙酸乙酯-第93号:(2S,3R,5R,10R,13R,14S,17S)-17-(2-乙基硫基乙酰基)-2,3,14-三羟基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮-第94号:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-17-[2-(2-羟基乙基硫基)乙酰基]-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮;本发明的另一目的涉及通式(I)的化合物用作药物、尤其是作为在药学上可接受的载体中的药物的用途。本发明的另一目的是实现通式(I)的化合物,其用于治疗和/或预防哺乳动物的肌少症和肌少性肥胖、其并发症和/或相关病理症状,如肌肉强度、肌肉量、身体性能和体力以及活动性的损失。身体性能和体力可以通过步行测试和体能来表征。本发明的另一目的是实现通式(I)的化合物,其用于治疗和/或预防哺乳动物的肥胖及其并发症和/或相关病理症状,有利地治疗和/或预防2型糖尿病或代谢综合征。附图说明图1属于现有技术,示出了肌肉中蛋白合成和蛋白水解的主要途径(根据Zhaoetal.,2008和Littleetal.,2009编写)。图2属于现有技术,示出了在肥胖情况下肌少症的加重(根据Quillotetal.,2013)。图3A示出了20E(比较化合物)和根据本发明的化合物第51和93号对经历6周的高脂餐食的C57BL/6小鼠的重量的作用。图3B示出了20E(比较化合物)和根据本发明的化合物第51和93号对经历6周的高脂餐食的C57BL/6小鼠的比目鱼肌(Soleus)的蛋白质量的作用。图4示出了20E(比较化合物)和根据本发明的化合物第51和93号对经历6周的高脂餐食的C57BL/6小鼠的比目鱼肌的肌生成抑制素的转录物的作用。图5A示出了20E(比较化合物)和根据本发明的化合物第51和93号对经历6周的高脂餐食的C57BL/6小鼠的MyoD转录物的作用。图5B示出了20E(比较化合物)和根据本发明的化合物第51和93号对经历6周的高脂餐食的C57BL/6小鼠的肌细胞生成蛋白转录物的作用。图6以表格形式示出在肌生成抑制素和蛋白质合成的基因表达的分析实验中获得的本发明化合物的结果。具体实施方式本发明的目的是开发特别应对上述目的的与用于治疗和/或预防哺乳动物的肥胖症和/或肌少症的治疗应用有关的新的化合物。这些后文中的化合物是新的化合物,因为其不存在于化学数据库中。这些化合物可以有利地根据工业化方法合成,即以最少的合成步骤和最佳产率合成。这些化合物具有优于20E的通过S6K1蛋白质的磷酸化抑制肌生成抑制素、刺激蛋白合成的作用。这些化合物在血浆和微粒体中显示出良好的化学稳定性。这些化合物具有改善的药代动力学特征和确定的剂量。这些化合物刺激C2C12细胞中的肌肉合成代谢并显示抗高血糖作用。在本发明的上下文中,术语“芳基”是指具有5至8个碳原子的芳环或具有5至14个碳原子的多个稠合芳环。特别地,芳基可以是单环或双环基团,优选苯基或萘基。有利地,该芳基是苯基(Ph)。在本发明的上下文中,“杂芳基”应理解为是指含有3至9个原子的任何芳香族烃基,其含有一个或多个杂原子,例如硫原子、氮原子或氧原子。根据本发明的杂芳基可以由一个或多个稠环构成。杂芳基的实例是呋喃基、异恶唑基、吡啶基、噻唑基、嘧啶基、苯并咪唑、苯并恶唑、苯并噻唑。有利地,杂芳基选自呋喃基、吡啶基和噻唑基。有利地,该杂芳基是呋喃基。在本发明的上下文中,术语“卤原子”是指任何卤原子,有利地选自Cl、Br、I或F,特别是选自F、Cl或Br,特别是F或Cl。在本发明的上下文中,术语“C1-C6烷基”应理解为是指1-6个碳原子的任何直链或支链烷基,特别是甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、正己基。有利地,“C1-C6烷基”是甲基、乙基、异丙基或叔丁基,特别是甲基或乙基,更特别是甲基。在本发明的上下文中,术语“C3-C6环烷基”应理解为是指包含3至6个碳原子的任何饱和烃环,特别是环丙基、环丁基、环戊基或环己基。有利地,“C3-C6环烷基”是环丙基或环己基。在本发明的上下文中,术语“(C1-C6烷基)芳基”应理解为是指通过如上所定义的C1-C6烷基键合的如上定义的任何芳基。特别地,(C1-C6烷基)芳基的实例是苄基或-(CH2)2苯基。在本发明的上下文中,“药学上可接受的”是指可用于制备药物组合物的物质,该物质通常是安全无毒的,无论在生物学及其它方面均不是不适当的,并且对于与人类药物相同的兽医用途是可接受的。在本发明的上下文中,术语“化合物的药学上可接受的盐”是指如本文所定义的药学上可接受的盐,其具有母体化合物所需的药理活性。这种盐包括:(1)与无机酸如盐酸、氢溴酸、硫酸、硝酸、磷酸等形成的酸加成盐;或与有机酸如乙酸、苯磺酸、苯甲酸、樟脑磺酸、柠檬酸、乙磺酸、富马酸、葡庚糖酸、葡糖酸、谷氨酸、乙醇酸、羟基萘甲酸、2-羟基乙磺酸、乳酸、马来酸、苹果酸、扁桃酸、甲磺酸、粘康酸、2-萘磺酸、丙酸、水杨酸、琥珀酸、二苯甲酰基-L-酒石酸、酒石酸、对甲苯磺酸、三甲基乙酸、三氟乙酸等形成的酸加成盐;或(2)当母体化合物中存在的酸性质子被金属离子例如碱金属离子、碱土金属离子或铝离子替代;与有机碱或无机碱配位时形成的盐。可接受的有机碱包括二乙醇胺、乙醇胺、N-甲基葡糖胺、三乙醇胺、氨基丁三醇等。可接受的无机碱包括氢氧化铝、氢氧化钙、氢氧化钾、碳酸钠和氢氧化钠。在本发明的上下文中,术语“化合物的溶剂化物”应理解为是指通过将惰性溶剂分子添加到根据本发明的化合物而获得的任何化合物,由于其相互的吸引力而形成溶剂化物。溶剂化物是例如化合物的醇化物。水合物是其中使用的惰性溶剂是水的溶剂化物。该水合物可以是单水合物、二水合物或三水合物。在本发明的上下文中,“互变异构体”应理解为是指根据本发明的化合物的任何构成的异构体,其通过称为互变异构化的可逆化学反应可互相转化。在大多数情况下,反应通过氢原子的迁移伴随着双键位置的变化而发生。在能够互变异构化的化合物的溶液中,在2种互变异构体之间建立平衡。互变异构体之间的比例因此取决于溶剂、温度和pH。因此,互变异构现象是一个官能团向另一个官能团的转化,最常见的是通过氢原子和π键(双键或三键)的同时置换。常见的互变异构体是例如以下的成对互变异构体:醛/酮-醇,或更精确地是烯醇;酰胺-亚胺酸;内酰胺-内酰亚胺;亚胺-烯胺;烯胺-烯胺。特别地,该互变异构体可以包括一个环-链互变异构体,其中当质子的移动伴随有开放结构向环的转化时该环-链互变异构体形成。合成描述与一般方案通式(I)的化合物可以通过应用或适用本领域技术人员本身已知的和/或后者能力范围内的任何方法来制备,尤其是通过Larock(1989)描述的方法,或通过应用或适用以下方案中描述的方法。不同的基团参考上面给出的定义。方案A:如在Zhuetal.(2002)中所述,通过乙酸中锌的作用可将20-羟基蜕皮甾酮A1还原为化合物A2。该化合物A2可以通过吡啶中PCC的反应在链的C20-C22上进行氧化裂解,得到化合物A3。R5ONH2型烷基肟与C20上的羰基反应,得到相应的亚胺A4以及在C20和C6上进行双重反应的化合物A5。方案B:R5ONH2型烷基肟与化合物A1的C6羰基反应,得到肟B1以及可选的消除C14-C15上的羟基的化合物B2(构象异构体Z)和B′2(构象异构体E)。这3种化合物可以如方案A中所述独立地进行链断裂,得到化合物B3和B4,化合物(Z)-肟B′3作为副产物。R5ONH2型烷基肟在化合物B3或B4的C6羰基上反应,得到化合物B5和B6。方案C:化合物A1可以如方案A中所述进行氧化裂解,得到化合物C1。该化合物在文献中命名为坡斯特甾酮,其可以进行R5ONH2型烷基肟在C20羰基上的作用,这允许获得化合物C2、在C6和C20上有双重反应的化合物C3和在C14-C15上消除羟基的化合物C4。方案D:构象异构体(E)和(Z)的混合物,即来自方案B的B3和B′3的混合物与氯化钛反应,其中氯化钛具有使化合物(Z)即B′3脱水的作用以获得D1。在前一步骤分离的化合物B3的C17羰基在氰基硼氢化钠的存在下与R3NH2进行还原胺化,得到化合物D2,其可以通过酰氯R4COCl酰化,允许得到化合物D3。方案E:坡斯特甾酮C1进行还原胺化,然后进行与方案D中所述相同类型的酰化,并允许获得化合物E1,然后是E2。方案F:用溴代烷基化合物将来自方案F的化合物E1的仲胺烷基化,得到叔胺F2。方案G:用溴可以将坡斯特甾酮C1在C21溴化,得到溴化物G1,溴化物G1可以通过亲核试剂WR(W可以是胺或硫醇)烷基化,得到化合物G2。方案H:在方案G中获得的溴化物G1可以与OR型醇化物化合物反应,以获得醚化物H1。方案I:来自方案G的化合物G2可以用硼氢化钠进行C20羰基的还原,得到醇I2。方案J:由方案G得到的化合物G2可以如方案C中所述在R5ONH2型烷基肟的C20上进行反应,并且允许获得化合物J1。实施例:材料与方法在BrukerAvanceDPX300(300.16MHz)设备上进行质子(1H)核磁共振(NMR)光谱。化学位移(δ)以百万分之一(ppm)测量。根据所使用的氘代溶剂的化学位移校准光谱。偶合常数(J)以赫兹(Hz)表示,多重性以下列方式表示:单峰(s)、双峰(d)、双二重峰(dd)、三重峰(t),三二重峰(td)、四重峰(q)、多重峰(m)。质谱(SM)通过AgilentTechnologiesMSD光谱仪G1946A型进行,样品通过“大气压化学电离”(APCI)源离子化。缩写TBAF四丁基氟化铵THF四氢呋喃DMF二甲基甲酰胺CDCl3氘化氯仿CD3OD氘代甲醇DMSO-d6氘代二甲亚砜PyBop(苯并三唑-1-基氧基)三吡咯烷基鏻六氟磷酸盐Boc叔丁氧羰基mmol毫摩(s)μM微摩mL毫升(s)g克(s)M摩尔/升N标准(e)nm纳米(s)min分钟(s)h小时(s)j日(s)t.a.室温UV紫外ctrl对照PM分子量SM质谱作为本发明的说明性示例,合成表2所示的化合物。表2:其中例示合成的化合物的列表。实施例1:方案A;第1号和第2号化合物的制备:(2S,3R,5R,10R,13S,14S,17S)-17-(N-丁-3-烯氧基-C-甲基-碳亚胺酰基)-2,3-二羟基-10,13-二甲基-1,2,3,4,5,9,11,12,14,15,16,17-十二氢环戊二烯并[a]菲-6-酮和(2S,3R,5R,10R,13S,14R,17S)-17-(N-丁-3-烯氧基-C-甲基-碳亚胺酰基)-2,3-二羟基-10,13-二甲基-1,2,3,4,5,9,11,12,14,15,16,17-十二氢环戊二烯并[a]菲-6-酮步骤1:(2S,3R,5R,10R,13S,17S)-2,3-二羟基-10,13-二甲基-17-[(1R,2R)-1,2,5-三羟基-1,5-二甲基-己基]-1,2,3,4,5,9,11,12,14,15,16,17-十二氢环戊二烯并[a]菲-6-酮的制备将20g(41.6mmol)20-羟基蜕皮甾酮(市售)溶解在280mL醋酸中,并将溶液加热至67℃。按份加入27.2g(416mmol)锌粉,并将反应介质加热至67℃,持续18h。然后,在20℃下通过用50mL甲醇润洗的硅藻土滤饼过滤溶液。蒸发滤液,得到33.7g棕色油状物,通过在硅胶柱上用快速色谱法(二氯甲烷/甲醇,90/10)将其纯化,得到9.52g呈黄色粉末的(2S,3R,5R,10R,13S,17S)-2,3-二羟基-10,13-二甲基-17-[(1R,2R)-1,2,5-三羟基-1,5-二甲基-己基]-1,2,3,4,5,9,11,12,14,15,16,17-十二氢环戊二烯并[a]菲-6-酮(收率:49%)。LC-MS:m/z=465.3(MH+);254nmUV下的纯度=99%。RMN1H(300MHz,DMSO-d6)δ5.72-5.43(m,1H(C7)),4.42-4.32(m,2H),4.13(s,1H),3.76-2.62(m,2H),3.2-3.1(m,2H),2.21-2.14(m,2H),1.90-1.02(m,28H),1.03-0.77(m,6H).步骤2:(2S,3R,5R,10R,13S,17S)-17-乙酰基-2,3-二羟基-10,13-二甲基-1,2,3,4,5,9,11,12,14,15,16,17-十二氢环戊二烯并[a]菲-6-酮的制备将9.52g(20.28mmol)(2S,3R,5R,10R,13S,17S)-2,3-二羟基-10,13-二甲基-17-[(1R,2R)-1,2,5-三羟基-1,5-二甲基-己基]-1,2,3,4,5,9,11,12,14,15,16,17-十二氢环戊二烯并[a]菲-6-酮溶解在46mL吡啶和276mL二氯甲烷中。在10分钟内按份加入6.69g(30.4mmol)氯铬酸吡啶,将反应介质在20℃下振荡2h30。然后真空下蒸发吡啶和二氯甲烷,通过在硅胶柱上用快速色谱法(二氯甲烷/甲醇,95/5)纯化残余物,得到4g呈米色粉末的(2S,3R,5R,10R,13S,17S)-17-乙酰基-2,3-二羟基-10,13-二甲基-1,2,3,4,5,9,11,12,14,15,16,17-十二氢环戊二烯并[a]菲-6-酮(收率:56%)。LC-MS:m/z=347.2(MH+)254nmUV下的纯度=99%。RMN1H(300MHz,DMSO-d6)δ5.68-5.46(m,1H(C7)),4.41-4.37(m,2H),3.76-3.55(m,2H),2.83-2.54(m,2H),2.33-1.95(m,6H),1.90-1.30(m,10H),1.28-1.18(m,1H),0.88-0.42(m,6H).步骤3:差向异构体(2S,3R,5R,10R,13S,14S,17S)-17-(N-丁-3-烯氧基-C-甲基-碳亚胺酰基)-2,3-二羟基-10,13-二甲基-1,2,3,4,5,9,11,12,14,15,16,17-十二氢环戊二烯并[a]菲-6-酮和(2S,3R,5R,10R,13S,14R,17S)-17-(N-丁-3-烯氧基-C-甲基-碳亚胺酰基)-2,3-二羟基-10,13-二甲基-1,2,3,4,5,9,11,12,14,15,16,17-十二氢环戊二烯并[a]菲-6-酮的制备将步骤2中制备的328mg(0.947mmol)(2S,3R,5R,10R,13S,17S)-17-乙酰基-2,3-二羟基-10,13-二甲基-1,2,3,4,5,9,11,12,14,15,16,17-十二氢环戊二烯并[a]菲-6-酮(14-脱氧-睾酮)溶于1.2mL乙醇并按份加入200mg(0.994mmol)2,2,2-三氟乙酸丁-3-烯氧基铵。反应介质回流20h。蒸发溶剂并在C18柱上通过制备型色谱(乙腈/水,60/40)纯化残余物,得到24mg呈米色粉末的第1号化合物(2S,3R,5R,10R,13S,14S,17S)-17-(N-丁-3-烯氧基-C-甲基-碳亚胺酰基)-2,3-二羟基-10,13-二甲基-1,2,3,4,5,9,11,12,14,15,16,17-十二氢环戊二烯并[a]菲-6-酮(收率:6%)和57mg呈米色粉末的第2号化合物(2S,3R,5R,10R,13S,14R,17S)-17-(N-丁-3-烯氧基-C-甲基-碳亚胺酰基)-2,3-二羟基-10,13-二甲基-1,2,3,4,5,9,11,12,14,15,16,17-十二氢环戊二烯并[a]菲-6-酮(收率:14%)。第1号化合物:LC-MS:m/z=416.2(MH+);254nmUV下的纯度=99%。RMN1H(300MHz,DMSO-d6)-C14位β差向异构体-δ5.83-5.72(m,1H),5.70(s,1H(C7)),5.1-5(m,2H),4.40-4.36(m,2H),4(t,2H),3.77-3.71(m,2H),2.80-2.60(m,1H),2.40-1.20(m,20H),0.82-0.74(m,6H).第2号化合物:LC-MS:m/z=416.2(MH+);254nmUV下的纯度=99%。RMN1H(300MHz,DMSO-D6)-C14位α差向异构体-δ5.87-5.72(m,1H),5.48(s,1H(C7)),5.1-4.9(m,2H),4.40-4.36(m,2H),4(t,2H),3.77-3.71(m,2H),2.80-2.60(m,1H),2.44-1.23(m,20H),0.83(s,3H),0.47(s,3H).根据相同方案制备C14α和C14β差向异构体混合物形式的第3至6号化合物。1纯度LCMS,254nmUV实施例2:方案B;第7号化合物[1-[(2S,3R,5R,6Z,10R,13R,17S)-2,3-二羟基-6-甲氧基亚氨基-10,13-二甲基-1,2,3,4,5,9,11,12,16,17-十氢环戊二烯并[a]菲-17-基]乙酮肟]和第19号化合物[(2S,3R,5R,6E,10R,13R,14S,17S)-17-(N-(2-甲氧基乙氧基)-C-甲基-碳亚胺酰基)-6-甲氧基亚氨基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-2,3,14-三醇]的制备第7号化合物的制备步骤1:化合物(a)[(2S,3R,5R,6E,10R,13R,14S,17S)-6-甲氧基亚氨基-10,13-二甲基-17-[(1R,2R)-1,2,5-三羟基-1,5-二甲基-己基]-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-2,3,14-三醇]和化合物(b)[(2R,3R)-2-[(2S,3R,5R,6Z,10R,13R,17S)-2,3-二羟基-6-甲氧基亚氨基-10,13-二甲基-1,2,3,4,5,9,11,12,16,17-十氢环戊二烯并[a]菲-17-基]-6-甲基-庚烷-2,3,6-三醇]的制备根据方案A的步骤3所述的同一操作方式,由20-羟基蜕皮甾酮和O-甲基羟胺盐酸盐制备788mg呈米色粉末的化合物(a)[(2S,3R,5R,6E,10R,13R,14S,17S)-6-甲氧基亚氨基-10,13-二甲基-17-[(1R,2R)-1,2,5-三羟基-1,5-二甲基-己基]-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-2,3,14-三醇](收率:37%)。还可分离667mg(收率:32%)消除化合物(b)[(2R,3R)-2-[(2S,3R,5R,6Z,10R,13R,17S)-2,3-二羟基-6-甲氧基亚氨基-10,13-二甲基-1,2,3,4,5,9,11,12,16,17-十氢环戊二烯并[a]菲-17-基]-6-甲基-庚烷-2,3,6-三醇],并且还可分离34mg(收率:2%)消除化合物(c)[(2R,3R)-2-[(2S,3R,5R,6E,10R,13R,17S)-2,3-二羟基-6-甲氧基亚氨基-10,13-二甲基-1,2,3,4,5,9,11,12,16,17-十氢环戊二烯并[a]菲-17-基]-6-甲基-庚烷-2,3,6-三醇]。化合物(a):LC-MS:m/z=510.2(MH+);254nmUV下的纯度=99%。RMN1H(300MHz,DMSO-d6)δ6.25(s,1H(C7)),4.45-4.35(m,3H),4.31-4.29(m,1H),4.14(s,1H),3.74-3.69(m,4H),3.6-3.5(m,1H),3.17-3.08(m,1H),2.87-2.75(m,1H),2.26-2.20(m,2H),2.05-1.1(m,15H),1.1-0.98(m,11H),0.73(s,6H).化合物(b):LC-MS:m/z=492.2(MH+);254nmUV下的纯度=99%。RMN1H(300MHz,DMSO-d6)δ6.04(s,1H),5.77(s,1H),4.45-4.30(m,2H),4.25(s,1H),4.11(s,1H),3.75-3.65(m,5H),3.63-3.55(m,1H),3.20-3.08(m,2H),2.17-1.90(m,3H),1.70-1.20(m,11H),1.15-0.93(m,14H),0.74(s,3H).化合物(c):LC-MS:m/z=492.2(MH+);254nmUV下的纯度=99%。RMN1H(300MHz,DMSO-d6)δ6.55(s,1H),5.81(s,1H),4.44-4.26(m,3H),4.09(s,1H),3.79-3.67(m,5H),3.62-3.54(m,1H),3.16-3.08(m,1H),2.30-1.90(m,4H),1.70-1.20(m,11H),1.15-0.92(m,14H),0.73(s,3H).从分离的化合物(b)出发:步骤2a:化合物(d):[1-[(2S,3R,5R,6Z,10R,13R,17S)-2,3-二羟基-6-甲氧基亚氨基-10,13-二甲基-1,2,3,4,5,9,11,12,16,17-十氢环戊二烯并[a]菲-17-基]乙酮]的制备根据方案A的步骤2所述的同一操作方式,由化合物(b)制备267mg呈米色粉末的化合物(d)[1-[(2S,3R,5R,6Z,10R,13R,17S)-2,3-二羟基-6-甲氧基亚氨基-10,13-二甲基-1,2,3,4,5,9,11,12,16,17-十氢环戊二烯并[a]菲-17-基]乙酮](收率:55%)。化合物(d):LC-MS:m/z=374.2(MH+);254nmUV下的纯度=99%.RMN1H(300MHz,DMSO-d6)δ6.09(s,1H),5.81-5.75(m,1H),4.39-4.37(m,1H),4.30-4.26(m,1H),3.76(s,3H),3.72-3.68(m,1H),3.65-3.55(m,1H),3.2-3(m,2H),2.75-2.60(m,1H),2.29-2.10(m,5H),1.74-1.23(m,8H),0.74-0.70(m,6H).步骤3a:第7号化合物:[1-[(2S,3R,5R,6Z,10R,13R,17S)-2,3-二羟基-6-甲氧基亚氨基-10,13-二甲基-1,2,3,4,5,9,11,12,16,17-十氢环戊二烯并[a]菲-17-基]乙酮肟]的制备根据方案A的步骤3所述的同一操作方式,由化合物(d)制备81mg呈白色粉末的-[(2S,3R,5R,6Z,10R,13R,17S)-2,3-二羟基-6-甲氧基亚氨基-10,13-二甲基-1,2,3,4,5,9,11,12,16,17-十氢环戊二烯并[a]菲-17-基]乙酮肟(收率:71%)。第7号化合物:LC-MS:m/z=389.2(MH+);254nmUV下的纯度=99%.RMN1H(300MHz,DMSO-d6)δ10.53(s,1H),6.09(s,1H),5.04(s,1H),4.37(d,1H),4.30-4.26(m,1H),3.77-3.67(m,4H),3.65-3.55(m,1H),3.15-3.03(m,1H),2.80-2.65(m,2H),2.25-2.12(m,1H),2.05-1.99(m,1H),1.79(s,3H),1.74-1.20(m,8H),0.76-0.66(m,6H).从分离的化合物(a)(2S,3R,5R,6E,10R,13R,14S,17S)-6-甲氧基亚氨基-10,13-二甲基-17-[(1R,2R)-1,2,5-三羟基-1,5-二甲基-己基]-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-2,3,14-三醇出发制备第19号化合物步骤2b:化合物(e):[1-[(2S,3R,5R,6E,10R,13R,14S,17S)-2,3,14-三羟基-6-甲氧基亚氨基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙酮]和(f):[1-[(2S,3R,5R,6Z,10R,13R,14S,17S)-2,3,14-三羟基-6-甲氧基亚氨基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙酮]的制备。根据方案A的步骤2所述的同一操作方式,从3.5g分离的化合物(a)[2S,3R,5R,6E,10R,13R,14S,17S)-6-甲氧基亚氨基-10,13-二甲基-17-[(1R,2R)-1,2,5-三羟基-1,5-二甲基-己基]-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-2,3,14-三醇]分离得到891mg呈米色粉末的化合物(e)[1-[(2S,3R,5R,6E,10R,13R,14S,17S)-2,3,14-三羟基-6-甲氧基亚氨基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙酮](收率:36%)以及23mg化合物(f):[1-[(2S,3R,5R,6Z,10R,13R,14S,17S)-2,3,14-三羟基-6-甲氧基亚氨基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙酮](收率:0.9%)。化合物(e):LC-MS:m/z=392.2(MH+);254nmUV下的纯度=99%。RMN1H(300MHz,DMSO-d6)δ6.28(s,1H(C7)),4.74(s,1H),4.42-4.36(m,1H),4.32-4.28(m,1H),3.76-3.70(m,4H),3.68-3.52(m,1H),3.20-3.12(m,1H),2.90-2.76(m,1H),2.30-2.00(m,5H),1.90-1.50(m,8H),1.49-1.24(m,3H),0.72(s,3H),0.45(s,3H).化合物(f):LC-MS:m/z=392.2(MH+);254nmUV下的纯度=99%。RMN1H(300MHz,DMSO-d6)δ5.71(s,1H(C7)),4.45(s,1H),4.45-4.41(m,1H),4.26-4.23(m,1H),3.76-3.70(m,4H),3.65-3.55(m,1H),3.18-3.09(m,1H),2.90-2.80(m,1H),2.22-2.00(m,5H),1.88-1.22(m,11H),0.73(s,3H),0.47(s,3H).步骤3b:第19号化合物:[(2S,3R,5R,6E,10R,13R,14S,17S)-17-(N-(2-甲氧基乙氧基)-C-甲基-碳亚胺酰基)-6-甲氧基亚氨基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-2,3,14-三醇]的制备根据方案A的步骤3所述的同一操作方式,由233mg化合物(e)制备46mg呈白色粉末的第19号化合物[(2S,3R,5R,6E,10R,13R,14S,17S)-17-(N-(2-甲氧基乙氧基)-C-甲基-碳亚胺酰基)-6-甲氧基亚氨基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-2,3,14-三醇](收率:48%)。第19号化合物:LC-MS:m/z=465.2(MH+);254nmUV下的纯度=99%。RMN1H(300MHz,DMSO-d6)δ6.28(s,1H(C7)),4.66(s,1H),4.44-4.38(m,1H),4.34-4.28(m,1H),4.10-4.01(m,2H),3.75-3.70(m,4H),3.65-3.45(m,3H),3.24(s,3H),2.98-2.76(m,2H),2.30-1.90(m,4H),1.80-1.24(m,12H),0.73(s,3H),0.49(s,3H).根据同一方案制备第21号化合物。1纯度LCMS,254nmUV实施例3:方案C;第23号化合物的制备:(2S,3R,5R,10R,13R,14S,17S)-17-(N-乙氧基-C-甲基-碳亚胺酰基)-2,3,14-三羟基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮根据方案A的步骤3所述的同一操作方式,由坡斯特甾酮(根据方案B的步骤2所述的同一操作方式由20-羟基蜕皮甾酮的链的氧化断裂获得)制备64mg呈白色粉末的(2S,3R,5R,10R,13R,14S,17S)-17-(N-乙氧基-C-甲基-碳亚胺酰基)-2,3,14-三羟基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮(收率:22%)。第23号化合物:LC-MS:m/z=406.2(MH+);254nmUV下的纯度=93%。RMN1H(300MHz,CD3OD)δ5.82(s,1H(C7)),4.04(q,2H),3.97-3.92(m,1H),3.89-3.80(m,1H),3.22-3.10(m,1H),3.04(t,1H),2.43-1.55(m,15H),1.45-1.37(m,1H),1.21(t,3H),0.96(s,3H),0.64(s,3H).根据同一方案制备第24-36号化合物。1纯度LCMS,254nmUV实施例4:方案D;第37号化合物的制备:N-(2,2-二氟乙基)-N-[1-[(2S,3R,5R,6E,10R,13R,14S,17S)-2,3,14-三羟基-6-甲氧基亚氨基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙基]呋喃-2-甲酰胺步骤1:第39号化合物:[(2S,3R,5R,6E,10R,13R,14S,17S)-17-[1-(2,2-二氟乙基氨基)乙基]-6-甲氧基亚氨基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-2,3,14-三醇]的制备将方法B的步骤2b中获得的180mg(0.46mmol)化合物(e)[1-[(2S,3R,5R,6E,10R,13R,14S,17S)-2,3,14-三羟基-6-甲氧基亚氨基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙酮]溶于5mL甲醇中,并在反应介质中加入0.21mL(2.76mmol)2,2-二氟乙胺。通过加入足量浓醋酸将溶液的pH增加至6。然后按份加入31.8mg(0.506mmol)氰基硼氢化钠,将获得的悬浮液加热回流20h。蒸发溶剂,将获得的残余物再放入20mL水中,并通过碳酸氢钠饱和溶液将pH增加至8。用15mL丁醇萃取该水相两次,丁醇相用硫酸盐干燥,过滤,并蒸发,得到黄色固体,将其再加入30mL异丙醚并过滤,干燥后得到134mg呈黄色粉末状的第39号化合物(2S,3R,5R,6E,10R,13R,14S,17S)-17-[1-(2,2-二氟乙基氨基)乙基]-6-甲氧基亚氨基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-2,3,14-三醇(收率:62%)。第39号化合物:LC-MS:m/z=457.4(MH+);254nmUV下的纯度=97%。RMN1H(300MHz,DMSO-d6)δ6.30-6.23(m,1H),5.95-5.70(m,1H),4.43-4.25(m,3H),3.72(s,3H),3.65-3.55(m,1H),3.42-3.32(m,1H),2.88-2.76(m,2H),2.29-2.23(m,1H),1.99-1.15(m,16H),1.05-0.82(m,3H),0.73(s,3H),0.61-0.53(m,3H).步骤2:第37号化合物N-(2,2-二氟乙基)-N-[1-[(2S,3R,5R,6E,10R,13R,14S,17S)-2,3,14-三羟基-6-甲氧基亚氨基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙基]呋喃-2-甲酰胺的制备:将134mg(0.285mmol)第39号化合物[(2S,3R,5R,6E,10R,13R,14S,17S)-17-[1-(2,2-二氟乙基氨基)乙基]-6-甲氧基亚氨基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-2,3,14-三醇]溶于2mLTHF,并在氩气环境下向反应介质中加入52mg(0.854mmol)碳酸氢钠。加入30μL(0.299mmol)糠酰氯,并在20℃下将反应介质振荡20h。然后将溶液倾倒至5mL水中,并用10mL丁醇萃取两次。蒸发丁醇相得到118mg固体,在硅胶柱上用快速色谱法(二氯甲烷/MeOH,95/5)纯化,得到100mg呈白色粉末的第37号化合物:N-(2,2-二氟乙基)-N-[1-[(2S,3R,5R,6E,10R,13R,14S,17S)-2,3,14-三羟基-6-甲氧基亚氨基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙基]呋喃-2-甲酰胺(收率:60%)。第37号化合物:LC-MS:m/z=551.3(MH+);254nmUV下的纯度=93%.RMN1H(300MHz,DMSO-d6)δ7.87(s,1H),7.03(s,1H),6.64(s,1H),6.25(s,1H),4.58(d,1H),4.43-4.27(m,3H),3.95-3.83(m,1H),3.75-3.65(m,4H),3.63-3.49(m,2H),2.85-2.68(m,1H),2.31-2.18(m,1H),2.01-1(m,17H),0.73-0.15(m,6H).根据同一方案制备第38和40号化合物。1纯度LCMS,254nmUV实施例5:方案E;第41号化合物的制备:2-甲氧基-N-(2-甲氧基乙基)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-10,13-二甲基-6-氧代-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙基]乙酰胺步骤1:第42号化合物的制备:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-17-[1-(2-甲氧基乙基氨基)乙基]-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮将5g(13.8mmol)坡斯特甾酮(根据方案B的步骤2所述的同一操作方式由20-羟基蜕皮甾酮的链的氧化断裂获得)溶于250mL甲醇,并逐滴加入7.2mL(83mmol)2-甲氧基乙胺。然后,通过加入浓醋酸将溶液的pH调节至pH6,并加入250mLTHF。按份加入0.954g氰基硼氢化钠,使反应介质回流20h。蒸发溶剂,将获得的粗产物加入100mL水中,通过加入饱和碳酸氢钠溶液将pH调节至8。用80mL丁醇将介质萃取三次,蒸发丁醇相,得到红棕色沫状物,向其中加入5mL乙酸乙酯,过滤后干燥,得到3.32g呈灰色粉末状的第42号化合物:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-17-[1-(2-甲氧基乙基氨基)乙基]-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮(收率:57%)。第42号化合物:LC-MS:m/z=422.2(MH+);254nmUV下的纯度=95%。RMN1H(300MHz,DMSO-d6)δ5.70-5.60(m,1H(C7)),4.80-4.62(m,1H),4.55-4.47(m,1H),4.43-4.35(m,1H),3.78-3.70(m,2H),3.68-3.50(m,3H),3.30-3.18(m,5H),3.10-2.91(m,1H),2.30-0.9(m,18H),0.82(s,3H),0.59(s,3H).RMN13C(75MHz,DMSO-d6)δ202.9(C6),120.5,82.9,66.7,58.1,46.2,37.8,30.5,23.9,6.2.步骤2:第41号化合物的制备:2-甲氧基-N-(2-甲氧基乙基)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-10,13-二甲基-6-氧代-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙基]乙酰胺根据与实施例5的步骤2相同的操作方式,由第42号化合物获得89mg呈橙色粉末状的第41号化合物[2-甲氧基-N-(2-甲氧基乙基)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-10,13-二甲基-6-氧代-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-17-基]乙基]乙酰胺](收率:58%)。第41号化合物:LC-MS:m/z=494.4(MH+);254nmUV下的纯度=94%。RMN1H(300MHz,DMSO-d6)δ5.63(s,1H(C7)),4.88-4.7(m,1H),4.5-4.35(m,2H),4.2-3.9(m,2H),3.76(s,1H),3.68-3.52(m,1H),3.5-3.3(m,4H),3.28-3.18(m,6H),3.08-2.9(m,1H),2.3-0.95(m,18H),0.88-0.75(m,3H),0.7-0.42(m,3H).根据同一方案制备第43至75号化合物。1纯度LCMS,254nmUV实施例6:方案F;第76号化合物的制备:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-17-[1-(2-甲氧基乙基(甲基)氨基)乙基]-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮将根据实施例5的步骤1所述的技术制备的155mg(0.368mmol)第42号化合物[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-17-[1-(2-甲氧基乙基氨基)乙基]-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮]溶于2.5mLDMF中,并将61.8mg(0.735mmol)碳酸氢钠以及0.034mL(0.552mmol)碘代甲烷加入反应介质。获得的悬浮液在20℃下振荡20h。然后将溶液倾倒至15mL水中,并用15mL丁醇萃取三次。蒸发丁醇相,得到220mg粉末,其在硅胶柱上通过快速色谱法(二氯甲烷/MeOH,95/5)纯化,得到40mg呈白色粉末状的第76号化合物:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-17-[1-(2-甲氧基乙基(甲基)氨基)乙基]-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮的白色粉末(收率:25%)。第76号化合物:LC-MS:m/z=436.3(MH+);254nmUV下的纯度=99%。RMN1H(300MHz,DMSO-d6)δ5.61(s,1H(C7)),4.64(s,1H),4.47-4.34(m,2H),3.75(s,1H),3.67-3.50(m,1H),3.25-3.16(m,5H),3.05-2.85(m,1H),2.27-1.15(m,20H),0.90-0.70(m,6H),0.59(s,3H).根据同一方案制备第77至80号化合物。1纯度LCMS,254nmUV实施例7:方案G;第81号化合物的制备:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-10,13-二甲基-17-(2-吗啉代乙酰基)-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮步骤1:第102号化合物:(2S,3R,5R,10R,13R,14S,17S)-17-(2-溴代乙酰基)-2,3,14-三羟基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮的制备将1g(2.76mmol)坡斯特甾酮(根据方案B的步骤2所述的同一操作方式由20-羟基蜕皮甾酮的链的氧化断裂获得)溶于20mL甲醇。将溶液冷却至0℃,并逐滴加入0.284mL(5.52mmol)溴,在该温度下降反应介质振荡1h,然后在室温下放置16h。将反应介质倾倒至50mL饱和碳酸氢钠溶液中,用100mL乙酸乙酯萃取3次。用50mL饱和碳酸氢钠洗涤有机相,然后用盐水洗涤,用硫酸钠干燥,过滤,并蒸发溶剂,得到833mg粉末,将其在加入30mL二氯甲烷中,过滤并干燥后,得到412mg呈黄色粉末状的第102号化合物:2S,3R,5R,10R,13R,14S,17S)-17-(2-溴代乙酰基)-2,3,14-三羟基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮(收率:31%)。第102号化合物:LC-MS:m/z=443.1(MH+);254nmUV下的纯度=91%。RMN1H(300MHz,DMSO-d6)δ5.69-5.63(m,1H(C7)),5.08(s,1H),4.42-4.35(m,3H),4.33-4.22(m,1H),3.77(s,1H),3.66-3.58(m,1H),3.39(t,1H),3.10-2.95(m,1H),2.25-1.20(m,13H),0.83(s,3H),0.51(s,3H).步骤2:第81号化合物的制备:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-10,13-二甲基-17-(2-吗啉代乙酰基)-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮将50mg(0.103mmol)第102号化合物[(2S,3R,5R,10R,13R,14S,17S)-17-(2-溴代乙酰基)-2,3,14-三羟基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮]溶于1mLDMF中,并加入42.7mg碳酸钾以及10.78μl(0.124mmol)吗啉。在20℃下振荡18h后,将反应介质倾倒至10mL水中,用15mL丁醇萃取两次。蒸发有机相,得到71mg粉末,将其硅胶柱上用快速色谱法(二氯甲烷/MeOH,90/10)纯化,得到28mg呈白色粉末状的第81号化合物:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-10,13-二甲基-17-(2-吗啉代乙酰基)-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮(收率:60%)。第81号化合物:LC-MS:m/z=448.4(MH+);254nmUV下的纯度=99%。RMN1H(300MHz,DMSO-d6)δ5.65(s,1H(C7)),5.02(s,1H),4.45(d,1H),4.40-4.37(m,1H),3.77(s,1H),3.68-3.53(m,5H),3.34-3.24(m,4H),3.08-2.95(m,1H),2.45-1.17(m,16H),0.82(s,3H),0.48(s,3H).根据同一方案制备第82至94号化合物。1纯度LCMS,254nmUV实施例8:方案H;第95号化合物的制备:(2S,3R,5R,10R,13R,14S,17S)-17-(2-乙氧基乙酰基)-2,3,14-三羟基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮将实施例7中步骤1中制备的100mg(0.227mmol)第102号化合物[2S,3R,5R,10R,13R,14S,17S)-17-(2-溴代乙酰基)-2,3,14-三羟基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮]溶于2mL乙醇,逐滴加入0.102mL(0.272mmol)稀释在1mL乙醇中的在乙醇中21%的乙醇钠溶液,并将获得的溶液回流30min。冷却至20℃的反应介质倾倒至25mL水中,并用20mL定的丁醇萃取两次。蒸发有机相,得到30mg油状物,经在硅胶柱上用快速色谱法(二氯甲烷/MeOH,95/5)纯化,得到13.5mg呈黄色油状的第95号化合物:(2S,3R,5R,10R,13R,14S,17S)-17-(2-乙氧基乙酰基)-2,3,14-三羟基-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮(收率:14%)。第95号化合物:LC-MS:m/z=407.2(MH+);254nmUV下的纯度=93%。RMN1H(300MHz,DMSO-d6)δ5.65-5.59(m,1H(C7)),4.96(s,1H),4.46(d,1H),4.41-4.36(m,1H),4.03(q,2H),3.77(s,1H),3.68-3.55(m,1H),3.08-2.90(m,1H),2.75-2.62(m,1H),2.3-2.15(m,2H),1.92-1.42(m,13H),1.18(t,3H),0.83(s,3H),0.58-0.49(m,3H).根据同一方案制备第96号化合物。1纯度LCMS,254nmUV实施例9:方案I;第97号化合物的制备:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-17-[1-羟基-2-(2-羟基乙基(甲基)氨基)乙基]-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮将根据实施例7的步骤2的方法获得的157mg(0.360mmol)第87号化合物[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-17-[2-(2-羟基乙基(甲基)氨基)乙酰基]-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮]溶于7.5mL乙醇中,并按份加入21.14mg(0.559mmol)硼氢化钠。在20℃振荡16h后,将反应介质倾倒至20mL水中,并用15mL丁醇萃取三次。蒸发有机相,得到粉末,经在硅胶柱上用快速色谱法(二氯甲烷/MeOH/NH4OH,85/14/1)纯化,得到96mg呈白色粉末状的第97号化合物:(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-17-[1-羟基-2-(2-羟基乙基(甲基)氨基)乙基]-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮(收率:60%)。第97号化合物:LC-MS:m/z=438.2(MH+);254nmUV下的纯度=99%。RMN1H(300MHz,DMSO-d6)δ5.6(s,1H(C7)),5.32-5.2(m,2H),4.77(s,1H),4.47(d,1H),4.42-4.38(m,1H),3.92-3.57(m,4H),3.3-2.95(m,4H),2.82(s,3H),2.31-1.18(m,16H),0.85(s,3H),0.69(s,3H).RMN13C(75MHz,DMSO-d6)δ203.2,164.9,121.0,82.8,66.9,59.0,55.6,50.6,46.9,40.7,37,34,31.9,31.1,30.3,24.5,23.2,20.4,16.3.根据同一方案制备第98至100号化合物。1纯度LCMS,254nmUV实施例10:方案J;第101号化合物的制备:(2S,3R,5R,6E,10R,13R,14S,17S)-6-甲氧基亚氨基-17-(N-甲氧基-C-(吗啉代甲基)碳亚胺酰基)-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-2,3,14-三醇将30μl(0.301mmol)甲氧基胺盐酸盐溶于0.6mL吡啶,并按份加入实施例7的步骤2中制备的136mg(0.301mmol)第81号化合物[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-三羟基-10,13-二甲基-17-(2-吗啉代乙酰基)-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-6-酮]。在20℃振荡36h后,将反应介质加至10mL二氯甲烷中,该溶液在盐水中洗涤两次,用硫酸钠干燥,过滤,并蒸发,得到粉末,经在硅胶柱上用快速色谱法(二氯甲烷/MeOH,90/10)纯化,得到81mg呈黄色粉末状的第101号化合物:(2S,3R,5R,6E,10R,13R,14S,17S)-6-甲氧基亚氨基-17-(N-甲氧基-C-(吗啉代甲基)碳亚胺酰基)-10,13-二甲基-2,3,4,5,9,11,12,15,16,17-十氢-1H-环戊二烯并[a]菲-2,3,14-三醇(收率:53%)。第101号化合物:LC-MS:m/z=506.2(MH+);254nmUV下的纯度=99%。RMN1H(300MHz,DMSO-d6)δC6位构象异构体(Z)和(E)的混合物:6.28(s,0.45H(C7-构象异构体E),5.72(s,0.55H(C7-构象异构体Z),4.62(s,0.45H-构象异构体E),4.53(s,0.55H-构象异构体Z),4.47-4.35(m,1H),4.33-4.21(m,1H),3.77-3.70(m,7H),3.60-3.48(m,5H),3.16-3.06(m,1H),2.90-2.70(m,2H),2.45-1.20(m,18H),0.72(s,3H),0.64-0.57(m,3H).20-羟基蜕皮甾酮的筛选级联和生物效应的表征筛选试验的发展是从文献工作开始,并基于肌少症的病理特征。在病理生理学水平,该疾病的特征在于蛋白质合成的减少和蛋白水解的增加。因此,应针对与这两种现象相关的分子因素来筛选未来药物的发展。在细胞水平上,在来自C2C12鼠系的肌细胞培养物上,Gorelick-Feldmanetal.(2008)示出用植物蜕皮激素处理增加平均20%的蛋白合成。早期开展的研究依赖于在参考产物(IGF-1和20-羟基蜕皮甾酮或20E)的存在下由Gorelick-Feldman描述的培养和处理条件。进行氚标记亮氨酸掺入这些细胞的测量,以评价蛋白质的从头合成。这些初步结果允许确定用于观察植物蜕皮激素对蛋白质合成的影响的最佳顺序是将细胞分化5天,然后在IGF-1或20E的存在下将氚标记亮氨酸放置2h30。文献分析表明,IGF-1等分子仅使蛋白质合成增加20%,同时以更持续的方式激活该信号传导途径的靶并能够达到约200%的刺激[Kazietal.,2010]。这些靶包括蛋白例如Akt或S6激酶的激活磷酸化。另一方面,在相同的C2C12细胞系统中,Zubeldiaetal.(2012)分析了凋亡和蛋白水解的现象。在他们的研究中,他们特别报道了含有植物蜕皮激素如土克甾酮或20E的植物提取物在分化的C2C12细胞处理24小时后能够抑制肌生成抑制素和半胱天冬酶3的基因表达4倍和2倍[Zubeldiaetal.,2012]。在多项实验中,其中分化成肌管的C2C12细胞在IGF-1或20E的存在下孵育2h30或6h,开展了两项筛选试验。因此,研究了S6激酶蛋白的磷酸化和肌生成抑制素基因的表达,以便通过生长激素或蜕皮激素确定它们的调节,并从统计学角度对这些调节特征化。方案抑制C2C12细胞中肌生成抑制素的表达:将C2C12成肌细胞(ATCCCRL-1772)以每孔30000个细胞的密度接种在24孔板中,并在含有4.5g/L葡萄糖并补充有胎牛血清(10%)和抗生素(青霉素和链霉素)的DMEM培养基中培养。48小时后,通过部分血清剥夺(2%代替10%)5天诱导成肌细胞分化。然后将细胞置于缺乏葡萄糖的培养基(含有1g/L葡萄糖的DMEM)中,并在待测试分子或参照物(IGF-1100ng/mL或20E10μM)的存在下去除血清6H。在实验结束时,使用基于苯酚和氯仿的常规方法提取信使RNA(mRNA)。简言之,将细胞在含有强酸和苯酚的trizol溶液(SigmaT9424)中裂解。通过加入氯仿,然后离心,将mRNA从蛋白质中分离。然后将其在异丙醇中沉淀,然后以1μg/μL的浓度悬浮在不含RNA酶和DNA酶的超纯水中。然后根据供应商(AppliedBiosystems4368814)给出的方案,在引物和核苷酸混合物的存在下通过AMV酶经逆转录将1μgmRNA转录为互补DNA。通过在定量条件下由聚合酶引发的通常称为PCR的链式反应研究基因表达,其精确命名为qPCR。qPCR在7900HTFastReal-TimePCR检测系统(AppliedBiosystems)上进行。编程条件是标准的,由以下组成:在95℃下15min的1个循环,随后在95℃下15s和在60℃下1min的40个循环,以及在60℃和95℃之间的熔解曲线阶段结束。分析的样品包含全部100ngcDNA,包括酶、寡核苷酸混合物和嵌入剂(sybergreen或SYBRgreen)的qPCR缓冲液,以及对所研究基因具有特异性的引物对,其在两个外显子序列之间战略性选择,并且最终浓度为200nM。荧光探针与双链DNA结合,并且一旦与DNA连接就发荧光。荧光阈值由机器的程序建立。当DNA的量允许荧光探针超过该阈值时,获得对于“循环阈值”或阈值循环的称为“Ct“的PCR循环数。该值是基于用于相对地量化DNA的计算。建立了样品的起始DNA量与未经历处理的对照(即R=2-(Ct样品-Ct对照))的量之间的比率R,并且该测量相对于已知的当家基因(gèneménage)以便不受治疗调节(即R=2-ΔΔCt)。使用的引物在下表中给出:表3:用于评价基因表达变化的引物S6激酶的磷酸化:将C2C12成肌细胞(ATCCCRL-1772)以每孔170000个细胞的密度接种在6孔板中,并在含有4.5g/L葡萄糖并补充有胎牛血清(10%)和抗生素(青霉素和链霉素)的DMEM培养基中培养。48小时后,通过部分血清剥夺(2%代替10%)5天诱导成肌细胞分化。然后将细胞置于缺乏葡萄糖的培养基(含有1g/L葡萄糖的DMEM)中,并在待测试分子或参照物(IGF-1100ng/mL或20E10μM)的存在下除去血清2h。在实验结束时,将细胞在补充有市售的抗蛋白酶混合物(Roche05056489001)的市售裂解缓冲液(InvitrogenFNN0011)中裂解。离心后,保留含有可溶性蛋白的细胞质级分,并使用商用试剂盒(Biorad500-0114)测定蛋白质的浓度,该试剂盒的原理基于Lowry方法的化合物测定。S6激酶磷酸化测定使用市售的ELISA(酶联免疫吸附测定)(细胞信号传导7063)进行。简言之,将50μg蛋白质裂解物沉积在96孔微孔板的孔中,并在4℃下用pS6激酶抗体苏氨酸389的特异性抗体溶液孵育过夜。抗原与孔底部的结合是静电地进行的。然后将待测定的抗体溶液(pS6KT389)在37℃下在孔中孵育2小时。抗体特异性结合在抗原上。然后洗涤孔以用洗涤缓冲液除去过量的待测定抗原的特异性一级抗体。第三步在于固定检测抗体。在37℃下将检测抗体溶液在孔中孵育1小时。然后洗涤孔以除去过量的检测抗体。应当注意,检测抗体与酶结合,所述酶在其底物的存在下将其转化为通过出现着色可检测和可测量的反应产物。最后一步在于显影所固定的抗体。在37℃和黑暗中将含有酶的底物的显影溶液(在我们的情况下,是TMB(3,3′,5,5′-四甲基联苯胺)孵育30分钟。底物中蓝色的出现表明存在待测定的抗体。为了避免任何饱和现象,加入终止液(通常含有氢氧化钠)并引起颜色变化,其由蓝色变为黄色。其强度与存在的酶的量成比例,因此与所研究的抗体的浓度成比例。信号的强度通过分光光度法在450nm的波长下测量。评价在经受高脂餐食的小鼠模型中分子的作用将作为比较化合物的20E和根据本发明的化合物(第51和93号)以5mg/kg体重的剂量口服投予12周龄的C57BL/6J小鼠,所述小鼠经受了高脂餐食6周。评价化合物对比目鱼肌的蛋白质的重量和量以及参与肌肉生成的基因的转录物的影响。肌生成是肌肉组织形成的过程,由多个肌源转录因子控制,所述多个肌源转录因子作为信号级联的终末效应子参与并产生涉及发育的各个阶段的转录物。转录因子的作用已经在不同期刊(Sabourin和Rudnicki2000)和(LeGrand和Rudnicki2007)中有很好的描述。Pax7蛋白(配对盒蛋白7)保持处于静止期的卫星细胞群,并且与Myf5(肌源性因子5)在激活的成肌细胞的扩增中起作用。MyoD蛋白(成肌细胞测定蛋白)似乎决定了激活的成肌细胞的分化潜力,并与肌细胞生成素和MEF2蛋白(肌细胞增强因子2)协作来控制和引起分化。最后,MRF4(肌肉特异性调节因子4)是肥大所需的,尽管它可能起其他作用。显然,这些转录因子不单独作用,而是存在于控制肌生成的每个阶段的复杂信号级联中(Knight和Kothary,2011)。通过首先使用FastPrep技术在0.1NNaOH溶液中裂解摄取的肌肉来测定蛋白质的量。通过由Lowry方法衍生的比色测定法进行蛋白质的定量。为了进行基因表达分析,在Trizol溶液(500μl)中将肌肉组织匀浆,并使用苯酚/氯仿方法提取和纯化RNA。使用寡核苷酸(dT)作为引物和如制造商描述的酶AMV逆转录酶(AppliedBiosystems4368814),将1pg量的RNA用作cDNA第一链合成的模板。然后使用装配有PCR实时快速检测系统和标准qPCR程序(95℃15min的1个循环、95℃15s和60℃1min的40个循环,对于Sybergreen探针的60-95℃解链曲线)的7900HT装置(AppliedBiosystems)来进行Q-PCR。在SybergreenSYBR主混合物(AppliedBiosystems)中进行实验,该混合物含有100ngcDNA样品和一组在2个不同外显子水平结合的引物,终浓度为200nM。处理之间基因表达的相对差异表示为与对照组相比循环时间数目[Ct]的增加或减少。每个基因的[Ct]值已经用β肌动蛋白基因标准化。大鼠中分子的口服药代动力学使用雄性Wistar大鼠(CharlesRiver)通过口服评价化合物的药代动力学。作为比较化合物的20E以50mg/kg体重的剂量投予。根据本发明的新化合物以10mg/kg体重的剂量以4至6种产品的混合物的形式投予。给药后,在t=0.25h、0.5小时、1h、3h、6h和8h时从尾部取血。离心血液样品并取出血浆。血浆样品的测定允许确定药物动力学参数,即Cmax(其对应于分子给药后观察到的最大浓度),Tmax(其为在分子给药后达到最大浓度所需的时间)和AUC:在不同采样时间下由不同浓度的化合物组成的曲线下面积。结果·对肌生成抑制素的表达的影响表4:对肌生成抑制素表达的影响。结果表示为与涉及对照细胞中表达的化合物接触的细胞中肌生成抑制素的基因表达的百分比。A表示小于70%的百分比,B表示介于71%和85%之间的百分比。以10μM的浓度测试化合物。以下38种化合物:4、5、7、21、25、27-29、31-33、38、41、43、46、47、51-54、62-65、67、68、71、75、76、79、81、86、89、92-94、99和101非常显著地抑制肌肉细胞中肌生成抑制素的表达。以下化合物:19、23、30、35-37、48、56、57、60、73、83、85、88和91显著抑制肌肉细胞中肌生成抑制素的表达。·通过S6K1磷酸化对蛋白质合成的影响。表5:对蛋白质合成的影响。结果表示为肌肉细胞中S6K磷酸化的增加百分比。A表示大于130%的值,B表示介于110%和129%之间的值。以10μM的浓度测试化合物。编号蛋白质合成编号蛋白质合成28A67A32B76B41B81B42A86A43B88B46B89A51B91B52B92B62A93A63B94A以下8种化合物:28、42、62、67、86、89、93和94在等同于IGF-1(130%-140%)的水平下非常显著地刺激S6K1的磷酸化。以下12种化合物:32、41、43、46、51、52、63、76、81、88、91和92在等同于20E的水平(120%)的水平上显著地刺激S6K1的磷酸化。·经受高脂餐食的小鼠模型中分子的研究通过评价以5mg/kg体重的剂量对经受高脂餐食6周的C57BL/6小鼠口服投予的作为比较化合物的20E和根据本发明的分子(第51和93号)的作用来进行体内研究。评价了分子对比目鱼肌的蛋白质的重量和量以及参与肌生成的基因的转录物的影响。作为比较化合物的20E和根据本发明第51和93号的化合物对肌肉重量的影响在图3A中示出,20E和第51和93号化合物对比目鱼肌的蛋白质的量的影响在图3B中示出。以5mg/kg投予的20E和化合物都导致与对照组相比增加了比目鱼肌的蛋白质的重量和量。根据本发明的化合物显示出与20E一样大的效率。甚至注意到用第93号化合物时蛋白质含量显著增加。作为比较化合物的20E和施用的根据本发明的第51和93号化合物对比目鱼肌的肌生成抑制素的转录物的影响示于图4中。20E和第51和93号化合物类似地抑制了比目鱼肌中肌生成抑制素的表达。这些分子还在C2C12细胞系的体外研究中抑制肌生成抑制素转录物,如上表4所示。作为比较化合物的20E和根据本发明的第51和93号化合物对MyoD和肌细胞生成素的转录物(参与比目鱼肌的肌生成的基因)的影响分别示于图5A和5B中。20E和第51和93号化合物导致决定分化潜能的MyoD和参与肌细胞增殖的Myf5的基因转录物的增加。它们还导致参与肌细胞早期分化的肌细胞生成素基因的转录物的增加。·大鼠中分子的药代动力学研究在大鼠中通过口服给药评价20E和根据本发明的化合物的药代动力学,在化合物的情况下以10mg/kg的剂量给药,在20E的情况下以50mg/kg的剂量给药。表6:在Wistar大鼠中测试的20E和化合物的主要药代动力学参数(Tmax、Cmax和AUC)考虑到比根据本发明的化合物(10mg/kg)高5倍的剂量(50mg/kg),暴露系数Cexp[Cexp=(Dose20E×AUC化合物):(剂量化合物×AUC20E)]表明所有测试化合物相对于20E的药代动力学曲线的改善。因此,在大鼠中的该研究显示第31、46、51和93号化合物具有与20E相比更好的血浆暴露。·总结另外,图6示出的表格展示了在肌生成抑制素基因表达和蛋白质合成的分析实验中获得的本发明化合物的结果。关于肌生成抑制素的基因表达,结果表示为与涉及在对照细胞中表达的化合物接触的细胞中肌生成抑制素的基因表达的百分比。A表示小于70%的百分比,B表示介于71%和85%之间的百分比。关于蛋白质合成的分析,结果表示为肌细胞中S6K磷酸化增加的百分比。A表示大于130%的值,B表示介于110%和129%之间的值。表7:图6所示结果的总结最有吸引力的产品是AA类或AB类,即在蛋白质合成中与A类或B类相关的肌生成抑制素上的其基因表达的A类。参考文献ArounleutP,BialekP,LiangLF,etal.2013.Amyostatininhibitor(propeptide-Fc)increasesmusclemassandmusclefibersizeinagedmicebutdoesnotincreasebonedensityorbonestrength.ExperGerontol48:898-904.Aubertin-LeheudreM,LordC,KhalilA,DionneIJ.2007.Sixmonthsofisoflavonesupplementincreasesfat-freemassinobese-sarcopenicpostmenopausalwomen:arandomizeddouble-blindcontrolledtrial.EurJClinNutr61:1442-1444.AusselC,WoelffleE,LemoigneP,DepaillerL,BouillanneO.2013.Unenouvellestratégienutritionnellepourluttercontreladénutritionetlasarcopénie:lerégimeprotéiquepulsé.CahiersNutritionDiététique48:33-40.AzizovAP,SeifullaRD,AnkudinovaIA,Kondrat′evaII,BorisovaIG.1998.Effectoftheantioxidantseltonandlevetononthephysicalworkcapacityofathletes.EkspKlinFarmakol61(1):60-62.BaptistaIL,LealML,ArtioliGG,etal.2010.Leucineattenuatesskeletalmusclewastingviainhibitionofubiquitinligases.MuscleNerve41(6):800-808.BáthoriM,TóthN,HunyadiA,MárkiA,ZadorE.(2008).Phytoecdysteroidsandanabolic-androgenicsteroids–StructureandeffectsonHumans.CurrentMedicinalChemistry15:75-91.BennettBT,MohamedJS,AlwaySE.2013.Effectsofresveratrolontherecoveryofmusclemassfollowingdisuseintheplantarismuscleofagedrats.PLoSOne8(12):e83518.BoirieY,GachonP,BeaufrèreB.1997.Splanchnicandwholebodyleucinekineticsinyoungandelderlymen.AmJClinNutr.65:489-495.BonnefoyM,ConstansT,FerryM.2000.DénutritiondusujetInfluencedelanutritionetdel′activitéphysiquesurlemuscleaugrandPresseMed29:2177-2182.BonnefoyM.2008.InterventionspourrestaurerlamassemusculairechezlesujetNutrClinMetab22:80-83.BuehringB,BinkleyN.2013.Myostatin-theholygrailformuscle,bone,andfat?CurrOsteoporosRep11(4):407-414.Castan-LaurellI,DrayC,KnaufC,KunduzovaO,ValetP.2012.Apelin,apromisingtargetfortype2diabetestreatment?TrendsEndocrinolMetab23(5):234-241.ChermnykhNS,ShimanovskyNL,ShutkoGV,SyrovVN.1988.Effectsofmethandrostenoloneandecdysteroneonphysicalenduranceofanimalsandproteinmetabolismintheskeletalmuscles.FarmakologiyaiToksikologiya6:57-62.M,PetitA,DéchelotteP.2009.Quellepharmaconutritionpourluttercontrelasarcopénie?NutritionCliniqueMétabolisme23:76-79.Collins-HooperH,SartoriR,MachariaR,etal.2014.Propeptide-mediatedinhibitionofmyostatinincreasesmusclemassthroughinhibitingproteolyticpathwaysinagedmice.JGerontolABiolSciMedSci,doi:10.1093/gerona/gh170.CrennP.2013.Sarcopénieetcachexie:approchemédicamenteuse.NutritionCliniqueMétabolisme27:69-73.deJagerN,HudsonNJ,ReverterA,etal.2011.Chronicexposuretoanabolicsteroidsinducesthemuscleexpressionofoxytocinandamorethanfiftyfoldincreaseincirculatingoxytocinincattle.PhysiolGenomics43:467-478.DumonceauxJ,MarieS,BeleyC,TrolletC,VignaudA,FerryA,Butler-BrowneG,GarciaL.2010.Combinationofmyostatinpathwayinterferenceanddystrophinrescueenhancestetanicandspecificforceindystrophicmdxmice.MolTher18(5):881-887.FiataroneMA,MarksEC,RyanND,MeredithCN,LipsitzLA,EvansWJ.1990.High-intensitystrengthtraininginnonagerians.JAMA263:3029-3034.FoucaultAS,MathéV,LafontR,EvenP,DiohW,VeilletS,ToméD,HuneauD,HermierD,Quignard-BoulangéA.2012.Quinoaextractenrichedin20-hydroxyecdysoneprotectsmicefromdiet-inducedobesityandmodulatesadipokinesexpression.Obesity20:270-277.FoucaultAS,,DiohW,LafontR,VeilletS,ToméD,Quignard-BoulangéA,,ClémentK,RizkallaS.2014.20-Hydroxyecdysoneincreasesandroidfatmasslosswithnosignificanteffectonmusclemasslossduringaweightlossprograminobeseandoverweightsubjects.ICFSR2014InternationalConferenceofFrailtyandSarcopeniaResearch,Barcelone,12-14/03/2014.GadzhievaRM,PortugalovSN,PaniushkinVV,Kondrat’evaII.1995.Acomparativestudyoftheanabolicactionofecdysten,levetonandPrimePlus,preparationsofplantorigin.EkspKlinFarmakologiya58(5):46-48.GilsonH,SchakmanO,CombaretL,etal.2007.Myostatingenedeletionpreventsglucocorticoid-inducedmuscleatrophy.Endocrinology148:452-460.Gorelick-FeldmanJ,MacLeanD,IlicN,PoulevA,LilaMA,RaskinI.2008.Phytoecdysteroidsincreaseproteinsynthesisinskeletalmusclecells.J.Agric.FoodChem.56:3532-3537.Gorelick-FeldmanJ,CohickW,RaskinI.2010.EcdysteroidselicitarapidCa2+fluxleadingtoAktactivationandincreasedproteinsynthesisinskeletalmusclecells.Steroids70:632-637.GreenbergSA.2012.Pathogenesisandtherapyofinclusionbodymyositis.CurrOpinNeurol25(5):630-639.HanHQ,MitchWE.2011.Targetingthemyostatinsignalingpathwaytotreatmusclewastingdiseases.CurrOpinSupportPalliatCare5(4):334-341.HungTJ,ChenWM,LiuSF,etal.2012.20-HydroxyecdysoneattenuatesTGF-β1-inducedrenalcellularfibrosisinproximaltubulecells.JDiabetesComplications26(6):463-469.KaziAA,LangCH2010.PRAS40RegulatesProteinSynthesisandCellCycleinC2C12MyoblastsMolMed.16(9-10):359–371.KizelszteinP,GovorkoD,KomarnytskyS,EvansA,WangZ,CefaluWT,RaskinI.2009.20-Hydroxyecdysonedecreasesweightandhyperglycemiainadiet-inducedobesitymicemodel.Am.J.Physiol.Endocrinol.Metab.296:E433-E439.KnightJDR,KotharyR.2011.Themyogenickinome:proteinkinasescriticaltomammalianskeletalmyogenesisSkeletalMuscle,1:29,http://www.skeletalmusclejournal.com/content/1/1/29LafontR,ClémentK,RizkallaS,FoucaultAS,VeilletS,DiohW.2013Phytoecdysonesforuseinweightstabilizationafteraweight-lossdiet.DemandedebrevetPCTWO2013/068704LafontR,HarmathaJ,Marion-PollF,DinanL,WilsonID.2002.Ecdybase,afreeecdysteroiddatabase.http://ecdybase.orgLarockRC.1989.Comprehensiveorganictransformations:Aguidetofunctionalgrouppreparations.VCHPublishers,NewYork.LawrenceMM.2012.Ajugaturkestanicaasacountermeasureagainstsarcopeniaanddynapenia.Msthesis,AppalachianStateUniversity.LeGrandF,RudnickiMA.2007.Skeletalmusclesatellitecellsandadultmyogenesis.CurrOpinCellBiol,19:628-633.LégerB,DeraveW,DeBockK;HespelP,RussellAP.2008.HumansarcopenialrevealsanincreaseinSOCS-3andmyostatinandareducedefficiencyofAktphosphorylation.RejuvenationRes11(1):163-175.LiZ,HeberD.2011.Sarcopenicobesityintheelderlyandstrategiesforweightmanagement.NutritionReviews70(1):57-64.LiZB,KolliasHD,WagnerKR.2008.Myostatindirectlyregulatesskeletalmusclefibrosis.J.Biol.Chem.283(28):19371-19378.LittleJP,PhillipsSM.2009.Resistanceexerciseandnutritiontocounteractmusclewasting.ApplPhysiolNutrMetab34:817-828.LiuW,ThomasSG,AsaSL,etal.2003.Myostatinisaskeletalmuscletargetofgrowthhormoneanabolicaction.JClinEndocrMetab88(11):5490-5496.MacellTJ,HarmanSM,UrbanRJ,etal.2001.ComparisonofGH,IGF-I,andtestosteronewithmRNAofreceptorsandmyostatininskeletalmuscleinoldermen.AmJPhysiolEndocrinolMetab281:E1159-E1164.MuradMH,ElaminKB,AbuElnourNO,etal.2011.Clinicalreview:theeffectofvitaminDonfalls:asystematicreviewandmeta-analysis.JClinEndocrinolMetab96(10):2997-3006.MurphyKT,KoopmanR,NaimT,etal.2010.Antibody-directedmyostatininhibitionin21-mo-oldmicerevealsnovelrolesformyostatinsignalinginskeletalmusclestructureandfunction.FASEBJ24:4433-4442.PiernoS,TricaricoD,LiantonioA,etal.2014.Anoliveoil-derivedantioxidantmixtureamelioratestheage-relateddeclineofskeletalmusclefunction.AGE36:73-88.QuillotD,P,MalgrasP,MalgrasA,ZieglerO.2013.L′obésitédusujetNutrClinMétabolisme27:95-101.RyallJG,PlantDR,GregorevicP,SilenceMN,LynchGS.2004.β2-Agonistadministrationreversesmusclewastingandimprovesmusclefunctioninagedrats.JPhysiol555(1):175-188.RyallJG,ChurchJE,LynchGS.2007.Anovelroleofβ-adrenoreceptorsignallinginskeletalmusclegrowth,developmentandregeneration.ProcAustralianPhysiolSoc40:103-108.RyanAS,LiG,BlumenthalJB,OrtmeyerHK.2013.Aerobicexercise+weightlossdecreasesskeletalmusclemyostatinexpressionandimprovesinsulinsensitivityinolderadults.Obesity21(7):1350-1356.SabourinLA,RudnickiMA.2000.Themolecularregulationofmyogenesis.ClinGenet57:16-25.SainiA,FaulknerS,AL-ShantiN,StewartC.2009.Powerfulsignalsforweakmuscles.AgeingResRev8:251-267.SakumaK,YamaguchiA.2012.Sarcopeniaandage-relatedendocrinefunction.IntJEndocrinol,doi:10.1155/2012/127362.SattlerFR.2013.Growthhormoneintheagingmale.BestPracticeResClinEndocrMetab27:541-555.SchaapLA,PluijmSMF,DeegDJH,etal.2009.Higherinflammatorymarkerlevelsinolderpersons:associationswith5-yearchangeinmusclemassandmusclestrength.JGerontolABiolSciMedSci64A(11):1183-1189.Seidlova-WuttkeD,ErhardtC,WuttkeW.2010.Metaboliceffectsof20-OHecdysoneinovariectomizedrats.JSteroidBiochemMolBiol119:121-126.SeidmanSN.2007.Androgensandtheagingmale.PsychopharmacolBull40:205–218.ShadfarS,CouchME,McKinneyKA,etal.2011.Oralresveratroltherapyinhibitscancer-inducedskeletalmuscleandcardiacatrophyinvivo.NutrCancer63(5):749-762.SimakinSYu,PanyushkinVV,PortugalovSN,KostinaLV,MartisorovEG.1988.CombinedapplicationofpreparationEcdystenandproductBodrostduringtrainingincyclicsports.SportsScienceBulletinN°2,29-31.StenholmS,AlleyD,BandinelliS,etal.2009.Theeffectofobesitycombinedwithlowmusclestrengthondeclineinmobilityinolderpersons:resultsfromtheInCHIANTIstudy.IntJObesity33:635-644.SyrovVN.2000.Comparativeexperimentalinvestigationsoftheanabolicactivityofecdysteroidsandsteranabols.PharmChemJournal34(4):193-197.SyrovVN,SaatovV,SagdullaevShSh,MamatkhanovAU.(2001).Studyofthestructure–anabolicactivityrelationshipforthephytoecdysteroidsextractedfromsomeplantsofcentralAsia.PharmaceuticalChemistryJournal35:667-671.TchoukouegnoNgueuS.2013.Estrogenic,cytotoxicandanaboliceffectsonestrogentargetorgansofanextractofErythrinaexcelsaandecdysterone.PhDthesis,GermanSportsUniversityofCologne.TisdaleMJ.2001.Facteurslipolytiquesetprotéolytiquesdelacachexiecancéreuse.NutrClinMétabol15:266-272.TodorovIN,MitrokhinYuI,EfremovaOI,SidorenkoLI.2000.Theeffectofecdysteroneonthebiosynthesisofproteinsandnucleicacidsinmice.PharmaceutChemJ34(9):455-458.TóthN,SzabóA,KacsalaP,HégerJ,ZádorE.2008.20-Hydroxyecdysoneincreasesfibersizeinamuscle-specificfashioninrat.Phytomedicine15:691-698.VergheseJ,HoltzerR,Oh-ParkM,etal.2011.Inflammatorymarkersandgaitspeeddeclineinolderadults.JGerontolABiolSciMedSci66A:1083-1089.WalstonJD.2012.Sarcopeniainolderadults.Curr.OpinionRheumatol.24:623-627.WhiteJP,GaoS,PuppaMJ,etal.2013.TestosteroneregulationofAkt/mTORC1/FoxO3asignalinginskeletalmuscle.MolCellEndocrinol365:174-186.WhiteTA,LeBrasseur,NK.2014.Myostatinandsarcopenia:opportunitiesandchallenges-amini-review.Gerontology,doi:10.1159/000356740.WuttkeW,Seidlová-WuttkeD.2013.PflanzlichefürdieTherapieklimaterischerundpostmenopausalerBeschwerdenundErkrankungen.Frauenartz54:580-587.ZhaoJ,BraultJJ,SchildA,GoldbergAL.2008.CoordinateactivationofautophagyandtheproteasomepathwaybyFoxOtranscriptionfactor.Autophagy4(3):378-380.ZhuWM,ZhuHJ,TianWS,HaoXJ,PittmanJrCU.2002.Theselectivedehydroxylationof20-hydroxyecdysonebyZnpowderandanhydrousaceticacid.SyntheticCommunications32:1385-1391.ZubeldiaJM,Hernández-SantanaA,Jiménez-de-RioM,etal.2012.InvitrocharacterizationoftheefficacyandsafetyprofileofaproprietaryAjugaturkestanicaextract.ChineseMedicine3:215-222.当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1