一种三明治结构硅氧烷薄膜及其制备方法与流程

文档序号:17388732发布日期:2019-04-13 00:20阅读:173来源:国知局
一种三明治结构硅氧烷薄膜及其制备方法与流程

本发明属于阻隔包装的技术领域,具体涉及一种三明治结构硅氧烷薄膜及其制备方法。



背景技术:

阻隔包装的发展源自于食品、药品、光电器件产品等包装物易氧化变性而对包装薄膜提出的阻隔需求。阻隔膜刚开始开发主要是针对包装材料领域。其所使用的阻隔膜包括铝箔、高阻隔有机高聚物膜和涂布膜。铝箔阻水氧率最好,但其柔韧性差、成本高,且不透明;高阻隔有机高聚物因透明性好,常温下阻隔性优良,可达到10-1g/(m2·day),且柔韧性好,成本较低,广泛用于多种食品的包装,但其最大的缺点是高温湿下阻隔性显著下降,而且多层共挤包装难以回收,其中,聚偏二氯乙烯(pvdc)涂布膜也存在对环境的不友好问题。

针对以上问题,许多公司纷纷开展了对无机氧化物类镀膜的研究,其中以三菱、凸版印刷和大日本印刷最领先,而且推出了各自的市售产品。此时期的无机氧化物镀膜多为12μm基材+单层无机阻隔层的结构,其阻隔性多在100~10-1g/(m2·day),透明性好,对环境友好,高温湿下阻隔性不下降,可以适用于需要高温蒸煮灭菌的包装材料,以及对耐候性有较高要求的太阳电池盒液晶显示等领域。但其也有镀膜较脆、不耐弯折、成本较高的缺陷。

硅氧烷薄膜中含有碳、氢、硅、氧等元素,一般采用物理气相沉积方法在聚酯(pet)基膜表面镀制硅氧烷薄膜,为避免镀制膜层出现裂纹以及与基膜结合不牢的问题,现有技术中一般将镀膜厚度控制在10nm以内,但此时薄膜对水气阻隔效果不好,一般都大于2g/(m2·day)。采用等离子体增强化学气相沉积(pecvd)制备硅氧烷薄膜,氧含量高的硅氧烷薄膜其结构和成分更接近氧化硅材料,具有对水蒸气良好的阻隔性,但是柔韧性差并且和有机高分子聚脂基膜结合不牢固。



技术实现要素:

有鉴于此,本发明的目的在于提供一种三明治结构硅氧烷薄膜及其制备方法,所述方法可实现柔性透明高阻隔膜的制备。

为实现上述目的,本发明的技术方案如下。

一种三明治结构硅氧烷薄膜,所述薄膜由依次沉积在基膜上的低氧硅氧烷薄膜ⅰ、高氧硅氧烷薄膜和低氧硅氧烷薄膜ⅱ组成,其中,所述低氧硅氧烷薄膜ⅰ的厚度为100~600nm,氧元素的原子百分数<45%;所述高氧硅氧烷薄膜的厚度为80~400nm,氧元素的原子百分数为50~66%;所述低氧硅氧烷薄膜ⅱ的厚度为100~700nm,氧元素的原子百分数<45%。

优选的,所述基膜为聚酯(pet),基膜的厚度为12~125μm。

一种三明治结构硅氧烷薄膜的制备方法,所述方法步骤如下:

(1)基膜安装:将基膜安装在等离子体增强化学的气相沉积(pecvd)装置的送卷轮上;

(2)真空室抽真空:开启pecvd装置自动抽气,本底真空度≤3×10-3pa;

(3)离子束清洗基膜:采用阳极层离子源,放电电流为1a,氩气通量为200sccm,电压为200~300v,基膜卷绕速度为0.1~1m/min;

(4)pecvd镀制低氧硅氧烷薄膜ⅰ:基膜通过等离子体区,在基膜上镀第一层低氧硅氧烷薄膜ⅰ,其中,六甲基二硅氧烷通量为60~100sccm,氧气通量为20~50sccm,采用13.56mhz射频电源,放电功率400~600w,反应真空度控制在1~2pa,基膜卷绕速度0.1~0.5m/min;得到第一次镀膜后的基膜;

(5)pecvd镀制高氧硅氧烷薄膜:第一次镀膜后的基膜再次通过等离子体区,在基膜上镀第二层高氧硅氧烷薄膜,其中,六甲基二硅氧烷通量为20~50sccm,氧气通量为60~100sccm,采用13.56mhz射频电源,放电功率400~600w,反应真空度控制在1~2pa,基膜卷绕速度0.1~0.5m/min;得到第二次镀膜后的基膜;

(6)pecvd镀制低氧硅氧烷薄膜ⅱ:第二次镀膜后的基膜再次通过等离子体区,在基膜上镀第三层低氧硅氧烷薄膜ⅱ,其中,六甲基二硅氧烷通量为60~100sccm,氧气通量为20~50sccm,采用13.56mhz射频电源,放电功率400~600w,反应真空度控制在1~2pa,基膜卷绕速度0.1~0.5m/min;得到一种三明治结构硅氧烷薄膜。

有益效果:

本申请所述薄膜为三明治结构,将低氧含量薄膜的柔韧性好,附着力强的优点和高氧含量薄膜水蒸气阻隔性好的优点巧妙的结合在一起,克服了单层镀膜高含氧量厚度上不去,低含氧量阻隔性能不好的难题。低氧硅氧烷薄膜与聚酯基膜可牢固结合,高氧硅氧烷薄膜具有对水蒸气良好的阻隔性,最外层的低氧硅氧烷薄膜与高氧含量的硅氧烷薄膜组合后具有好的柔韧性,适合于柔性包装材料领域的应用。

本申请所述方法中采用pecvd镀膜法,通过控制反应过程中六甲基二硅氧烷和氧气的通量,使制备得到的硅氧烷薄膜具有较好的阻水性能和可见光谱段透过性。

附图说明

图1为本发明所述三明治结构硅氧烷薄膜的结构示意图。

图2为本发明实施例1中制备得到的薄膜断面扫描电子显微镜(sem)图。

图3为本发明实施例1中制备得到的薄膜的透湿率测试结果图。

图4为本发明实施例2中制备得到的薄膜的透湿率测试结果图。

图5为本发明实施例3中制备得到的薄膜的透湿率测试结果图。

其中,1-基膜,2-低氧硅氧烷薄膜ⅰ,3-高氧硅氧烷薄膜,4-低氧硅氧烷薄膜ⅱ。

具体实施方式

下面结合具体实施例对本发明作进一步详细的说明。

以下实施例中所使用的pecvd装置包括送卷轮、导向轮、供气单元、收卷轮、纠偏轮、电源、放电辊和真空泵。基膜通过等离子体区域沉积硅氧烷薄膜,基膜三次卷绕通过等离子体区域,在基膜表面沉积形成三明治结构硅氧烷薄膜,如图1所示。

实施例1

(1)基膜1安装:采用12微米厚聚酯薄膜(pet),幅宽600毫米,安装在pecvd装置送卷轮上。

(2)真空室抽真空:开启pecvd装置自动抽气,本底真空度≤3×10-3pa。

(3)离子束清洗基膜:采用阳极层离子源,设定放电电流1a,通氩气200sccm,电压范围200~300v,基膜1卷绕速度1m/min。

(4)pecvd镀制低氧硅氧烷薄膜ⅰ2:在基膜1上镀第一层硅氧烷膜,六甲基二硅氧烷通量为60sccm,氧气通量为20sccm,采用13.56mhz射频电源,放电功率400w,反应真空度控制在1pa,基膜1卷绕速度0.5m/min。

(5)pecvd镀制高氧硅氧烷薄膜3:在基膜1上镀第二层硅氧烷膜,六甲基二硅氧烷通量为20sccm,氧气通量为60sccm,采用13.56mhz射频电源,放电功率400w,反应真空度控制在1pa,基膜1卷绕速度0.5m/min。

(6)pecvd镀制低氧硅氧烷薄膜ⅱ4:在基膜1上镀第三层硅氧烷膜,六甲基二硅氧烷通量为60sccm,氧气通量为20sccm,采用13.56mhz射频电源,放电功率400w,反应真空度控制在1pa,基膜卷绕速度0.5m/min;得到一种三明治结构硅氧烷薄膜。

sem测试:采用日本jeol公司的jsm-5600lv扫描电子显微镜观察所述薄膜的断面结构,测试结果如图2所示,所述薄膜为四层结构,基膜1(pet膜)上依次为低氧硅氧烷薄膜ⅰ2(厚度为134nm,氧原子含量为39%)、高氧硅氧烷薄膜3(厚度为86nm,氧原子含量为59%)和低氧硅氧烷薄膜ⅱ4(厚度为147nm,氧原子含量为40%)。由于镀膜过程中,高氧硅氧烷薄膜会对低氧硅氧烷薄膜ⅱ的厚度和氧含量产出一定影响,因此低氧硅氧烷薄膜ⅰ和低氧硅氧烷薄膜ⅱ在相同镀膜条件下,厚度和氧含量会有略微差别。

阻水性能(透湿率)测试:采用moconaquart2水蒸气透过率测试仪测试薄膜的阻水性能;测试结果如图3所示,水蒸气的透过率<0.5g/(m2·day)。

光谱测试:采用pe公司的lanmda900紫外可见分光光度计测试380~760nm光谱范围的透射率,在可见光谱段透过率>90%。

柔韧性测试:采用不同直径(20mm、19mm、18mm......1mm)粗糙度小于0.02mm的不锈钢管,先将10cm×10cm薄膜样品平铺在光滑的操作台上,将不锈钢管压在薄膜中间位置固定,将薄膜从一侧提起在不锈钢管上作180°弯折,循环100次,然后测试样品的水蒸气阻隔性能,采用三明治结构的硅氧烷薄膜能够卷绕的最小直径为2mm,水蒸气阻隔性能变化范围<10%,表明所述薄膜具有良好的柔韧性。

实施例2

(1)基膜1安装:采用125微米厚聚酯薄膜(pet),幅宽600毫米,安装在pecvd装置送卷轮上。

(2)真空室抽真空:开启pecvd装置自动抽气,本底真空要小于3×10-3pa。

(3)离子束清洗基膜:采用阳极层离子源,设定放电电流1a,通氩气200sccm,电压范围200~300v,基膜1卷绕速度1m/min。

(4)pecvd镀制低氧硅氧烷薄膜ⅰ2:在基膜1上镀第一层硅氧烷膜,六甲基二硅氧烷通量为100sccm,氧气通量为50sccm,采用13.56mhz射频电源,放电功率600w,反应真空度控制在2pa,基膜1卷绕速度0.1m/min。

(5)pecvd镀制高氧硅氧烷薄膜3:在基膜上镀第二层硅氧烷膜,六甲基二硅氧烷通量为50sccm,氧气通量为100sccm,采用13.56mhz射频电源,放电功率600w,反应真空度控制在2pa,基膜1卷绕速度0.1m/min。

(6)pecvd镀制低氧硅氧烷薄膜ⅱ4:在基膜1上镀第三层硅氧烷膜,六甲基二硅氧烷通量为100sccm,氧气通量为50sccm,采用13.56mhz射频电源,放电功率600w,反应真空度控制在2pa,基膜1卷绕速度0.1m/min;得到一种三明治结构硅氧烷薄膜。

sem测试:采用日本jeol公司的jsm-5600lv扫描电子显微镜观察所述薄膜的断面结构,所述薄膜为四层结构,基膜1(pet膜)上依次为低氧硅氧烷薄膜ⅰ2(厚度为564nm,氧原子含量为41%)、高氧硅氧烷薄膜3(厚度为389nm,氧原子含量为51%)和低氧硅氧烷薄膜ⅱ4(厚度为607nm,氧原子含量为43%)。由于镀膜过程中,高氧硅氧烷薄膜会对低氧硅氧烷薄膜ⅱ的厚度和氧含量产出一定影响,因此低氧硅氧烷薄膜ⅰ和低氧硅氧烷薄膜ⅱ在相同镀膜条件下,厚度和氧含量会有略微差别。

阻水性能(透湿率)测试:采用moconaquart2水蒸气透过率测试仪测试薄膜的阻水性能;测试结果如图4所示,水蒸气的透过率<0.05g/(m2·day)。

光谱测试:采用pe公司的lanmda900紫外可见分光光度计测试380~760nm光谱范围的透射率,在可见光谱段透过率>90%。

柔韧性测试:采用不同直径(20mm、19mm、18mm......1mm)粗糙度小于0.02mm的不锈钢管,先将10cm×10cm薄膜样品平铺在光滑的操作台上,将不锈钢管压在薄膜中间位置固定,将薄膜从一侧提起在不锈钢管上作180°弯折,循环100次,然后测试样品的水蒸气阻隔性能,采用三明治结构的硅氧烷薄膜能够卷绕的最小直径为3mm,水蒸气阻隔性能变化范围<10%,表明所述薄膜具有良好的柔韧性。

实施例3

(1)基膜1安装:采用125微米厚聚酯薄膜(pet),幅宽600毫米,安装在pecvd装置送卷轮上。

(2)真空室抽真空:开启pecvd装置自动抽气,本底真空度≤3×10-3pa。

(3)离子束清洗基膜:采用阳极层离子源,设定放电电流1a,通氩气200sccm,电压范围200~300v,基膜1卷绕速度1m/min。

(4)pecvd镀制低氧硅氧烷薄膜ⅰ2:在基膜1上镀第一层硅氧烷膜,六甲基二硅氧烷通量为80sccm,氧气通量为30sccm,采用13.56mhz射频电源,放电功率500w,反应真空度控制在1pa,基膜1卷绕速度0.2m/min。

(5)pecvd镀制高氧硅氧烷薄膜3:在基膜1上镀第二层硅氧烷膜,六甲基二硅氧烷通量为30sccm,氧气通量为80sccm,采用13.56mhz射频电源,放电功率500w,反应真空度控制在1pa,基膜1卷绕速度0.2m/min。

(6)pecvd镀制低氧硅氧烷薄膜ⅱ4:在基膜1上镀第三层硅氧烷膜,六甲基二硅氧烷通量为80sccm,氧气通量为30sccm,采用13.56mhz射频电源,放电功率500w,反应真空度控制在1pa,基膜1卷绕速度0.2m/min;得到一种三明治结构硅氧烷薄膜。

sem测试:采用日本jeol公司的jsm-5600lv扫描电子显微镜观察所述薄膜的断面结构,所述薄膜为四层结构,基膜1(pet膜)上依次为低氧硅氧烷薄膜ⅰ2(厚度为386nm,氧原子含量为42%)、高氧硅氧烷薄膜3(厚度为232nm,氧原子含量为54%)和低氧硅氧烷薄膜ⅱ4(厚度为313nm,氧原子含量为43%)。由于镀膜过程中,高氧硅氧烷薄膜会对低氧硅氧烷薄膜ⅱ的厚度和氧含量产出一定影响,因此低氧硅氧烷薄膜ⅰ和低氧硅氧烷薄膜ⅱ在相同镀膜条件下,厚度和氧含量会有略微差别。

阻水性能(透湿率)测试:采用moconaquart2水蒸气透过率测试仪测试薄膜的阻水性能;测试结果如图5所示,水蒸气的透过率<0.1g/(m2·day)。

光谱测试:采用pe公司的lanmda900紫外可见分光光度计测试380~760nm光谱范围的透射率,在可见光谱段透过率>90%。

柔韧性测试:采用不同直径(20mm、19mm、18mm......1mm)粗糙度小于0.02mm的不锈钢管,先将10cm×10cm薄膜样品平铺在光滑的操作台上,将不锈钢管压在薄膜中间位置固定,将薄膜从一侧提起在不锈钢管上作180°弯折,循环100次,然后测试样品的水蒸气阻隔性能,采用三明治结构的硅氧烷薄膜能够卷绕的最小直径为3mm,水蒸气阻隔性能变化范围<10%,表明所述薄膜具有良好的柔韧性。

综上所述,发明包括但不限于以上实施例,凡是在本发明的精神和原则之下进行的任何等同替换或局部改进,都将视为在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1