一种强韧、透明、荧光、抗菌聚氨酯薄膜的合成方法与流程

文档序号:18642960发布日期:2019-09-11 23:46阅读:386来源:国知局
一种强韧、透明、荧光、抗菌聚氨酯薄膜的合成方法与流程

本发明属于高分子材料合成技术领域,具体是涉及一种强韧、透明、荧光、抗菌聚氨酯薄膜的合成方法。



背景技术:

透明柔性薄膜可广泛应用于平板显示、光电子器件、液晶屏幕等领域。随着科学技术的进步,开发和制备高透明及高强韧的薄膜材料成为近些年来的研究热点。聚氨酯是由玻璃化温度低于室温的柔性链段和玻璃化温度高于室温的刚性链段嵌段组成的,由于软硬段的热力学不相容性会使得材料产生微相分离,微相分离使照在聚氨酯表面上的光线发生散射现象从而表现的不透明。另外,在聚氨酯制备过程中,芳香族异氰酸酯的使用经常会使材料黄变影响透明性,利用脂肪族的异氰酸酯可制备出透明的聚氨酯。除了异氰酸酯会影响聚氨酯的透明性之外,扩链剂也对其透明性有较大影响。us693993982专利提出使用胺类化合物作为聚氨酯扩链剂,但是胺类物质耐候性差,经过光照后及其容易变黄。us7216976b2专利提出以无色的胺类物质作为扩链剂制备光学材料,但是该材料在高温下容易黄变,影响光学性能。us6001923专利将含氟的醇引入聚氨酯结构中制备透明的含氟聚氨酯,氟元素的添加可降低材料的表面能和较好的耐水性,但是氟元素会增加材料成本,并且,较高的氟元素会降低材料力学性能,较低的氟元素对材料的性能改善甚微。us0281965a1专利提出通过三官能度的异氰酸酯可制备交联程度高的,透明的,力学强度高的聚氨酯材料,但是交联度越高,材料的断裂伸长率会受到影响。

重氮烷基脲,又称n-(1,3-二羟甲基-2,5-二酮-4-咪唑烷基)-n,n'-二羟甲基脲,是一种新型的高效广谱防腐剂,目前其杀菌机理有两种说法,其一是这类防腐剂是通过缓慢分解释放甲醛而实现杀菌,其二是该分子结构中的n-羟甲基本身是一种灭菌活性基团。除了杀菌功能外,重氮烷基脲由于分子内部含有大量的氢键供体及氢键受体,将其引入高分子结构中,强烈的氢键作用一方面有助于高分子溶液的流平,提高材料的涂覆性,另一方面增强聚氨酯材料的簇聚诱导发光效应。此外,重氮烷基脲含有四个不对称的羟甲基,不对称性可以破坏聚氨酯材料的结晶性,从而提高聚氨酯透明性。近些年来,基于重氮烷基脲的研究主要集中在其与多种杀菌剂复合后的杀菌性能的研究,利用其四个羟甲基与异氰酸酯基的反应活性制备超支化聚氨酯材料尚未见到相关报道。



技术实现要素:

为了克服现有技术的缺陷,本发明的目的在于提供一种强韧、透明、荧光、抗菌聚氨酯薄膜的合成方法,将含有多个氢键供体及受体的四元醇作为交联剂引入至聚氨酯的结构中,一方面通过控制重氮烷基脲中羟基与预聚液中游离的异氰酸酯的摩尔含量,制备超支化的聚氨酯材料,另一方面氢键作用使得聚氨酯的高分子溶液具有非常好的涂覆性,经过干燥,从而得到集高强韧、高透明、荧光、抗菌性能于一体的超支化聚氨酯柔性薄膜。

为了达到上述目的,本发明的技术方案如下:

一种强韧、透明、荧光、抗菌聚氨酯薄膜的合成方法,包括如下步骤:

(1)将大分子二元醇置于真空干燥箱中,85℃过夜干燥,次日,真空干燥箱降温至室温后,取出大分子二元醇备用;

(2)在装有磁力加热搅拌器的圆底烧瓶中加入干燥后的大分子二元醇11.1~15.4份,二元异氰酸酯5.3~4.3份,干燥溶剂20~40份,催化剂0.07~0.15份,80~90℃反应1~1.2h后,加入80~90份干燥溶剂进行稀释,加入重氮烷基脲0.31~3.53份,待重氮烷基脲完全溶解后,80~90℃再继续反应1~2h;,体系补充80~150份干燥溶剂进行稀释,继续在80~90℃反应1~2h,所述的份数均指的是质量份数;

(3)将圆底烧瓶转移至真空干燥箱,室温抽真空排除气泡5~15min,取出圆底烧瓶,将所得的高分子溶液倒入聚四氟乙烯模具中,在60℃鼓风干燥箱中干燥6~7天后,将材料从模具中剥离,得到高强韧、高透明荧光、抗菌超支化聚氨酯柔性薄膜。

所述的大分子二元醇为聚四氢呋喃醚二醇、聚乙二醇,聚丙二醇,聚己内酯二醇,端羟基聚二甲基硅氧烷,端羟基聚丁二烯,聚碳酸酯二元醇,聚己二酸乙二醇酯二醇,聚己二酸乙二醇-丙二醇酯二醇,聚己二酸一缩二乙二醇酯二醇,聚己二酸乙二醇-1,4-丁二醇酯二醇,聚己二酸-1,4-丁二醇酯二醇,聚己二酸蓖麻油酯多元醇中的任一种或其任意比例混合物,数均分子量为1000~5000。

所述的二元异氰酸酯为六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、二环己基甲烷-4,4-二异氰酸酯中任意一种或其任意比例混合物。

所述的干燥溶剂为n,n′-二甲基甲酰胺,n,n′-二甲基乙酰胺中的一种或其任意比例混合物。

所述的催化剂为:二月桂酸二丁基锡、辛酸亚锡、三亚乙基二胺、吡啶、n-乙基吗啡啉、二亚乙基三胺、二甲基乙醇胺、甲基二乙醇胺、三乙胺、三乙醇胺、n,n-二甲基吡啶中的一种或者其任意比例混合物。

所述的重氮烷基脲的化学结构为:

相对于现有技术,本发明具有以下优点:

1)本发明合成的超支化聚氨酯薄膜具有非常优异的力学性能,主要表现为具有优异的断裂伸长率、断裂强度和韧性。

2)本发明合成的超支化聚氨酯薄膜具有高于90%的透光率。

3)本发明合成的超支化聚氨酯薄膜具有荧光、抗菌性能。

4)重氮烷基脲的引入可提高材料的涂覆性,成膜性。

附图说明

图1是本发明实施例的超支化聚氨酯材料的应力-应变曲线图。

图2是本发明实施例的超支化聚氨酯材料的紫外吸收图曲线图及光学照片。

具体实施方式

下面通过实施例对本发明进行具体描述,有必要再次指出的是,本实施例只用于对本发明进行进一步说明,但不能理解为对本发明保护范围的限制,该领域的技术熟练人员可以根据上述本发明的内容作出一些非本质的改进或调整。

实施例1

本实施例包括如下步骤:

(1)将聚四氢呋喃醚二醇1000置于真空干燥箱中,85℃过夜干燥,次日,真空干燥箱降温至室温后,取出四氢呋喃醚二醇1000备用。

(2)在装有磁力加热搅拌器的圆底烧瓶中加入干燥后的聚四氢呋喃醚二醇100015.4份,二环己基甲烷-4,4′-二异氰酸酯2.2份,异佛尔酮二异氰酸酯1.82份,干燥n,n′-二甲基甲酰胺20份,二月桂酸二丁基锡0.07份,85℃反应1h后,加入80份n,n′-二甲基甲酰胺进行稀释,加入重氮烷基脲0.31份,待重氮烷基脲完全溶解后,在90℃继续反应2h,体系补充80份n,n′-二甲基甲酰胺进行稀释继续在90℃反应2h。

(3)将圆底烧瓶转移至真空干燥箱,室温抽真空排除气泡5min,取出圆底烧瓶,将所得的高分子溶液缓慢倒入聚四氟乙烯模具中,在60℃鼓风干燥箱中干燥6天后,将材料从模具中剥离,得到集自愈合、荧光、抗菌超支化性能于一体的硬段含重氮烷基脲的聚氨酯薄膜。薄膜的力学性能见图1和表1,光学性能见图2。从图1中可以看出材料的断裂强度为6.25mpa,断裂伸长率为3101%,从图2中说明了材料光的透过率为90%左右。

实施例2

本实施例包括如下步骤:

(1)将聚四氢呋喃醚二醇1000和聚乙二醇1000置于真空干燥箱中,85℃过夜干燥,次日,真空干燥箱降温至室温后,取出四氢呋喃醚二醇1000备用。

(2)在装有磁力加热搅拌器的圆底烧瓶中加入干燥后的四氢呋喃醚二醇10007.25份,干燥的聚乙二醇10007.25份,二环己基甲烷-4,4′-二异氰酸酯4.5份,干燥n,n′-二甲基甲酰胺20份,辛酸亚锡0.03份,二月桂酸二丁基锡0.03份,85℃反应1.2h后,加入80份n,n′-二甲基甲酰胺进行稀释,加入重氮烷基脲1.0份,待重氮烷基脲完全溶解后,在90℃继续反应2h,体系补充80份n,n′-二甲基甲酰胺进行稀释继续在85℃反应2h。

(3)将圆底烧瓶转移至真空干燥箱,室温抽真空排除气泡8min,取出圆底烧瓶,将所得的高分子溶液缓慢倒入聚四氟乙烯模具中,在60℃鼓风干燥箱中干燥7天后,将材料从模具中剥离,得到集自愈合、荧光、抗菌超支化性能于一体的硬段含重氮烷基脲的聚氨酯薄膜。薄膜的力学性能见图1和表1,光学性能见图2。从图1中可以看出材料的断裂强度为27.15mpa,断裂伸长率为2628%,从图2中说明了材料光的透过率为90%左右。

实施例3

本实施例包括如下步骤:

(1)将聚四氢呋喃醚二醇1000和聚己内酯1000置于真空干燥箱中,85℃过夜干燥,次日,真空干燥箱降温至室温后,取出四氢呋喃醚二醇1000备用。

(2)在装有磁力加热搅拌器的圆底烧瓶中加入干燥后的四氢呋喃醚二醇10006.75份,干燥的聚己内酯6.75份,二环己基甲烷-4,4′-二异氰酸酯2.4份,干燥n,n′-二甲基甲酰胺20份,辛酸亚锡0.03份,吡啶0.05份,85℃反应1.1h后,加入50份n,n′-二甲基甲酰胺进行稀释,加入重氮烷基脲1.8份,待重氮烷基脲完全溶解后,在90℃继续反应2h,体系补充110份n,n′-二甲基甲酰胺进行稀释继续在85℃反应2h。

(3)将圆底烧瓶转移至真空干燥箱,室温抽真空排除气泡8min,取出圆底烧瓶,将所得的高分子溶液缓慢倒入聚四氟乙烯模具中,在60℃鼓风干燥箱中干燥6.5天后,将材料从模具中剥离,得到集自愈合、荧光、抗菌超支化性能于一体的硬段含重氮烷基脲的聚氨酯薄膜。薄膜的力学性能见图1和表1,光学性能见图2。从图1中可以看出材料的断裂强度为57.40mpa,断裂伸长率为1276%,从图2中说明了材料光的透过率为90%左右。

实施例4

本实施例包括如下步骤:

(1)将聚四氢呋喃醚二醇1000置于真空干燥箱中,85℃过夜干燥,次日,真空干燥箱降温至室温后,取出四氢呋喃醚二醇1000备用。

(2)在装有磁力加热搅拌器的圆底烧瓶中加入干燥后的四氢呋喃醚二醇100012.4份,二环己基甲烷-4,4′-二异氰酸酯5.0份,干燥n,n′-二甲基甲酰胺20份,二月桂酸二丁基锡0.03份,吡啶0.04份,85℃反应1.0h后,加入50份n,n′-二甲基乙酰胺进行稀释,加入重氮烷基脲2.6份,待重氮烷基脲完全溶解后,在90℃继续反应1h,体系补充110份n,n′-二甲基甲酰胺进行稀释继续在85℃反应3h。

(3)将圆底烧瓶转移至真空干燥箱,室温抽真空排除气泡8min,取出圆底烧瓶,将所得的高分子溶液缓慢倒入聚四氟乙烯模具中,在60℃鼓风干燥箱中干燥7天后,将材料从模具中剥离,得到集自愈合、荧光、抗菌超支化性能于一体的硬段含重氮烷基脲的聚氨酯薄膜。薄膜的力学性能见图1和表1,光学性能见图2。从图1中可以看出材料的断裂强度为43.40mpa,断裂伸长率为928%,从图2中说明了材料光的透过率为90%左右。

实施例5

本实施例包括如下步骤:

(1)将聚四氢呋喃醚二醇1000置于真空干燥箱中,85℃过夜干燥,次日,真空干燥箱降温至室温后,取出四氢呋喃醚二醇1000备用。

(2)在装有磁力加热搅拌器的圆底烧瓶中加入干燥后的四氢呋喃醚二醇100011.1份,二环己基甲烷-4,4′-二异氰酸酯5.3份,干燥n,n′-二甲基甲酰胺20份,三乙胺0.05份,辛酸亚锡0.02份,90℃反应1.1h后,加入40份n,n′-二甲基甲酰胺进行稀释,加入重氮烷基脲1.0份,待重氮烷基脲完全溶解后,在88℃继续反应2h,体系补充120份n,n′-二甲基甲酰胺进行稀释继续在88℃反应2h。

(3)将圆底烧瓶转移至真空干燥箱,室温抽真空排除气泡10min,取出圆底烧瓶,将所得的高分子溶液缓慢倒入聚四氟乙烯模具中,在60℃鼓风干燥箱中干燥6.5天后,将材料从模具中剥离,得到集自愈合、荧光、抗菌超支化性能于一体的硬段含重氮烷基脲的聚氨酯薄膜。薄膜的力学性能见图1和表1,光学性能见图2。从图1中可以看出材料的断裂强度为43.98mpa,断裂伸长率为598%,从图2中说明了材料光的透过率为90%左右。

尽管在上文中参考特定的实施例对本申请进行了描述,但是所属领域技术人员应当理解,在本申请公开的原理和范围内,可以针对本申请公开的配置和细节做出许多修改。本申请的保护范围由所附的权利要求来确定,并且权利要求意在涵盖权利要求中技术特征的等同物文字意义或范围所包含的全部修改。

表1是本发明实施例的聚氨酯材料的断裂强度、断裂伸长率、弹性模量、断裂牺牲能的数据

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1