一种具有抗菌活性的化合物的制作方法

文档序号:23013619发布日期:2020-11-20 12:16阅读:391来源:国知局
一种具有抗菌活性的化合物的制作方法

与相关申请的交叉引用

本申请要求于2018年1月9日提交的美国临时专利申请62/615418的优先权。所有在先申请中的全部内容通过引用构成了本申请的一部分。

本申请也引用了各种不同出版物。这些出版物所披露的全部内容通过引用构成了本申请的一部分,以更全面地描述本发明所属的现有技术。

本发明涉及具有抗菌活性的化合物。



背景技术:

由属于革兰氏阳性病原体的耐甲氧西林金黄色葡萄球菌(mrsa)所引致的感染已成为了全球最严重的公共卫生问题之一1。能够控制mrsa的药物仅限于万古霉素、达托霉素和利奈唑胺2,但mrsa对上述药物已经出现了耐药性3。因此,我们有迫切需要验证新的抗生素目标,开发一种具有有效及特定活性的新颖抗菌药,以对抗mrsa相关的感染。

在细菌细胞里,rrna占了总rna最多80%,而rrna的转录与细菌生长速率呈现出正相关的关系,以达到蛋白质合成的需求4。虽然rrna合成是活细胞最基本的要求之一,此过程中依然存在显著的差异。在真核细胞中,核糖体基因被不同种类的rna聚合酶转录,即rnapoli、polii和poliii5。另一方面,在细菌里只有一种rna聚合酶,该rna聚合酶与多种延伸因子有所关联而形成所谓的“rrna抗终止复合物”,从而确保高效率的rrna基因转录6

nusb和nuse(也称为30s核糖体亚基中的核糖体蛋白质s10)是用于形成rrna抗终止复合物的必要高度保守小型转录因子7。nusb和nuse之间的蛋白质相互作用是组装rrna转录抗终止复合物的第一个调控步骤8。当nusb-nuse异源二聚体形成后,它会与rrna前导序列中名叫boxa的区域产生相互作用。nusb-nuse-boxa复合物与rna聚合酶结合后,其它因子(如nusa、nusg等)将会在适当的时候与复合物产生相互作用,当中只有nusg具有真核同源物10

由于nusb和nuse对于细菌细胞的存活起到必要的作用11,本发明提供的化合物是用于破坏nusb-nuse异源二聚体形成,从而降低rrna合成与细菌细胞增殖的速率。



技术实现要素:

本发明提供具有抗菌活性的化合物。在一个实施例,本发明提供根据化学式1的化合物或其药学上可接受的盐、前药或溶剂化物:

其特征在于:

(1)x1选自-n=ch-,-ch=n-,-ch=ch-,-nh-ch2-,-ch2-nh-,-ch2-ch2-,-ch2-o-,-o-ch2-,-ch2-s-,-s-ch2-,-s(=o)-ch2-,-s(=o)-nh-,-ch2-s(=o)-,-nh-s(=o)-,-s(=o)2-ch2-,-s(=o)2-nh-,-ch2-s(=o)2-,-nh-s(=o)2-,-c(=o)-nh-,-nh-c(=o)-或-c(=o)-;以及

(2)r1-r5各独立地选自氢、羟基、硝基、乙酰基、甲基、乙炔基、羧基、羧甲基、羟甲基、甲氧基、甲氧基羰基、氨基磺酰基、氨基羰基、氰基、四唑基、二甲基氨基磺酰基氨基羰基、氰基甲基、乙酰基氨基磺酰基、甲氧基氨基羰基、甲基磺酰基氨基羰基、叔丁基、氟、氯、溴、苯基、三氟甲基或苯并。

在一个实施例,本发明提供根据化学式2的化合物或其药学上可接受的盐、前药或溶剂化物:

其特征在于:

(1)x1选自-n=ch-,-ch=n-,-ch=ch-,-nh-ch2-,-ch2-nh-,-ch2-ch2-,-ch2-o-,-o-ch2-,-ch2-s-,-s-ch2-,-s(=o)-ch2-,-s(=o)-nh-,-ch2-s(=o)-,-nh-s(=o)-,-s(=o)2-ch2-,-s(=o)2-nh-,-ch2-s(=o)2-,-nh-s(=o)2-,-c(=o)-nh-,-nh-c(=o)-或-c(=o)-;以及

(2)r1-r5各独立地选自氢、羟基、硝基、乙酰基、甲基、乙炔基、羧基、羧甲基、羟甲基、甲氧基、甲氧基羰基、氨基磺酰基、氨基羰基、氰基、四唑基、二甲基氨基磺酰基氨基羰基、氰基甲基、乙酰基氨基磺酰基、甲氧基氨基羰基、甲基磺酰基氨基羰基、叔丁基、氟、氯、溴、苯基、三氟甲基或苯并。

在一个实施例,本发明提供根据化学式3的化合物或其药学上可接受的盐、前药或溶剂化物:

其特征在于:

(1)x1和y各独立地选自-nh-,-ch2-,-o-,或-s-;以及

(2)r1-r5各独立地选自氢、羟基、硝基、乙酰基、甲基、乙炔基、羧基、羧甲基、羟甲基、甲氧基、甲氧基羰基、氨基磺酰基、氨基羰基、氰基、四唑基、二甲基氨基磺酰基氨基羰基、氰基甲基、乙酰基氨基磺酰基、甲氧基氨基羰基、甲基磺酰基氨基羰基、叔丁基、氟、氯、溴、苯基、三氟甲基或苯并。

在一个实施例,本发明提供一种用于治疗哺乳类动物、鱼类或鸟类内的细菌或原虫感染的药物组合物,其包括具有治疗有效量的具有化学式1、2或3的化合物与药学上可接受的载体。

在一个实施例,本发明提供一种治疗哺乳类动物、鱼类或鸟类内的细菌或原虫感染的方法,其包括向所述哺乳类动物、鱼类或鸟类施用具有治疗有效量的具有化学式1、2或3的化合物。

在一个实施例,本发明提供一种制备具有化学式1、2或3的化合物的方法。

定义与简称

以下的术语将用于描述本发明。在本部分缺乏具体定义的情况下,用于描述本发明的术语应被赋予所属技术领域的技术人员所理解的基本含义。

除非另有指明,在本文中“治疗”应理解为逆转、减轻、抑制发展或预防该术语所应用的病症或疾病,或所述病症或疾病的一种或多种症状。

除非另有指明,在本文中“细菌感染”、“原虫感染”和“与细菌感染或原虫感染相关的病症”包括:与肺炎链球菌、流感嗜血杆菌、卡他莫拉菌、金黄色葡萄球菌、粪肠球菌、屎肠球菌、酪黄肠球菌、表皮葡萄球菌、溶血葡萄球菌或消化链球菌属感染相关的肺炎、中耳炎、鼻窦炎、支气管炎、扁桃体炎和乳突炎;与化脓性链球菌、c族和g族链球菌、白喉棒状杆菌或溶血放线杆菌感染相关的咽炎、风湿热和肾小球肾炎;与肺炎支原体、嗜肺军团菌、肺炎链球菌、流感嗜血杆菌或肺炎衣原体感染相关的呼吸道感染;金黄色葡萄球菌、溶血葡萄球菌、粪肠球菌、屎肠球菌、坚忍肠球菌,包括对已知抗菌药(例如但不限于β-内酰胺类抗生素、万古霉素、氨基糖苷类抗生素、喹诺酮类抗生素、氯霉素、四环素和大环内酯类抗生素)有耐药性的菌株,所引致的血液和组织感染(包括心内膜炎和骨髓炎);与金黄色葡萄球菌、凝固酶阴性葡萄球菌(即表皮葡萄球菌,溶血葡萄球菌等)、化脓性链球菌、无乳链球菌、c族到f族链球菌(微小菌落链球菌)、草绿色链球菌、极小棒杆菌、梭菌属或汉氏巴尔通体感染相关的非复杂皮肤及软组织感染与脓肿,以及产褥热;与金黄色葡萄球菌,凝固酶阴性葡萄球菌或肠球菌属感染相关的非复杂急性尿路感染;尿道炎及宫颈炎;与沙眼衣原体、杜氏嗜血杆菌、梅毒螺旋体、解脲脲原体或淋病奈瑟菌感染相关的性传播疾病;与金黄色葡萄球菌(食物中毒和中毒性休克综合症)或a、b和c族链球菌感染相关的毒素疾病;与幽门螺杆菌感染相关的溃疡;与回归热螺旋体感染相关的系统性发热综合征;与伯氏疏螺旋体感染相关的莱姆病;与沙眼衣原体、淋病奈瑟菌、金黄色葡萄球菌、肺炎链球菌、化脓性链球菌、流感嗜血杆菌或李斯特菌属感染相关的结膜炎、角膜炎和泪囊炎;与鸟分枝杆菌或胞内分枝杆菌感染相关的鸟分枝杆菌复合体(mac)传播疾病;由结核分枝杆菌、麻风分枝杆菌、副结核分枝杆菌、堪萨斯分枝杆菌或龟分枝杆菌引起的感染;与空肠弯曲菌感染相关的胃肠炎;与隐孢子虫属感染相关的肠道原虫;与草綠色鏈球菌感染相关的牙源性感染;与百日咳杆菌感染相关的持续咳嗽;与产气荚膜杆菌或拟杆菌属感染相关的气性坏疽;以及与幽门螺杆菌或肺炎衣原体感染相关的动脉粥样硬化或心血管疾病。可在动物上治疗或预防的细菌感染、原虫感染以及与所述感染相关的病症包括:与溶血性巴斯德氏菌、多杀巴斯德氏菌、牛支原体或博德特氏菌属感染相关的牛呼吸道疾病;与大肠杆菌或原虫(即球虫、隐孢子虫等)感染相关的牛肠道疾病;与金黄色葡萄球菌、乳房链球菌、无乳链球菌、停乳链球菌、克雷伯氏菌属、棒状杆菌属或肠球菌属感染相关的奶牛乳腺炎;与胸膜肺炎放线杆菌、多杀巴斯德氏菌或支原体属感染相关的猪呼吸道疾病;与大肠杆菌、胞内劳森菌、沙门氏菌或猪痢疾蛇样螺旋体感染相关的猪肠道疾病;与梭桿菌属感染相关的牛腐蹄病;与大肠杆菌感染相关的牛子宫炎;与坏死梭杆菌或节瘤拟杆菌感染相关的牛疣;与牛莫拉氏菌感染相关的牛红眼病;与原虫(即新孢子虫)感染相关的母牛过早流产;与大肠杆菌感染相关的狗和猫尿路感染;与表皮葡萄球菌、中间葡萄球菌、凝固酶阴性葡萄球菌或多杀巴斯德氏菌感染相关的狗和猫皮肤及软组织感染;以及与产碱菌属、拟杆菌属、梭菌属、肠杆菌属、真杆菌属、消化链球菌属、卟啉单胞菌属或普雷沃氏菌属感染相关的狗和猫牙齿或口腔感染。其它可以根据本发明的方法治疗或预防的细菌感染、原虫感染以及与所述感染相关的病症于j.p.sanfordetal.,“thesanfordguidetoantimicrobialtherapy,”26thedition,(antimicrobialtherapy,inc.,1996)内提及到。

除非另有指明,在本文中“卤素”一词是指包括氟、氯、溴或碘的基团。优选的卤素基团是氟、氯和溴。

除非另有指明,在本文中“烷基”一词是指包括具有环状、直链和/或支链部分的饱和一价烃自由基。如需包括环状部分,所述烷基必须包含至少3个碳原子。

除非另有指明,在本文中“烯基”一词是指包括在烷基链某位置具有至少一个碳-碳双键的以上所定义的烷基。

除非另有指明,在本文中“炔基”一词是指包括在烷基链某位置具有至少一个碳-碳三键的以上所定义的烷基。

除非另有指明,在本文中“芳基”一词是指包括由芳香烃去除一个氢原子形成的有机自由基团,如苯基或萘基。

除非另有指明,在本文中“4至10元杂环化合物”一词是指包括具有一个或多个选自氧、硫和氮的杂原子的芳香族和非芳香族杂环基团,每个杂环基团的环系统中有4至10个原子。非芳香族杂环基团的环系统仅包括有4个原子的基团,但芳香族杂环基团的环系统至少要有5个原子。杂环基团包括苯并稠合的环系统和被一个或多个氧代基团取代的环系统。一个4元杂环基团的例子是吖丁啶基(源自吖丁啶)。一个5元杂环基团的例子是噻唑基,而一个10元杂环基团的例子是喹啉基。非芳香族杂环基团的例子包括吡咯烷基、四氢呋喃基、四氢噻吩基、四氢吡喃基、四氢硫代吡喃基、哌啶基、吗啉基、硫代吗啉基、噻噁烷基、哌嗪基、吖丁啶基、氧杂环丁基、硫杂环丁基、氮杂环庚基、氧杂环庚基、硫杂环庚基、氧杂吖庚基、二吖呯基、硫杂吖庚基、1,2,3,6-四氢吡啶基、2-吡咯啉基、3-吡咯啉基、吲哚啉基、2h-吡喃基、4h-吡喃基、二噁烷基、1,3-二氧戊环基、吡唑啉基、二噻烷基、二硫戊环基、二氢吡喃基、二氢噻吩基、二氢呋喃基、吡唑烷基、咪唑啉基、咪唑啉啶基、3-氮杂双环[3.1.0]己基、3-氮杂双环[4.1.0]庚基、3h-吲哚基和喹嗪基。芳香族杂环基团的例子包括吡啶基、咪唑基、嘧啶基、吡唑基、三唑基、吡嗪基、四唑基、呋喃基、噻吩基、异噁唑基、噻唑基、噁唑基、异噻唑基、吡咯基、喹啉基、异喹啉基、吲哚基、苯并咪唑基、苯并呋喃基、噌啉基、吲唑基、吲哚嗪基、酞嗪基、哒嗪基、三嗪基、异吲哚基、蝶啶基、嘌呤基、噁二唑基、噻二唑基、呋咱基、苯并呋咱基、苯并噻吩基、苯并噻唑基、苯并噁唑基、喹唑啉基、喹喔啉基、萘啶基和呋喃并吡啶基。在可行的情况下,源自上述化合物的基团可以在碳连接或在氮连接。例如源自吡咯的基团可以是吡咯-1-基(氮连接)或吡咯-3-基(碳连接)。

除非另有指明,在本文中“药学上可接受的盐”一词是指具有化学式1、2或3的化合物中存在的酸性或碱性基团的盐。碱性的具有化学式1、2或3的化合物能够与各种无机和有机酸形成各种盐。可以用于制备所述具有化学式1、2或3的碱性化合物的药学上可接受的酸加成盐的酸,应当能够形成无毒酸加成盐,即含有药学上可接受的阴离子的盐,例如乙酸盐、苯磺酸盐、苯甲酸盐、碳酸氢盐、硫酸氢盐、酒石酸氢盐、硼酸盐、溴化盐、乙二胺四乙酸钙、樟脑磺酸盐、碳酸盐、氯化盐、克拉维酸盐、柠檬酸盐、二氢盐酸盐、乙二胺四乙酸盐、乙二磺酸盐、丙酸酯十二烷基硫酸盐、乙磺酸盐、乙基琥珀酸盐、富马酸盐、葡庚糖酸盐、葡萄糖酸盐、谷氨酸盐、乙醇酰基对氨基苯砷酸盐、己基间苯二酚盐、海巴明盐、氢溴酸盐、氢盐酸盐、碘化盐、异拌磷盐、乳酸盐、乳糖酸盐、月桂酸盐、苹果酸盐、马来酸盐、扁桃酸盐、甲磺酸盐、甲基硫酸盐、粘酸盐、萘磺酸盐、硝酸盐、油酸盐、草酸盐、扑酸盐、棕榈酸盐、泛酸盐、磷酸盐/二磷酸盐、聚半乳糖醛酸盐、水杨酸盐、硬脂酸盐、碱式乙酸盐、琥珀酸盐、单宁酸盐、酒石酸盐、茶氯酸盐、对甲苯磺酸盐、三乙基碘盐和戊酸盐。

附图说明

图1a所示的是细菌rrna转录复合体的模型。

图1b所示的是nusb-nuse间的界面。

图2a所示的是具有化合物mc4停靠在内的药效团模型。

图2b所示的是(e)-2-{[(3-乙炔基苯基)亚氨基]甲基}-4-硝基苯酚(mc4)的化学结构。

图3所示的是mc4对特选的病原细菌的抗菌活性。mic是最小抑菌浓度的简称,mbc是最低杀菌浓度的简称,nd是未确定的简称。

图4所示的是mc4、利福平和苯唑西林在最小抑菌浓度(mic)的四分之一时,对金黄色葡萄球菌25923细胞中的dna、rrna(16s+23s)和蛋白质生产的效果。

图5所示的是nusb和nuse的部分序列比对。aaeo是指风产液菌;bsub是指枯草芽孢杆菌;ecol是指大腸桿菌;hinf是指流感嗜血桿菌;hpyl是指幽门螺杆菌;paer是指绿脓杆菌;mtub是指结核分枝杆菌;saur是指金黄色葡萄球菌;spne是指肺炎链球菌;箭头所指出的是参与nusb-e相互作用的残基。

图6所示的是经由计算机虚拟筛选后获选的七种化合物:mc1是n-{4-[2-(2-硝基苯甲酰基)腙基]苯基}乙酰胺(cas号679423-05-3);mc2是3-({4-[(1,5-二甲基-3-氧代-2-苯基-2,3-二氢-1h-吡唑-4-基)氨磺酰基]苯基}氨甲酰基)丙酸(cas号253605-53-7);mc3是3-[3-(3-羟基-4h-吡唑-4-基)丙基]-1-(4-甲氧基苯基)硫脲(cas号656222-98-9);mc4是(e)-2-{[(3-乙炔基苯基)亚氨基]甲基}-4-硝基苯酚(cas号219140-31-5);mc5是(e)-{氨基[3-({[4-甲基-5-(三氟甲基)-4h-1,2,4-三唑-3-基]硫烷基}甲基)苯基]亚甲基}氨基n-(4-氯苯基)氨基甲酸酯(cas号882256-39-5);mc6是n-(4-{[2-(2,4-二氯苯氧基)苯基]氨磺酰基}苯基)-3,4-二甲氧基苯-1-磺酰胺(cas号312324-35-9);mc7是甲基4-[(1e)-[(e)-2-{[4-(甲氧基羰基)-2,5-二甲基-1h-吡咯-3-基]亚甲基}}肼-1-基]甲基]-2,5-二甲基-1h-吡咯-3-羧酸盐(cas号883037-11-4)。

图7所示的是mc4的十个类似物。mc4-1是2-硝基-6-[(e)-(苯基亚氨基)甲基]苯酚(cas号243981-87-5);mc4-2是2-{[(1e)-(2-羟基-3-硝基苯基)亚甲基]氨基}-4-甲基苯酚(cas号321726-90-3);mc4-3是1-(3-{[(1e)-(2-羟基-5-硝基苯基)亚甲基]氨基}苯基)乙酮(cas号316133-49-0);mc4-4是4-硝基-2-[(苯基亚氨基)甲基]苯酚(cas号15667-99-9);mc4-5是2-{(e)-[(3-甲基苯基)亚氨基]甲基}-4-硝基苯酚(cas号303058-73-3);mc4-6是2-{(e)-[(4-羟苯基)亚氨基]甲基}-4-硝基苯酚(cas号1081780-22-4);mc4-7是2-{(e)-[(4-氯苯基)亚氨基]甲基}-4-硝基苯酚(cas号303215-49-8);mc4-8是2-{(e)-[(3-羟苯基)亚氨基]甲基}-4-硝基苯酚(cas号303215-19-2)。

图8a至8d所示的是使用mc4与枯草芽孢杆菌nusb野生型蛋白(图8a)和变体y18a、d76a、d81a(分别为图8b至8d)的等温滴定量热法分析结果,当中n=0.988±0.076、kd=1.45±0.55微摩尔每升、δh=-7141±939.8卡每摩尔、和δs=-1.81卡/摩尔·度。

图9所示的是mc4类似物用于各种微生物上的最小抑菌浓度。

具体实施方式

以下对于某实施例的陈述仅为示范性质,不应用作限制本发明、其应用或用途的范围。

本发明涉及具有抗菌活性的具有化学式1、2或3的化合物。在一个实施例,本质酸性的具有化学式1、2或3的化合物能够与各种药理学上可接受的阳离子形成碱式盐。这种盐的例子包括碱金属或碱土金属盐,特别是钠盐和钾盐。

在一个实施例,某些具有化学式1、2或3的化合物可具有不对称中心,因此以不同的对映异构体形式存在。本发明涉及具有化学式1、2或3的化合物的所有旋光异构体和立体异构体及其混合物的使用。本发明尤其包括所述化合物的e和z异构体。

在一个实施例,本发明包括具有化学式1、2或3的化合物的互变异构体。

在一个实施例,本发明也包括使用了同位素标记的化合物及其药学上可接受的盐,除了当中一个或多个原子被拥有与自然界通常存在的有所不同的原子质量或质量数的原子取代以外,都是与具有化学式1、2或3的化合物一样。可被加入本发明化合物的同位素的例子包括氢、碳、氮、氧、磷、氟和氯的同位素,各自的例子分别是2h、3h、13c、14c、15n、18o、17o、35s、18f和36cl。包含上述同位素和/或其它原子的其它同位素的本发明中的化合物、其前药以及所述化合物或其前药的药学上可接受的盐,都在本发明的范围内。本发明中某些被同位素标记的化合物,例如在其中加入了如3h和14c的放射性同位素,可用于药物和/或基质组织分布测定。氚,即3h,和碳-14,即14c的同位素由于容易制备及其可检测性是特别优选。此外,使用较重的同位素如氘,即2h作取代可提供基于代谢稳定性更高而带来的某些治疗上的益处,例如延长体内半衰期或降低剂量要求,因此在某些情况下是优选的。本发明中具有化学式1、2或3的同位素标记化合物及其前药通常可以通过以下公开的例子及制备方法,把可容易获得的同位素标记试剂取代一个非同位素标记试剂便可制成。

在一个实施例,本发明还涵盖具有化学式1、2或3的化合物的前药的药物组合物,以及通过施用所述前药治疗细菌感染的方法。具有游离氨基、酰胺基、羟基或羧基的化学式1、2或3的化合物可以转化为前药。前药所包括的化合物的特征在于,一个氨基酸残基或两个或更多(例如两个、三个或四个)氨基酸残基组成的多肽链通过酰胺或酯键与化学式1、2或3的化合物的游离氨基、羟基或羧酸基团共价连接。氨基酸残基包括但不限于通常由三个字母符号表示的20种天然氨基酸,另外还包括4-羟脯氨酸、羟赖氨酸、锁链素、异锁链素、3-甲基组氨酸、正缬氨酸、β-丙氨酸、γ-氨基丁酸、瓜氨酸、高半胱氨酸、高丝氨酸、鸟氨酸和蛋氨酸砜。本发明更涵盖其它类型的前药。例如,游离羧基团可以被衍生为酰胺或烷基酯。游离羟基团可衍生自包括但不限于半琥珀酸酯、磷酸酯、二甲基氨基乙酸酯和磷酰氧基甲基氧羰基的基团,如advanceddrugdeliveryreviews,1996,19,115所述。本发明还包括羟基和氨基基团的氨基甲酸酯前药,以及羟基基团的碳酸酯前药、磺酸酯和硫酸酯。羟基衍生为酰氧基甲基和酰氧基乙基的醚,其中酰基可以是烷基酯,也包含在本发明内。当中,所述羟基衍生物可选择被包括但不限于醚、胺和羧酸的基团取代,或所述酰基是如上述的氨基酸酯。这种类型的前药描述于j.med.chem.1996,39,10。游离胺也可以衍生为酰胺、磺酰胺或磷酰胺。所有前述的前药部分可以加入包括但不限于醚、胺和羧酸的基团。

在一个实施例,本发明的化合物可以具有不对称碳原子。非对映异构体混合物可以根据其物理化学差异,通过本领域技术人员已知的方法,例如通过色谱法或分步结晶,将其分离为它们各自的非对映异构体。对映异构体可通过与合适的旋光性化合物(例如醇)反应,将对映异构体混合物转化为非对映异构体混合物,再将非对映异构体分离,并将各非对映异构体转化(例如水解)为相应的纯对映异构体,从而把其分离。所有所述异构体,包括非对映异构体混合物和纯对映异构体,都是本发明的一部分。

任何具有化学式1、2或3的碱性化合物能够与各种无机酸及有机酸形成各种盐。

任何具有化学式1、2或3的酸性化合物能够与各种药理学上可接受的阳离子形成碱式盐。这种盐的实例包括碱金属或碱土金属盐,尤其钠盐和钾盐。这些盐可以通过常规技术制备。用作制备本发明中药学上可接受的碱式盐的试剂的碱性化学物质,应当与化学式1、2或3的任何酸性化合物形成无毒碱式盐。所述的无毒碱式盐包括衍生自药学上可接受的阳离子如钠、钾、钙和镁等。这些盐的制备可以通过将含有所需药理学上可接受的阳离子的水溶液与相应的酸性化合物反应,然后将所得溶液蒸发至干,优选在减压情况下。在另一个方法,这些盐的制备也可以通过将酸性化合物的短链羧酸溶液和所需的碱金属醇盐混合,然后以上述相同的方式将所得溶液蒸发至干。在任何一种情况下,应优选使用化学计量的试剂,以确保完整的反应及所需最终产物的最大产率。

在一个实施例,具有化学式1、2或3的化合物,以及其药学上可接受的盐和溶剂化物(以下将统称为“活性化合物”)可以通过口服、非消化道、局部或肛门途径给药治疗或预防细菌或原虫感染。然而,因应所治疗的哺乳类动物、鱼类或鸟类的物种及其对所述药物的个体反应,以及所选择的药物剂型和施用药物的时间段和间隔,给药途径仍可能有所变化。

在一个实施例,活性化合物可以通过上述的途径单独地或结合药学上可接受的载体或稀释剂施用,而这种施用可以单剂量或多剂量进行。活性化合物尤其是可以通过各种不同的剂型施用,即它们可以与各种药学上可接受的惰性载体结合成片剂、胶囊、口含糖、舌下锭、硬糖、粉剂、喷雾、乳膏、药膏、栓剂、胶冻、凝胶、糊剂、洗剂、软膏、水溶性混悬剂、注射溶液、酏剂、糖浆等形式。所述载体包括固体稀释剂或填充剂、无菌水溶液和各种无毒的有机溶剂等。此外,口服药物组合物可以适当地增甜和/或调味。活性化合物在上述剂型中的浓度通常为约5.0重量%至约70重量%。

在一个实施例,针对口服给药,所使用的片剂可以含有如微晶纤维素、柠檬酸钠、碳酸钙、磷酸二钙和甘氨酸等各种赋形剂,加上如淀粉(优选玉米、马铃薯或木薯淀粉)、海藻酸和某些复杂的硅酸盐等各种崩解剂,再加上如聚乙烯吡咯烷酮、蔗糖、明胶和阿拉伯胶等制粒粘合剂。此外,如硬脂酸镁、月桂基硫酸钠和滑石粉等润滑剂也通常为压片过程带来正面效用。相似类型的固体组合物也可以用作明胶胶囊中的填充剂;在这方面,优选的材料还包括乳糖以及高分子量聚乙二醇。当水溶性混悬剂和/或酏剂是用作口服施用时,可以将活性化合物与各种增甜剂或调味剂、色素或染料、以及乳化剂和/或助悬剂混合,再加上如水、乙醇、丙二醇、甘油及其各种类似组合的稀释剂。

在一个实施例,针对非消化道给药,可以使用活性化合物在芝麻油、花生油或丙二醇水溶液中的溶液。如有需要,应当适当地缓冲水溶液(优选ph大于8),并且首先使液体稀释剂等渗。这些水溶液适合于静脉内注射。油性溶液适合于关节内、肌肉内和皮下注射。所有这些溶液在无菌条件下的制备,都可以通过本领域技术人员已知的标准制药技术完成。

在另一个实施例,本发明的活性化合物也可通过局部给药施用,并可以按照标准药学规范,通过乳膏、胶冻、凝胶、糊剂、贴剂、软膏等施用。

在一个实施例,当施用于人类以外的其它动物如牛或其它家畜时,活性化合物可以通过动物饲料或灌药组合物的方式口服施用。

在一个实施例,活性化合物也可以通过脂质体药物递送系统的形式施用,例如小单层囊泡、大单层囊泡和多层囊泡。脂质体可以由多种磷脂形成,例如胆固醇、硬脂胺或磷脂酰胆碱。

在一个实施例,活性化合物也可以与可溶性聚合物偶联成为靶向药物载体。所述聚合物可以包括聚乙烯吡咯烷酮、吡喃共聚物、聚羟丙基甲基丙烯酰胺-苯基、聚羟乙基天冬酰胺-苯酚或被棕榈酰基残基取代的聚环氧乙烷-聚赖氨酸。此外,活性化合物也可与一类可生物降解的聚合物偶联从而实现可控的药物释放,例如聚乳酸、聚乙醇酸、聚乳酸和聚乙醇酸的共聚物、聚ε-己内酯、聚羟基丁酸、聚原酸酯、聚缩醛、聚二氢吡喃、聚氰基丙烯酸酯和水凝胶的交联或两亲嵌段共聚物。

在一个实施例,本发明提供一种根据化学式1的化合物或其药学上可接受的盐或溶剂化物,

其特征在于:

(1)x1选自-n=ch-,-ch=n-,-ch=ch-,-nh-ch2-,-ch2-nh-,-ch2-ch2-,-ch2-o-,-o-ch2-,-ch2-s-,-s-ch2-,-s(=o)-ch2-,-s(=o)-nh-,-ch2-s(=o)-,-nh-s(=o)-,-s(=o)2-ch2-,-s(=o)2-nh-,-ch2-s(=o)2-,-nh-s(=o)2-,-c(=o)-nh-,-nh-c(=o)-或-c(=o)-;以及

(2)r1-r5各独立地选自氢、羟基、硝基、乙酰基、甲基、乙炔基、羧基、羧甲基、羟甲基、甲氧基、甲氧基羰基、氨基磺酰基、氨基羰基、氰基、四唑基、二甲基氨基磺酰基氨基羰基、氰基甲基、乙酰基氨基磺酰基、甲氧基氨基羰基、甲基磺酰基氨基羰基、叔丁基、氟、氯、溴、苯基、三氟甲基或苯并。

在一个实施例,本发明提供的化合物包括但不限于:

在一个实施例,本发明提供的化合物包括但不限于:

在一个实施例,本发明提供一种用于治疗或预防细菌或原虫感染的药物组合物,所述药物组合物包括所述化合物。

在一个实施例,所述药物组合物的剂型包括片剂、胶囊、口含糖、舌下锭、硬糖、粉剂、喷雾、乳膏、药膏、栓剂、胶冻、凝胶、糊剂、洗剂、软膏、水溶性混悬剂、注射溶液、酏剂或糖浆。

在一个实施例,所述药物组合物包括重量百分比5%到70%的所述化合物。

在一个实施例,所述细菌或原虫感染由以下微生物引起:粪肠球菌、金黄色葡萄球菌、肺炎克雷伯菌、鲍曼不动杆菌、绿脓杆菌、阴沟肠杆菌、大肠杆菌或肺炎链球菌。

在一个实施例,本发明提供一种在微生物中抑制nusb-nuse相互作用的方法,所述方法包括将所述化合物与所述微生物接触的步骤。

在一个实施例,所述nusb选自nusbe81、nusby18或nusbe75,和所述nuse选自nuseh15、nused19或nuser16。

在一个实施例,所述微生物选自粪肠球菌、金黄色葡萄球菌、肺炎克雷伯菌、鲍曼不动杆菌、绿脓杆菌、阴沟肠杆菌、大肠杆菌或肺炎链球菌。

在一个实施例,本发明提供一种用于在受试者中治疗或预防细菌或原虫感染的方法,所述方法包括向所述受试者施用具有治疗有效量的所述化合物的步骤。

在一个实施例,所述化合物的给药途径是口服给药、非消化道给药、局部给药或肛门给药。

在一个实施例,所述微生物选自粪肠球菌、金黄色葡萄球菌、肺炎克雷伯菌、鲍曼不动杆菌、绿脓杆菌、阴沟肠杆菌、大肠杆菌或肺炎链球菌。

在一个实施例,所述nusb选自nusbe81、nusby18或nusbe75,和所述nuse选自nuseh15、nused19或nuser16。

在一个实施例,本发明提供一种根据化学式2的化合物或其药学上可接受的盐或溶剂化物,

其特征在于:

(1)x1选自-n=ch-,-ch=n-,-ch=ch-,-nh-ch2-,-ch2-nh-,-ch2-ch2-,-ch2-o-,-o-ch2-,-ch2-s-,-s-ch2-,-s(=o)-ch2-,-s(=o)-nh-,-ch2-s(=o)-,-nh-s(=o)-,-s(=o)2-ch2-,-s(=o)2-nh-,-ch2-s(=o)2-,-nh-s(=o)2-,-c(=o)-nh-,-nh-c(=o)-或-c(=o)-;以及

(2)r1-r5各独立地选自氢、羟基、硝基、乙酰基、甲基、乙炔基、羧基、羧甲基、羟甲基、甲氧基、甲氧基羰基、氨基磺酰基、氨基羰基、氰基、四唑基、二甲基氨基磺酰基氨基羰基、氰基甲基、乙酰基氨基磺酰基、甲氧基氨基羰基、甲基磺酰基氨基羰基、叔丁基、氟、氯、溴、苯基、三氟甲基或苯并。

在一个实施例,所述化合物选自:

在一个实施例,本发明提供一种根据化学式3的化合物或其药学上可接受的盐或溶剂化物,

其特征在于:

(1)x1和y各独立地选自–nh-,-ch2-,-o-,或–s-;以及

(2)r1-r5各独立地选自氢、羟基、硝基、乙酰基、甲基、乙炔基、羧基、羧甲基、羟甲基、甲氧基、甲氧基羰基、氨基磺酰基、氨基羰基、氰基、四唑基、二甲基氨基磺酰基氨基羰基、氰基甲基、乙酰基氨基磺酰基、甲氧基氨基羰基、甲基磺酰基氨基羰基、叔丁基、氟、氯、溴、苯基、三氟甲基或苯并。

在一个实施例,所述化合物是(mc4-45)。

实施例1

早前,通过理性设计和根据药效团的虚拟筛选,辨认出具有抗菌活性的小化学分子抑制剂,其目标为破坏细菌rna聚合酶和必要的持家转录起始因子σ之间的相互作用12。使用类似的方法,本实施例辨认出一种针对细菌rrna合成的抑制剂,所述抑制剂具有针对金黄色葡萄球菌菌株(包括mrsa)的抗菌活性。

以具有一组nus转录因子nusa、nusb、nuse和nusg的rna聚合酶延伸复合物的晶体结构作为基础13,建立细菌rrna转录复合体的模型(图1a)。nusg通过其n-末端结构域14结合到rna聚合酶的中央裂口,而其c-末端结构域与nuse相互作用15,将nusb-nuse-boxa亚复合物锚定在rna聚合酶的下游表面(图1a)。nusa在rna出口通道附近与rna聚合酶结合(图1a)16,与其在boxa序列下游与rrna的结合相一致17。rna聚合酶-nus因子与rrna之间的相互作用形成了一个受约束的环状,以促进新生转录物的快速及正确折叠,这与rna聚合酶-nus因子复合物在rrna合成的过程中起到分子伴侣的作用的已知生化观察一致18。此组装还有可能起到防止终止因子rho接触rrna转录物的作用19,从而确保在细菌细胞快速生长过程中,较大的rrna操纵子可完全转录。最近公开的依赖噬菌体蛋白λn抗转录终止复合物的结构,也类似于本发明中使用的rrna转录复合体模型的结构20

查看大肠杆菌的nusb-nuse异源二聚体的公开晶体结构[proteindatabank(pdb)条目3d3b](图1b)21揭示出nuse仅包含18%的α-螺旋并且主要通过与螺旋2的相互作用而结合nusb(图1b)22。氢键相互作用发生在原核生物中高度保守的nusbe81和nuseh15、nusby18和nused19、以及nusbe75和nuser16之间(图1b,展开图;大肠杆菌氨基酸残基编号)(图5,箭头)。此外,针对风产液菌nusb-nuse相互作用的核磁共振研究也证实溶液中也存在类似的相互作用23

使用nusb-nuse异源二聚体共晶体[pdb条目3d3b]22的结构资讯开发一个药效团模型(图2a)。该药效团模型包含两个氢供体(粉红色)、一个用于模仿上述nusb和nuse之间的主要氢键的受体(绿色)、以及一个在大肠杆菌残基nusbl22和nusev26之间的保守疏水相互作用(蓝绿色,图2a)。除了以上相互作用外,为最少化构成nusb结合位点的浅囊内的空间位阻碰撞而添加了一系列禁区(灰色)。使用bioviads4.5创造出反映所有所需特征的最终药效团模型24。由于药效团模型是根据负责结合nusb的nuse蛋白上的重要氨基酸残基特征的基础而设计,因此理论上,能够对接至该药效团模型的优选小分子应能够与nusb结合并相应地显示出针对nusb-nuse相互作用的抑制活性。

在药效团模型的基础上,使用把微型maybridge库和enamine抗菌库结合而成的虚拟化合物库进行计算机模拟筛选25。将初始虚拟筛选的首50项重新映射到药效团模型后,目测检查能量最小化化合物的构象。移除与药效团模型不匹配的化合物后,七种化合物(图6)初始入选,将进行湿实验室测试。

首先,筛查上述七种化合物对社区获得性耐甲氧西林金黄色葡萄球菌(mrsa)菌株usa300的抗菌活性。在被评估的类似物中,mc4(图2b)被发现具有抑制生长的效果,而最小抑制浓度(mic)为64微克每毫升(图3)。分子量为266.3的mc4已知的应用仅限于在光学涂层中形成金属配合物染料,以用作光学数据记录26。以一组具代表性的病原体菌株对mc4的抗菌活性进行测试。相对于其它被测试的病原体,mc4对金黄色葡萄球菌菌株(包括mrsa)表现出较佳抗菌活性,其对对照菌株金黄色葡萄球菌25923的最小抑制浓度低至8微克每毫升,对健康护理获得性mrsast239的最小抑制浓度低至16微克每毫升(图3)。此外,与5-氟尿嘧啶相比,mc4对哺乳动物细胞系没有明显的细胞毒性(表1)。

分析金黄色葡萄球菌atcc25923细胞在指数生长阶段中经mc4处理后的大分子水平。以不干扰金黄色葡萄球菌atcc25923细胞生长速率的四分之一最小抑制浓度水平的mc4、利福平和苯唑西林加入其中。如图4所示,正如作用方式所预示的,所有处理方式都没有影响到dna水平。在对照细胞中,主要rrna(16s+23s)的水平约为总rna的78%(图4)4。利福平导致的rrna水平下降与先前观察的结果一致(图4)27。mc4导致了rrna水平的显着降低,低于经利福平处理的细胞(图4)。此外,经mc4处理后的蛋白质水平可能因为核糖体生成水平下降,影响了蛋白质的合成能力而显着降低,而利福平未显示出这种作用。经苯唑西林处理的细胞rrna和蛋白质产生水平略高于对照细胞。

最后,为了建立在分子水平上的mc4的作用方式,进行了基于酶联免疫吸附测定的抑制测定,以评估mc4在体外对nusb-nuse异源二聚体形成的抑制作用24。以纯化的nusb涂覆96孔板,并以gst标签的nuse作为探针。mc4对nusb-nuse相互作用表现出正抑制作用,半抑制浓度(ic50)为约34.7±0.13微摩尔每升。通过进一步测试一系列mc4类似物(图7),发现针对nusbe81和nuseh15、nusby18和nused19以及nusbe75和nuser16之间相互作用的分子上的三个基团对于抑制nusb-nuse结合起到必要的作用,就如bioviads4.5的fitscore所预测(表3)。随着苯基乙炔基变成了酚,相应的mc4类似物的ic50值增加,而该末端三键的缺失或被甲基或氯取代却引起了ic50的降低。当对硝基苯酚改性为邻硝基苯酚时,ic50值可能基于酚基团参与了与nusby81的结合相互作用而增加(表3)。这些结果证实了本发明中使用的药效团模型,并证明了亚胺和对硝基苯酚的反应性对mc4的活性没有贡献。

mc4和nusb之间的相互作用也被生物物理地定量。在先前公开的文件中,通过等温滴定量热法(itc)测定显示出nusb以1:1的比例与nuse结合,kd值约为1微摩尔每升21。在类似的实验中,发现到mc4以的单结合位点模式特定地结合nusb(图8a),kd值为1.45±0.55微摩尔每升。mc4与nuse的结合无法被itc检测到(未显示),亦没有于mc4与当中负责nuse结合的三个氨基酸残基变为丙氨酸的nusb变体(y18a、d76a和d81a)之间检测到(图8b-d)。结合这些结果可显示出,抑制nusb-nuse异源二聚体形成的作用是源自mc4和nusb之间具有如设定的特异性相互作用。进一步的实验将能解析与mc4结合的nusb结构,以进行靶点确证以及基于结构的先导化合物优化。

无法治疗的抗生素耐药性感染对社会的潜在影响是深远的,因此有迫切需要确定新的药物靶点28。传统上,细菌核糖体本身(30s和50s亚基)一直是抑制蛋白质合成的抗生素最常用的靶点之一29。最近的药物研发研究证实,抑制在mrna末端停滞的核糖体的拯救可产生抗菌活性30。鉴于核糖体与快速生长/增殖的正相关,以及真核和原核rrna转录机制之间存在很大的分别,人们很容易会假设对rrna合成的抑制能够对细胞生长和/或存活能力有重大影响。此假设更因最近发表的报告指出许多抗癌药物会抑制rrna的合成或成熟而强化了31

在本研究中,识别潜在的新抗生素先导物是根据基于药效团的计算机模拟筛查以及随后的生物学确认。。所针对的是转录因子nusb和nuse之间用于形成细菌细胞内rrna合成的高度合成复合物的一个关键相互作用。其中一种入选化合物(mc4)对金黄色葡萄球菌菌株(包括mrsa)表现出特定活性,而对哺乳动物细胞系无明显毒性。该化合物有可能是第一个针对细菌rrna合成的具有抗菌活性的化合物。mc4在rrna转录/加工、核糖体生物合成和金黄色葡萄球菌毒力中的详细作用,目前仍在研究中。尽管mc4已显示出在分子水平上能够特定地抑制nusb-nuse相互作用,但对细菌细胞的任何潜在脱靶效应仍有待阐明。由于nusb和nuse在细菌中高度保守,因此mc4对金黄色葡萄球菌具有比其它病原体更好的抗菌活性的原因仍需进一步研究。

验证细菌rrna合成机制中的转录因子之间的基本蛋白质相互作用作为新型抗菌靶点。在其它与细菌rrna转录有关的重要蛋白质相互作用,例如nuse和nusg之间的相互作用,nuse-rna聚合酶复合物也可能具有作为新型抗菌靶点的潜力32。本研究为mc4以及其它通过更全面的筛选获得的化合物的做好结构优化准备,以用作开发以细菌rrna合成为作用目标的新型抗菌先导分子。

材料及方法

细菌菌株和化学品。以下细菌菌株用于本研究的微量稀释法测定:粪肠球菌atcc29212、肺炎克雷伯菌atcc700603、鲍曼不动杆菌atcc19606、绿脓杆菌pa01、阴沟肠杆菌atcc13047、大肠杆菌atcc25922、普通变形杆菌atcc6380及金黄色葡萄球菌usa300、atcc25923、atcc29213、st22、st30、st45、st59、st239、je-2、baa44。在本研究中,大肠杆菌dh5α(gibcobrl)菌株用于克隆,bl21(de3)plyss33用于蛋白质过度生产。微量稀释法测定中使用的5-氟尿嘧啶、利福平和其它抗生素购自sigmaaldrich。化合物mc1-7购自molport。

分子建模。通过合并数个已公开的晶体结构,构建出抗终止复合物模型,所述晶体结构包括嗜热栖热菌转录延伸复合物(pdb:2o5i)34、大肠杆菌rna聚合酶-nusg复合物(pdb:5tbz)35、风产液菌nusb-e与boxarna的复合物(pdb:3r2c)36、结核分枝杆菌nusac-末端结构域-rna复合物(pdb:2asb)37;以及大肠杆菌nuse:nusg-ctd复合物的核磁共振溶液结构(pdb:2kvq)38、和枯草芽孢杆菌nusan-末端结构域(pdb:2mt4)39。使用ucsfchimera的matchmaker功能执行结构匹配40。以ucsfchimera产生图像。

如先前所公开的方式进行药效团模型设计和虚拟筛选41

抗菌活性测试。根据临床和实验室标准协会(clsi)的建议进行了微量稀释法测定42。测试化合物和对照抗生素从256微克每毫升连续2倍稀释至0.5微克每毫升。以二甲基亚砜(dmso)作为阴性对照。

如先前所公开的方式进行细胞毒性测定43,分别在于本研究中使用a549肺癌细胞和hacat人永生化角质形成细胞。

dna、蛋白质和rrna定量。在对数生长阶段的早期(od595=0.2),将四分之一最小抑菌浓度(mic)的mc4、苯唑西林和利福平的加入于在lb培养基中的金黄色葡萄球菌atcc25923菌株,然后再生长至对数生长阶段中期(od595=0.5)。对于dna和蛋白质定量,先获取1ml细胞,并在室温下以10毫克每毫升溶菌酶+0.5毫克每毫升溶葡球菌酶处理1小时,然后以13000g力离心处理3分钟。弃去上清液,并用600微升核裂解液(promega/基因组dna纯化试剂盒)裂解细胞5分钟,然后轻轻地超声处理。使用qubitdsdnabr(宽范围)定量dna,并使用nanoorangetm蛋白质定量试剂盒(thermofisher)定量蛋白质。对于rrna的定量,先收集1ml培养物并用rnaprotect(qiagen)处理,然后再用rneasyminikit(qiagen)提取总rna。之后,使用turbodna-freekit(thermofisher)进行dnasei处理。将提取出的rna进行agilent2100分析,以获得主要rrna的水平(16s+23srrna的总和)占总rna的百分比。最后,便可比较每个治疗组的值。所有实验需重复三次。

质粒构建。所有克隆步骤均在大肠杆菌dh5α中进行。在本研究中使用和构建的质粒已通过dna测序确认了,并列于表2中。枯草芽孢杆菌nusb使用了引物5’-aaaggagatctagacatgaaagaaga-3’(seqidno:1)和5’ttttctggtaccctatgattccc-3’(seqidno:2),从纯化的枯草芽孢杆菌染色体dna中扩增。通过pcr剪接方式44以突变引物5’-ctttgcaggcactagctcaaattgatgtc-3’(seqidno:3)和5’gacatcaatttgagctagtgcctgcaaag-3’(f15a)(seqidno:4)、5’-gaattggaagctcgatgcgattgccaatg-3’(seqidno:5)和5’-cattggcaatcgcatcgagcttccaattc-3’(r70a)(seqidno:6)以及5’gattgccaatgttgcccgtgcgattttgc-3’(seqidno:7)和5’-gcaaaatcgcacgggcaacattggcaatc-3’(d75a)(seqidno:8)制备nusb突变体。使用xbai和acc65i切割扩增子,并插入以类似方式切割的petmcsiii(表2)中,分别产生出png130、png1178、png1179和png1180(表2)。而枯草芽孢杆菌nuse使用了引物5’-aaggagggtctagaatggcaaaac-3’(seqidno:9)和5’ctatattttaggtaccaagtttaattt-3’(seqidno:10),从枯草芽孢杆菌染色体dna中扩增,并将其连接反应到png651的ndei和acc65i位点,从而获得png896(表2)。

蛋白质的过度生产和纯化。枯草芽孢杆菌nusb(野生型和突变体)和nuse-gst从质粒中过度产生(表2),并使用类似先前所公开的方法进行纯化45。将纯化的蛋白质透析于20毫摩尔每升kh2po4、150毫摩尔每升nacl、30%甘油、ph7.8中,并保存在80℃。

基于酶联免疫吸附测定(elisa)的测定。此测定如先前所公开的方式进行41,分别在于nuncmaxisorptm的96孔板是以nusb覆盖,而探针则是gst标签的nuse。

等温滴定量热法(itc)。如先前所公开的方式进行itc实验41。为进行化合物测试,以itc缓冲溶液(50毫摩尔每升kh2po4、150毫摩尔每升nacl、ph7.4)稀释以dmso配制的50毫摩尔每升原液至500微摩尔每升。将所有蛋白质透析到itc缓冲溶液中,并补充相同浓度的dmso(1%v/v),以最大程度地减少缓冲溶液错配。然后,按照先前所公开的方式41,使用在itc缓冲溶液中配制的1%dmso作为阴性对照以mc4对50微摩尔每升nusb野生型和突变体进行滴定。

表1:mc4对人类细胞系的细胞毒性(cc50)。

表2:本研究中使用和创造出的菌株和质粒。

β-内酰胺酶(bla)、氯霉素乙酰转移酶(cat)、氨苄青霉素和氯霉素抗性基因;t7噬菌体启动子;pxyl,以木糖为诱导物的启动子;tφ,t7转录终止子;3c,3c蛋白酶的识别序列;gfp,绿色荧光蛋白;gst,谷胱甘肽s-转移酶;pka,蛋白激酶a识别位点。

表3:比较mc4和其类似物的预测特性和ic50。

a:bioviads4.5计算;b:软件未有提供fitscore

实施例2

mc4类似物

图9示出进一步的mc4类似物结构及其各自对9种微生物的最小抑制浓度(efae19433:粪肠球菌atcc19433;saur25923:金黄色葡萄球菌atcc25923;saur29213:金黄色葡萄球菌atcc29213;kpne700603:肺炎克雷伯菌atcc700603;abau19606:鲍曼不动杆菌atcc19606;paer27853:绿脓杆菌atcc27853;eclo13047:阴沟肠杆菌atcc13047;ecol25922:大肠杆菌atcc25922;spne49619:肺炎链球菌atcc49619)。

化合物的抗菌活性是根据clsi指南(1)以微量肉汤稀释法测定。测试的培养液为阳离子调节水解酪蛋白胨肉汤(mh)。受测试的化学品由初始的256微克每毫升连续2倍稀释至0.0625微克每毫升,并将细菌细胞接种物调整为每毫升5×105菌落形成單位(cfu)。结果可在37℃培养20小时后获得。mic定义为没有任何可见细胞生长的最低抗生素浓度。多个相同实验同时进行。

参考文献

(1)(a)jean,s.s.,andhsueh,p.r.(2011)int.j.antimicrob.agents37,291-295.(b)frieden,t.r.(2013)n.engl.j.med.368,1857-1859.

(2)chambers,h.f.,anddeleo,f.r.(2009)nat.rev.microbiol.7,629-641.

(3)(a)gardete,s.,andtomasz,a.(2014)j.clin.invest.124,2836-2840.(b)nannini,e.,murray,b.e.,andarias,c.a.(2010)curr.opin.pharmacol.10,516-521.

(4)jin,d.j.,cagliero,c.,andzhou,y.n.(2012)femsmicrobiol.rev.36,269-287.

(5)viktorovskaya,o.v.,andschneider,d.a.(2015)gene556,19-26.

(6)santangelo,t.j.,andartsimovitch,i.(2011)nat.rev.microbiol.9,319-329.

(7)richardson,j.p.,andgreenblatt,j.(1996)inescherichiacoliandsalmonella:cellularandmolecularbiology,2nded.,pp822-848,americansocietyformicrobiology,washington,dc.

(8)greive,s.j.,lins,a.f.,andvonhippel,p.h.(2005)j.biol.chem.280,36397-36408.

(9)(a)nodwell,j.r.,andgreenblatt,j.(1993)cell72,261-268.(b)burmann,b.m.,luo,x.,rosch,p.,wahl,m.c.,andgottesman,m.e.(2010)nucleicacidsres.38,314-326.

(10)werner,f.,andgrohmann,d.(2011)nat.rev.microbiol.9,85-98.

(11)(a)kato,j.,andhashimoto,m.(2007)mol.syst.biol.3,132.(b)bubunenko,m.,baker,t.,andcourt,d.l.(2007)j.bacteriol.189,2844-2853.

(12)(a)ma,c.,yang,x.,kandemir,h.,mielczarek,m.,johnston,e.b.,griffith,r.,kumar,n.,andlewis,p.j.(2013)acschem.biol.8,1972-1980.(b)ma,c.,yang,x.,andlewis,p.j.(2016)acsinfect.dis.2,39-46.

(13)vassylyev,d.g.,vassylyeva,m.n.,perederina,a.,tahirov,t.h.,andartsimovitch,i.(2007)nature448,157-162.

(14)liu,b.,andsteitz,t.a.(2017)nucleicacidsres.45,968-974.

(15)burmann,b.m.,schweimer,k.,luo,x.,wahl,m.c.,stitt,b.l.,gottesman,m.e.,androsch,p.(2010)science328,501-504.

(16)yang,x.,molimau,s.,doherty,g.p.,johnston,e.b.,marles-wright,j.,rothnagel,r.,hankamer,b.,lewis,r.j.,andlewis,p.j.(2009)emborep.10,997-1002.

(17)(a)beuth,b.,pennell,s.,arnvig,k.b.,martin,s.r.,andtaylor,i.a.(2005)emboj.24,3576-3587.(b)prasch,s.,jurk,m.,washburn,r.s.,gottesman,m.e.,b.m.,andp.(2009)nucleicacidsres.37,4736-4742.

(18)(a)bubunenko,m.,court,d.l.,alrefaii,a.,saxena,s.,korepanov,a.,friedman,d.i.,gottesman,m.e.,andalix,j.h.(2013)mol.microbiol.87,382-393.(b)wong,t.,sosnick,t.r.,andpan,t.(2005)biochemistry44,7535-7542.

(19)anderson,a.c.(2003)chem.biol.10,787-797.

(20)said,n.,krupp,f.,anedchenko,e.,santos,k.f.,dybkov,o.,huang,y.h.,lee,c.t.,loll,b.,behrmann,e.,bürger,j.,mielke,t.,loerke,j.,urlaub,h.,spahn,c.m.t.,weber,g.,andwahl,m.c.(2017)nat.microbiol.2,17062.

(21)das,r.,loss,s.,li,j.,waugh,d.s.,tarasov,s.,wingfield,p.t.,byrd,r.a.,andaltieri,a.s.(2008)j.mol.biol.376,705-720.

(22)luo,x.,hsiao,h.h.,bubunenko,m.,weber,g.,court,d.l.,gottesman,m.e.,urlaub,h.,andwahl,m.c.(2008)mol.cell32,791-802.

(23)stagno,j.r.,altieri,a.s.,bubunenko,m.,tarasov,s.g.,li,j.,court,d.l.,byrd,r.a.,andji,x.(2011)nucleicacidsres.39,7803-7815.

(24)yang,x.,ma,c.,andlewis,p.j.(2015)methods86,45-50.

(25)lipinski,c.a.,lombardo,f.,dominy,b.w.,andfeeney,p.j.(2001)adv.drugdeliveryrev.46,3-26.

(26)(a)luecke,l.,weiss,a.,graciet,j.-c.,steffanut,p.,klein,c.,andwinter,m.a.(2008)eur.pat.appl.ep1930378.(b)luecke,l.,weiss,a.,graciet,j.-c.,steffanut,p.,klein,c.,andwinter,m.a.(2008)eur.pat.appl.ep1925643.

(27)(a)cangelosi,g.a.,andbrabant,w.h.(1997)j.bacteriol.179,4457-4463.(b)halford,c.,gonzalez,r.,campuzano,s.,hu,b.,babbitt,j.t.,liu,j.,wang,j.,churchill,b.m.,andhaake,d.a.(2013)antimicrob.agentschemother.57,936-943.

(28)o’neil,j.(2014)antimicrobialresistance:tacklingacrisisforthehealthandwealthofnations,wellcometrustandhmgovernment,london.

(29)chellat,m.f.,l.,andriedl,r.(2016)angew.chem.,int.ed.55,6600-6626.

(30)goralski,t.d.,dewan,k.k.,alumasa,j.n.,avanzato,v.,place,d.e.,markley,r.l.,katkere,b.,rabadi,s.m.,bakshi,c.s.,keiler,k.c.,andkirimanjeswara,g.s.(2016)antimicrob.agentschemother.60,3276-3282.

(31)brighenti,e.,treré,d.,andderenzini,m.(2015)oncotarget6,38617-38627.

(32)ma,c.,yang,x.,andlewis,p.j.(2016)microbiol.mol.biol.rev.80,139-160.

(33)studier,f.w.;moffatt,b.a.(1986)j.mol.biol.189,113-130.

(34)vassylyev,d.g.;vassylyeva,m.n.;perederina,a.;tahirov,t.h.;artsimovitch,i.(2007)nature448,157-162.

(35)liu,b.;steitz,t.a.(2017)nucleicacidsres.45,968-974.

(36)stagno,j.r.;altieri,a.s.;bubunenko,m.;tarasov,s.g.;li,j.;court,d.l.;byrdr.a.;ji,x.

(2011)nucleicacidsres.39,7803-7815.

(37)beuth,b.;pennell,s.;arnvig,k.b.;martins.r.;taylor,i.a.(2005)emboj.24,3576-3587.

(38)burmann,b.m.;schweimer,k.;luo,x.;wahl,m.c.;stitt,b.l.;gottesman,m.e.;rosch,p.(2010)science328,501-504.

(39)ma,c.;mobli,m.;yang,x.;keller,a.n.;kingg.f.;lewis,p.j.(2015)nucleicacidsres.43,2829-2840.

(40)pettersen,e.f.;goddard,t.d.;huang,c.c.;couch,g.s.;greenblatt,d.m.;meng,e.c.;ferrin,t.e.(2004)j.comput.chem.25,1605-1612.

(41)yang,x.;mac.;lewis,p.j.(2015)methods86,45-50.

(42)clsi,clinicalandlaboratorystandardsinstitute.(2015)performancestandardsforantimicrobialsusceptibilitytesting,twenty-fifthinformationalsupplement(m100s25).

(43)bi,y.;yang,x.;zhang,t.;liu,z.;zhang,x.;lu,j.;cheng,k.;xu,j.;wang,h.;lv,g.;lewis,p.j.;mengq.;ma,c.(2015)eur.j.med.chem.101,71-80.

(44)heckmank.l.;pease,l.r.(2007)nat.protoc.2,924-932.

(45)ma,c.;yang,x.;lewis,p.j.(2016)acsinfect.dis.2,39-46.

(46)neylon,c.;brown,s.e.;kralicek,a.v.;miles,c.s.;love,c.a.;dixon,n.e.(2000)biochemistry39,11989-11999.

(47)ma,c.;yang,x.;kandemir,h.;mielczarek,m.;johnston,e.b.;griffith,r.;kumar,n.;lewis,p.j.(2013)acschem.biol.8,1972-1980.

序列表

<110>香港理工大学

香港中文大学

<120>一种具有抗菌活性的化合物

<130>2361-a-pct-cn

<140>

<141>

<150>pct/ib2019/050137

<151>2019-01-08

<150>us62/615,418

<151>2018-01-09

<160>10

<210>1

<211>26

<212>dna

<213>人工序列

<220>

<223>枯草芽孢杆菌nusb的引物

<400>1

aaaggagatctagacatgaaagaaga26

<210>2

<211>23

<212>dna

<213>人工序列

<220>

<223>枯草芽孢杆菌nusb的引物

<400>2

ttttctggtaccctatgattccc23

<210>3

<211>29

<212>dna

<213>人工序列

<220>

<223>nusb突变体的引物

<400>3

ctttgcaggcactagctcaaattgatgtc29

<210>4

<211>29

<212>dna

<213>人工序列

<220>

<223>nusb突变体的引物

<400>4

gacatcaatttgagctagtgcctgcaaag29

<210>5

<211>29

<212>dna

<213>人工序列

<220>

<223>nusb突变体的引物

<400>5

gaattggaagctcgatgcgattgccaatg29

<210>6

<211>29

<212>dna

<213>人工序列

<220>

<223>nusb突变体的引物

<400>6

cattggcaatcgcatcgagcttccaattc29

<210>7

<211>29

<212>dna

<213>人工序列

<220>

<223>nusb突变体的引物

<400>7

gattgccaatgttgcccgtgcgattttgc29

<210>8

<211>29

<212>dna

<213>人工序列

<220>

<223>nusb突变体的引物

<400>8

gcaaaatcgcacgggcaacattggcaatc29

<210>9

<211>24

<212>dna

<213>人工序列

<220>

<223>枯草芽孢杆菌nuse的引物

<400>9

aaggagggtctagaatggcaaaac24

<210>10

<211>27

<212>dna

<213>人工序列

<220>

<223>枯草芽孢杆菌nuse的引物

<400>10

ctatattttaggtaccaagtttaattt27

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1