TEMPO-紫精双极性活性物质及其制备方法和应用与流程

文档序号:24286698发布日期:2021-03-17 00:34阅读:406来源:国知局
TEMPO-紫精双极性活性物质及其制备方法和应用与流程

本发明属于液流电池技术领域,具体涉及一种tempo-紫精双极性活性物质及其制备方法和在有机水相盐穴电池中的应用。



背景技术:

不断增长的能源需求使得大范围更有效的利用一些可再生能源如风能、太阳能和潮汐能成为必要。但是可再生能源发电具有波动性、间歇性和随机性,使得可再生能源发电与电网的无缝对接成为问题,而储能是实现可再生能源高比例接入电网的必要手段。在各种储能技术中,液流电池技术是一种很有应用前景的电池,具有容量大、安全性高、寿命长、效率高等优势,因此是大规模储能技术的首选。

盐腔是地下盐层利用水溶性开采盐矿后的地下空穴,具有容量大、密封性能好、渗透系数小等优点,常用来储存石油、天然气等。液流电池需要较大的储罐来储存电池解液,占地面积大,利用地下盐穴作储罐储存液流电池电解液,正好解决了这一问题,同时实现了盐穴资源的综合利用。目前发展较为成熟的液流电池主要采用的是无机类型的电解质,如钒液流电池和锌溴液流电池等,但是面临着强酸体系或者活性物质毒性较大等问题,对生态环境影响较大。近年来,一种有机水相液流电池,由于其电解质具有丰富的选择,中性水相电解液既环保而且廉价,被认为是液流电池中比较有应用前景的一种。但是不管是无机液流电池还是有机液流电池,在电池长时间运行过程中都存在着两边电解液交叉渗透,从而影响电池效率的问题。



技术实现要素:

本发明要解决的技术问题是:本发明针对电池长时间运行过程中都存在着两边电解液交叉渗透,从而影响电池效率的技术问题,提出了一种阴阳离子型双极性活性物质,可以同时作为液流电池正极和负极活性物质,提高电池效率。

本发明解决其技术问题所采用的技术方案是:一种tempo-紫精类两性离子活性物质,通过功能修饰在tempo或其衍生物上引入阴离子,使其与紫精类有机物以离子的形式构成tempo-紫精类两性离子活性物质,其反应方程式为:

其中,r1、r2、r3代表含有碳、氢、氮、氧、氟或硫元素的基团。

一种tempo-紫精类两性离子活性物质的制备方法,具有如下步骤:

s1:在tempo或其衍生物上引入阴离子;

s2:将修饰后的带负电荷的tempo衍生物和紫精类有机物分别溶解于有机溶剂中;

s3:将步骤s2中两种溶液按电荷摩尔比反应,过滤析出的固体,溶剂旋干得到tempo-紫精双极性活性物质的固体。

一种tempo-紫精类两性离子活性物质的制备方法,所述的步骤s1中的阴离子为-coo-、-so3-、f-或cl-

一种tempo-紫精类两性离子活性物质的制备方法,所述的步骤s2中有机溶剂为乙腈、dmf、甲醇或dmso。

一种tempo-紫精双极性活性物质在有机水相盐穴电池中的应用,该tempo-紫精双极性活性物质可以同时作为液流电池的正极活性物质和负极活性物质。

一种tempo-紫精双极性活性物质在有机水相盐穴电池中的应用,包括:

电解液槽体,所述电解液槽体内充入电解液;

两个极板,两个所述极板分别设于所述电解液槽体且位置相对;

电池隔膜,所述电池隔膜位于所述电解液槽体内且将所述电解液槽体分隔为与一所述电解液储液库连通的阳极区和与另一所述电解液储液库连通的阴极区,一所述极板设于所述阳极区,另一所述极板设于所述阴极区,所述阳极区内和阴极区内具有包括tempo-紫精双极性活性物质的电解液,所述电池隔膜可以允许支持电解质的有效通过。

所述阴阳离子型双极性活性物质的浓度为0.01mol/l~4mol/l。

所述支持电解质为单组份中性盐水溶液或混合中性盐水溶液。

所述支持电解质为nacl盐溶液、kcl盐溶液、na2so4盐溶液、k2so4盐溶液、mgcl2盐溶液、mgso4盐溶液、cacl2盐溶液、caso4盐溶液、bacl2盐溶液、baso4盐溶液中的至少一种。

所述电池隔膜为阴离子交换膜、阳离子交换膜、选择性渗透膜、阴阳离子复合交换膜、透析膜或多孔膜中的一种。

tempo-紫精双极性活性物质在有机水相盐穴电池中的应用还包括:

两个电解液储液库,两个所述电解液储液库内分别盛装有电解液;

循环管路,所述循环管路将一所述电解液储液库内的电解液输入或输出所述阳极区,所述循环管路将另一所述电解液储液库内的电解液输入或输出所述阴极区;

循环泵,所述循环泵设于所述循环管路,通过所述循环泵使所述电解液循环流动供给。

所述盐穴的深度在地下100m~2000m,物理体积在5万m3~50万m3,地热温度在25℃~70℃,所述盐穴的溶腔的直径为40m~120m,高度60m~400m。

本发明的有益效果是,本发明的tempo-紫精双极性活性物质具有双极性,可以同时作为液流电池的正极活性物质和负极活性物质,避免液流电池运行中的交叉渗透污染的问题,提高液流电池的寿命和效率,同时该物质也具有较好的水溶性和稳定性,无需在惰性气体环境保护下进行充放电,可在盐穴有机液流电池中进行应用。

附图说明

下面结合附图和实施例对本发明进一步说明。

图1是根据本发明的实施例1的200圈循环伏安图;

图2是根据本发明的实施例1的旋转圆盘电极测试和活性物质扩散系数计算;

图3是根据本发明的实施例1的电池效率与循环次数图;

图4是根据本发明的实施例1的充放电容量与循环次数图;

图5是根据本发明的实施例1的不同充放电次数下的电位与充放电容量图;

具体实施方式

现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。

下面结合具体实施例对本发明实施例的一种tempo-紫精双极性活性物质及在有机水相盐穴电池中的应用进行具体说明。

实施例1

将固体(a)与固体(b)按照摩尔比2:1分别溶解在10ml的乙腈中,待原料全部溶解后,将溶有固体(a)与固体(b)的溶液混合搅拌,有白色固体生成,继续搅拌2h后,将白色固体抽滤,溶剂旋干得目标产物。

图1至图5为所制备活性物质的电化学性能表征,所制备的阴阳离子双极性活性物质正极部分的扩散系数为1.96×10-5cm2/s,负极部分的扩散系数为7.04×10-6cm2/s。

电池性能测试:

采用地下深度600m,物理体积为10万m3,高度为80m,最大直径为60m,地热温度为30℃的两个盐穴作为阴阳电解液的存储罐,套管内径为20cm,外径为50cm。

正、负极电解液采用实施例1所合成的物质作为电解质,浓度为0.2mol/l,支持电解液采用1.5mol/l的nacl溶液,电解液体积8.0ml。电解质粘度约为10mpas。正负极电极都采用石墨毡电极,电池隔膜采用阴离子交换膜。单个电池堆,在电流密度10ma/cm2时,库伦效率为99%,电压效率88%,能量效率88%。

实施例2

将固体(a)与固体(b)按照摩尔比2:1分别溶解在12ml的dmf中,待原料全部溶解后,将溶有固体(a)与固体(b)的溶液混合搅拌,有白色固体生成,继续搅拌2h后,将白色固体抽滤,溶剂旋干得目标产物。

电池性能测试:

采用地下深度800m,物理体积为12万m3,高度为83m,最大直径为605m,地热温度为40℃的两个盐穴作为阴阳电解液的存储罐,套管内径为20cm,外径为53cm。

正、负极电解液采用实施例1所合成的物质作为电解质,浓度为0.25mol/l,支持电解液采用1.2mol/l的nacl溶液,电解液体积10ml。电解质粘度约为10mpas。正负极电极都采用石墨毡电极,电池隔膜采用阴离子交换膜。单个电池堆,在电流密度15ma/cm2时,库伦效率为99%,电压效率80%,能量效率82%。

实施例3

将固体(a)与固体(b)按照摩尔比2:1分别溶解在15ml的dmso中,待原料全部溶解后,将溶有固体(a)与固体(b)的溶液混合搅拌,有白色固体生成,继续搅拌2h后,将白色固体抽滤,溶剂旋干得目标产物。

电池性能测试:

采用地下深度1000m,物理体积为20万m3,高度为100m,最大直径为80m,地热温度为45℃的两个盐穴作为阴阳电解液的存储罐,套管内径为20cm,外径为60cm。

正、负极电解液采用实施例1所合成的物质作为电解质,浓度为0.5mol/l,支持电解液采用2mol/l的nacl溶液,电解液体积10ml。电解质粘度约为10mpas。正负极电极都采用石墨毡电极,电池隔膜采用阴离子交换膜。单个电池堆,在电流密度20ma/cm2时,库伦效率为99%,电压效率80%,能量效率82%。

以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1