具有超高热导率的封装式相变储能复合材料及其加工工艺的制作方法

文档序号:12778224阅读:602来源:国知局
具有超高热导率的封装式相变储能复合材料及其加工工艺的制作方法与工艺

本发明涉及一种具有高导热率的封装式相变储能材料及其加工工艺,具体是一种使用膨胀石墨和石墨烯片复合封装技术的有机蜡质相变复合材料及其加工工艺。



背景技术:

相变储能材料可以利用材料在相变过程中的潜热吸收与释放来达到调节能量需求和供给失配的目的。最常用作相变储能的材料包括无机水合盐类材料和有机蜡质相变材料,利用这些材料的熔化/凝固相变过程伴随的吸/放热行为达到热能调节的功效。其中,有机蜡质相变材料具有能量密度高、绿色环保、稳定性好等优点,在节能建材、太阳能利用、电气散热等诸多领域受到关注和应用。

蜡质相变材料在使用过程中也存在一些缺陷,一方面该材料的热传导率极低,使得这类相变材料在使用过程中的效率较为低下。另一方面,蜡质相变材料通过固-液两相转换来工作,在液态下容易发生泄漏事故,导致系统效率降低或损坏。目前主要的应对之策是开发相变材料的封装技术,将相变材料封装在固体胶囊中,在防止相变材料的泄漏的同时,提高相变材料的热导率。

材料科研人员提出了多种相变材料的封装技术,包括有机膜封装、多孔金属封装和多孔石墨封装技术等,从文献报道的数据来看,各种封装技术都呈现出良好的效果和应用潜力。单纯的多孔膨胀石墨封装技术效果不错,但是在实际工艺过程中,封装体颗粒之间的孔隙难以通过简单的压制来消除,因此实际复合材料的热传导率和密度仍然偏低;目前有提出石墨镀铜或多孔泡沫铜的导热封装技术,但是由于铜/石蜡界面不存在化学吸附,因此该复合材料不仅价格昂贵,同时存在泄漏的隐患。从目前的信息来看,还没有看到提出一种集储能密度、热导率、防泄漏、性价比综合性能俱佳的封装态储能材料,能够真正适应广大民用市场的需求。



技术实现要素:

本发明的目的是为了解决上述技术的不足提供一种具有超高热导率的封装式相变储能复合材料,确保封装材料在起到大幅度提高热导、防止泄漏作用的同时,降低复合材料的孔隙率。

本发明的另一目的是提供上述材料的加工工艺。

本发明的目的是通过以下技术方案实现的:

具有超高热导率的封装式相变储能复合材料,包括:

作为相变储能主体材料的有机蜡质储能材料;

作为热导强化封装体的膨胀石墨和纳米石墨烯片,膨胀石墨的蜂窝结构容易将有机蜡质储能材料通过化学共价键的形式进行吸附,形成封装式结构;纳米石墨烯片用于增强热导,同时由于其与有机蜡质储能材料之间的高吸附性和尺度差异能够显著降低复合材料的孔隙率。

所述的具有超高热导率的封装式相变储能复合材料,各组分按重量百分比计为:

有机蜡质储能材料,85~95%;

膨胀石墨和纳米石墨烯片,5%~15%;且膨胀石墨和纳米石墨烯片的比例为9:1~5:1。

所述膨胀石墨是由天然石墨鳞片经常规的硫酸插层、水洗、干燥、高温膨化等工艺过程得到的一种疏松多孔的蠕虫状物质,要求膨胀率达到200倍以上,平均孔径为0.5~20微米,以获得对有机蜡质储能材料的良好吸附效果。

所述纳米石墨烯片采用机械剪切剥离法制备得到,其厚度范围为2~30纳米,厚度过薄则容易团聚,过厚则热传导性能降低,作用下降。

所述有机蜡质储能材料为正二十烷或正二十六烷或硬脂肪酸;无毒性的石蜡材料和脂肪酸材料都是可选的相变储能材料。

所述相变储能复合材料的热扩散系数达2.9mm2/s‐4.1mm2/s,热导率达6.9W/mK‐12W/mK,储能密度为有机蜡质储能材料的90%。

一种具有超高热导率的封装式相变储能复合材料的加工工艺,采取如下步骤:按上述比例称取各组分,将有机蜡质储能材料与膨胀石墨按比例混合,加热至有机蜡质储能材料的熔化温度以上5~60度,进行搅拌处理,促进均匀自吸附;吸附后,冷却形成颗粒态相变材料胶囊;随后按比例混入粉末态纳米石墨烯片,搅拌混合均匀;加热至有机蜡质储能材料的熔化温度以上5~100度范围,抽真空至10Pa以下,压块成形,获得坯料。

一种采用上述加工工艺制得的具有超高热导率的封装式相变储能复合材料。

所述相变储能复合材料的热扩散系数达2.9mm2/s-4.1mm2/s,热导率达6.9W/mK-12W/mK,储能密度为有机蜡质储能材料的90%。

本发明具有以下有益效果:

1、该相变储能复合材料坯料材料致密、孔隙率极低。该坯材可以加工成需要的形状。

2、本发明相变储能复合材料储能密度和热导率都非常高,热扩散系数达2.9mm2/s以上,热导率达6.9W/mK以上,该热导率达到单质石蜡材料的近30倍,同时该复合材料的储能密度接近石蜡材料的90%。

3、该相变储能复合材料绿色环保,具有非常良好的应用前景。

附图说明

图1是本发明使用的膨胀石墨微观形貌。

图2本发明获得的相变储能复合材料微观形貌。

具体实施方式

本发明选用膨胀石墨(微观形貌如图1所示)和石墨烯片两种新型碳材作为有机蜡质储能材料(相变材料)的封装胶囊材料和导热增强剂,其中膨胀石墨兼具封装和导热两大功效,而石墨烯片则用于填补膨胀石墨之间的孔隙,同时对提高导热率起到非常显著的作用。

由于在一定的结构状态下,膨胀石墨与有机蜡质储能材料(可以是石蜡)的配比关系有一个最佳值,膨胀石墨过少,则封装效果不佳,液态有机蜡质储能材料容易泄露;而膨胀石墨过多,则有机蜡质储能材料对膨胀石墨孔隙的填补就不完全,复合材料内部会形成孔隙,导致热导率降低。因此,本发明通过精确的理论计算和科学的实验验证,获得了有机蜡质储能材料在膨胀石墨中的最大可封装量与膨胀石墨结构参数之间的关系,从而设计出合适的配比参数,确保膨胀石墨在起到安全封装作用的同时,降低复合材料的孔隙率。

本发明加入石墨烯片能够填补膨胀石墨之间的孔隙,提高复合材料的热导率,同时少量的添加可以极为高效的提高储能材料的热导率。但是,石墨烯片不能起到封装作用,过多的石墨烯片还会导致复合材料整体松散,影响成型效果。通过大量实验验证,本发明提出了石墨烯片添加的合适配比范围。

下面将结合附图对本发明做详细的介绍:

实施例1:本实施例相变储能复合材料选用正二十六烷作为相变储能主体材料,其熔化温度为58℃;使用膨胀石墨和纳米石墨烯片作为热导强化封装体;其中选用的膨胀石墨膨化温度为950℃,膨胀率为250倍左右,经微观分析统计其平均孔径约为2微米左右;选用的纳米石墨烯片为平均厚度在8纳米左右的粉体材料。配比选择如下:整体复合材料中,正二十六烷储能材料的比例为90%;其余为膨胀石墨和纳米石墨烯片,其中膨胀石墨比例为8.5%,纳米石墨烯片为1.5%。

加工工艺如下:首先按照比例加入正二十六烷和膨胀石墨材料混合,加热至75℃,随后进行搅拌处理,促进均匀自吸附;30分钟后,吸附基本完成,复合材料冷却形成颗粒态的相变材料胶囊,随后混入纳米石墨烯片,该材料呈粉末态,继续搅拌混合均匀;再次加热至70℃,抽真空至10Pa以下,并使用特定模具压制成坯料。

实施例2:本实施例中相变储能复合材料选用正二十烷作为相变储能主体材料,其熔化温度为37℃左右;同样使用膨胀石墨和纳米石墨烯片作为热导强化封装体;其中选用的膨胀石墨膨化温度为900℃,膨胀率为300倍左右,经微观分析统计其平均孔径约为3.5微米左右;选用的纳米石墨烯片为平均厚度在10纳米左右的粉体材料。配比选择如下:整体复合材料中,正二十烷储能材料的比例为87%;其余为膨胀石墨和纳米石墨烯片,其中膨胀石墨比例为11.7%,纳米石墨烯片为1.3%。

加工工艺如下:首先按照比例加入正二十烷和膨胀石墨材料混合,加热至55℃,随后进行搅拌处理,促进均匀自吸附;40分钟后,吸附基本完成,复合材料冷却形成颗粒态的相变材料胶囊,随后混入纳米石墨烯片,该材料呈粉末态,继续搅拌混合均匀;再次加热至50℃,抽真空至5Pa左右,使用特定模具压制成坯料。

实施例3:本实施例中的相变储能复合材料选用正二十六烷作为相变储能主体材料,其熔化温度为58℃;使用膨胀石墨和纳米石墨烯片作为热导强化封装体;其中选用的膨胀石墨膨化温度为1000℃,膨胀率最高可达近500倍,经微观分析统计其平均孔径约为10微米左右;选用的纳米石墨烯片为平均厚度在6纳米左右的粉体材料。配比选择如下:整体复合材料中,正二十六烷储能材料的比例为94%;其余为膨胀石墨和纳米石墨烯片,其中膨胀石墨比例为5%,纳米石墨烯片为1%。

加工工艺如下:首先按照比例加入正二十六烷和膨胀石墨材料混合,加热至80℃,随后进行搅拌处理,促进均匀自吸附;30分钟后,吸附基本完成,复合材料冷却形成颗粒态的相变材料胶囊,随后混入纳米石墨烯片,该材料呈粉末态,继续搅拌混合均匀;再次加热至80℃,抽真空至3Pa,并使用特定模具压制成坯料。

实施例4:相变储能复合材料选用正二十六烷作为相变储能主体材料,其熔化温度为58℃;使用膨胀石墨和纳米石墨烯片作为热导强化封装体;膨胀石墨的膨化温度工艺改为缓慢加热,最后的保温温度为850℃,膨胀率约为200倍,这种处理方式获得的孔洞结构更加均匀细密,经微观分析统计其平均孔径约为1微米左右;选用的纳米石墨烯片为平均厚度在8纳米左右的粉体材料。配比选择如下:整体复合材料中,正二十六烷储能材料的比例为92%;其余为膨胀石墨和纳米石墨烯片,其中膨胀石墨比例为7%,纳米石墨烯片为1%。

工艺如下:首先按照比例加入正二十六烷和膨胀石墨材料混合,加热至80℃,随后进行搅拌处理,促进均匀自吸附;由于孔径细密均匀,吸附进程更快,20分钟后,吸附就基本完成,复合材料冷却形成颗粒态的相变材料胶囊,随后混入粉末态的纳米石墨烯片,继续搅拌混合均匀;再次加热至80℃,抽真空至3Pa以下,并使用特定模具压制成坯料。

本发明获得的相变储能复合材料微观形貌如图2所示。

将上述四组实施例获得的坯材取样,分析其热物理性能。利用差热分析测试潜热,测试热扩散系数、密度、比热并获得热导率。数据见表1。

对比样品为不含纳米石墨烯片的二十六烷/膨胀石墨按照9:1的比例复合制备获得,制备工艺与实施例1相同。

从实施例结果来看,本发明相变储能复合材料的热扩散系数达到2.9mm2/s以上,热导率则达到6.9W/mK以上,该热导率达到单质石蜡材料的近30倍,同时该复合材料的储能接近本身使用的石蜡材料的近90%;通过添加纳米石墨烯片,在安全封装的前提下,复合材料的密度、能量和热导等各项物理参数都有较大幅度提升,是一款能量密度、导热效果俱佳的新型储能复合材料。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1