用于半导体纳米颗粒的气体阻挡涂层的制作方法

文档序号:17743523发布日期:2019-05-24 20:25阅读:330来源:国知局
用于半导体纳米颗粒的气体阻挡涂层的制作方法

本申请要求2016年9月12日提交的美国临时专利申请号62/393,325的权益,其内容通过引用以其整体并入本文。

关于联邦资助研究或开发的声明:不适用

发明背景

1.发明领域

本发明通常涉及半导体纳米颗粒——也称为“量子点”(qd)。更特别地,其涉及涂敷至含qd的膜、珠等以保护qd免受不利环境因素(尤其是氧和水分)影响的涂层。

2.包括按照37cfr1.97和1.98的规定公开的信息的相关技术的描述

量子点在显示和照明应用中使用时得益于气体阻挡包封。在一个具体的优选方法中,首先将qd分散在高度可相容材料(比如有机两亲性大分子或聚合物)中以形成防止量子点聚集的内相,由此保持量子点的光学性能。然后将内相包封在具有较低透氧性的外相树脂中。

美国专利号9,708,532公开了量子点的多相聚合物膜。qd被吸收在主体基质中,所述主体基质分散在外部聚合物相内。主体基质是疏水性的并且与qd的表面相容。主体基质也可以包括防止qd聚集的支架材料。外部聚合物一般更亲水,并且防止氧与qd接触。美国专利号9,680,068也公开了含有量子点的多相聚合物膜。膜具有主要为疏水性聚合物的结构域和主要为亲水性聚合物的结构域。通常在疏水性基质内更稳定的qd主要分散在膜的疏水性结构域内。亲水性结构域倾向于在排除氧方面有效。

这样的有机两相树脂显示出较好的氧阻挡性能,但是不足以使比如在背光单元(blu)中可能遭遇的在高温和高湿度下照射的量子点稳定,因为氧仍可以迁移通过包封剂而到达量子点的表面,这可能导致光氧化以及作为结果的量子产率下降。当前的作法是将含量子点树脂夹在两个阻挡膜之间。嵌有qd的聚合物珠更难以稳定,因为它们需要薄无机涂料(例如,al2o3)的共形层。使用原子层沉积(ald)法对珠等进行涂覆非常耗时并且难以按比例放大。此外,已经在ald涂覆后观察到显著降低的量子产率(qy)。

基于硅氮烷的涂层是阻挡膜和在珠上的无机涂层的备选方案。硅氮烷是硅和氮的氢化物,其具有通过共价键结合的硅原子和氮原子的直链或支链。这种化合物的有机衍生物也称作硅氮烷。它们类似于硅氧烷,其中-nh-取代-o-。它们各自的名称取决于化学结构中的硅原子的数量。例如,六甲基二硅氮烷(或双(三甲基甲硅烷基)胺;[(ch3)3si]2nh)含有与氮原子键合的两个硅原子。

申请人已经试验了硅氮烷涂层的热固化。然而,发现热固化对qd造成显著损坏。热固化的硅氮烷涂层不足以使膜或珠中的量子点稳定。因此,试验uv可固化的硅氮烷而不是热固化的硅氮烷以使对量子点的损坏最小化。

发明概述

已经发现,利用短波长uv辐射固化的薄硅氮烷涂层是高度透明的,表现出良好的氧阻挡性能,并且对量子点造成的损坏最低。所述方法不像ald那样耗时,并且可以用于含qd的膜和聚合物或者含量子点的无机珠的大规模生产。

已经发现,当量子点嵌入在两相树脂体系中时,硅氮烷涂层的效果特别好。预期使用两相树脂体系可以提高量子点的稳定性,特别是当硅氮烷进行uv固化时。

在试验中,制备10-cm×10-cm可剥离膜,其具有层压在125-μm阻挡膜之间的大约100-μm的白树脂层,所述白树脂层包含绿色荧光量子点[纳米技术有限公司(nanocotechnologiesltd.),英国曼彻斯特]。使用未改性膜作为对照样品。通过以下方式制备试验样品:将阻挡膜之一剥离,在膜上用uv可固化硅氮烷涂料[聚(全氢硅氮烷(perhydrosilazane));cas号:90387-00-1encs号:(2)-3642]涂覆由此暴露的表面,然后将硅氮烷前体暴露于uv辐射。然后评价硅氮烷涂覆的膜的光学和寿命可靠性。该方法可以扩展至含有嵌入的量子点的聚合物珠。

硅氮烷涂覆的含qd膜在超薄装置(例如,手机)中是特别有利的,因为相对于现有技术的阻挡涂层需要较薄的硅氮烷层。

在本发明的一个方面,提供了一种荧光膜,所述荧光膜包括:含量子点层,所述含量子点层具有第一侧和相反的第二侧;在含量子点层的第一侧和第二侧中的至少一个上的硅氮烷涂层。荧光膜还可以包括在含量子点层的第一侧和第二侧两者上的硅氮烷涂层。在荧光膜的一些实施方案中,硅氮烷涂层在含量子点层的第一侧上,并且荧光膜还包括在含量子点层的第二侧上的阻挡膜。在一些实施方案中,含量子点层在被蓝光源照射时产生绿光。在一些实施方案中,含量子点层包括嵌入在聚合物树脂中的量子点。

在本发明的另一方面,提供了一种荧光珠,所述荧光珠包括含量子点主体和在含量子点主体上的硅氮烷涂层。

本发明的另一方面提供了一种用于发光二极管(led)的荧光帽,所述荧光帽包括:具有顶面、相反的底面和至少一个侧面的含量子点主体;和在含量子点主体的顶面、底面和至少一个侧面中的至少一个上的硅氮烷涂层。

在一些实施方案中,硅氮烷涂层在含量子点主体的顶面、底面和至少一个侧面中的每一个上。在一些实施方案中,含量子点主体配置成使得:当所述帽安装在含有led的封装体上时,底面被led照射,并且顶面发射由量子点产生的荧光。在一些实施方案中,含量子点主体包括嵌入在聚合物树脂中的量子点。

在本发明的另一方面,提供了一种用于将硅氮烷涂层涂敷至包含量子点的薄膜的方法,所述方法包括:将硅氮烷前体涂敷至包含量子点的薄膜的至少一侧,和通过将其上涂敷有硅氮烷前体的薄膜暴露于紫外(uv)辐射来使硅氮烷前体固化。

在一些实施方案中,uv辐射是短波长uv辐射。任选地,uv辐射的波长为约172nm。在一些实施方案中,将其上涂敷有硅氮烷前体的薄膜暴露于强度为约7j/cm2的uv辐射。在一些实施方案中,硅氮烷前体是全氢硅氮烷。

在一些实施方案中,所述方法还包括将具有涂敷的硅氮烷前体的薄膜加热至一定温度并且持续一定时间,以足以基本上去除硅氮烷前体溶解于其中的溶剂。任选地,用于去除溶剂的加热在约80℃进行约3分钟。

在本发明的又一方面,提供了一种用于将硅氮烷涂层涂敷至包含量子点的聚合物珠的方法,所述方法包括:使包含量子点的量子点流化,将硅氮烷前体涂敷至经流化的包含量子点的聚合物珠;和通过将由此涂敷有硅氮烷前体的聚合物珠暴露于紫外(uv)辐射来使硅氮烷前体固化。

在一些实施方案中,使聚合物珠流化包括使用惰性气体使聚合物珠流化。在一些实施方案中,使聚合物珠流化包括使用硅氮烷前体的非溶剂使聚合物珠流化。

几幅附图的简述

图1是根据本发明一个实施方案的用于含量子点膜的硅氮烷涂层的制备的示意图。

图2是含qd膜的横截面图,所述含qd膜的试验结果在图3中提供。

图3包含示出以下内容的图表:多种含量子点膜的绿qd发射峰强度、led强度和外部量子效率(eqe)相对于时间的变化(相对于初始值)。

图4a示出了取代的硅氮烷的通用化学结构。

图4b是一种具体的代表性多环硅氮烷的化学结构。

图4c是另一种硅氮烷的化学结构。在下文中报告的某些试验中,在所使用的特定硅氮烷中,r8、r9和r10=h。

发明详述

在本发明的一个具体的示例实施方案中,使用两相树脂体系制备100微米厚的qd膜。将含有具有521-nmpl最大、43-nmfwhm和80%qy的发绿光量子点的树脂层层压在两个125-微米阻挡膜(i-componentco.ltd.,韩国)之间。取决于含qd树脂与阻挡膜接触在哪一侧,该膜显示出出色的对阻挡膜或可剥离一侧的粘附性。然后如图1所示用硅氮烷前体涂覆可剥离qd膜的裸露侧。对于该具体研究使用旋涂,但是也可以使用浸涂或喷雾来控制硅氮烷涂层的厚度(参见图1)。狭缝式模口涂覆也是可行的,并且对于工业规模生产可以是优选的。然后将经涂覆的膜烘烤(80℃,3分钟)以去除溶剂,之后(在氮下)用短波长uv辐射(172-nm氙准分子灯;>100mv/cm2;2-6-mm辐射间隙)以不同剂量照射。硅氮烷涂层的厚度可以通过改变硅氮烷浓度以及在使用旋涂或浸涂的情况下分别改变旋转或浸渍的速度来控制。两相树脂体系可以提供增强的使量子点免受由于uv固化辐射造成的损坏的保护。

现在参照图3,以图表形式提供多种含qd膜的稳定性试验结果。图表a是关于作为对照的包封在两个商业阻挡膜(i-componentco.ltd.)之间的qd两相体系膜。图表b是关于仅在一侧具有商业阻挡膜(i-componentco.ltd.)的qd膜。图表c是关于在一侧具有商业阻挡膜(i-componentco.ltd.)并且在另一侧具有利用高剂量[7j/cm2]uv辐射固化的200-nm硅氮烷涂层的qd膜。图表d是关于在一侧具有商业阻挡膜(i-componentco.ltd.)膜并且在另一侧具有以低剂量[4j/cm2]固化的200-nm硅氮烷涂层的qd膜。图表e是关于在一侧具有商业阻挡膜(i-componentco.ltd.)并且在另一侧具有利用高剂量[7j/cm2]uv辐射固化的100-nm硅氮烷涂层的qd膜。图表f是关于在一侧具有商业阻挡膜(i-componentco.ltd.)并且在另一侧具有利用低剂量[4j/cm2]uv辐射固化的100-nm硅氮烷涂层的qd膜。

表1呈现了对照膜(样品a,包封在两个商业阻挡膜之间的qd膜)和在一侧具有商业阻挡膜并且在另一侧没有阻挡物或具有硅氮烷涂层的膜的某些光学数据。对照膜显示出高的61%的qy和45%的eqe,而在一侧没有阻挡物的qd膜(样品b)的qy和eqe仅分别为40%和32%,分别表明商业阻挡膜保护量子点免受(光)氧化。然而,硅氮烷涂覆的膜的qy稍低于对照,表明涂覆过程对量子点具有一些负面影响。具有较薄的硅氮烷涂层的膜(样品e和f)与具有较厚的硅氮烷涂层的膜相比显示出更高的qy和eqe,表明可能存在最佳的用于qd膜的硅氮烷涂层厚度。

表1.图2所示的是含qd膜的量子产率和量子效率。

通过在60℃并且在90%相对湿度下用强度为106mw/cm2的450-nm蓝光照射这些膜进行关于上述qd膜的寿命的光试验。相对于时间监测qd发射峰强度(图3)。在没有气体阻挡物的情况下,样品b中的发绿光qd在数小时内完全降解,而对照膜和硅氮烷涂覆的膜彼此表现相似-即发绿光量子点在500小时后保持稳定。与在具有较薄的硅氮烷涂层的膜中的发绿光量子点相比,在较厚硅氮烷涂覆的膜中的发绿光量子点更稳定。具有硅氮烷涂层的qd膜的稳定性表明,硅氮烷涂层的氧阻挡性能等于或甚至优于商业阻挡膜的氧阻挡性能。应注意,固化uv辐射的剂量不影响qy和/或eqe,并且硅氮烷涂覆的膜的稳定性证实了用于薄阻挡涂层的短uv固化(其由于其低穿透深度而使对量子点的损坏最小化)的优点。

还可能的是,用硅氮烷涂覆含qd的聚合物珠或其他三维物体(比如led帽等)。在进行固化过程之前,可以在例如使用惰性气体或者硅氮烷前体的非溶剂的流化床中用硅氮烷前体涂覆含量子点珠。

上文提供使本发明的原理具体化的系统的具体实施方案。本领域技术人员将能够想到备选方案和变化方案,即使本文中未明确公开,但是所述备选方案和变化方案使那些原理具体化,并且由此在本发明的范围内。尽管已经示出和描述本发明的具体实施方案,但是它们不打算限制本专利涵盖的范围。本领域技术人员要理解的是,在不脱离由所附权利要求字面上和等同地涵盖的本发明的范围的情况下可以进行各种改变和修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1