汽车和汽车的控制方法

文档序号:3968800阅读:201来源:国知局
专利名称:汽车和汽车的控制方法
技术领域
本发明涉及汽车(机动车)和汽车的控制方法。
背景技术
已经提出基于随转弯状态下的横向加速度的变化而变化的侧偏阻力来为一些汽车设定目标驱动转矩(例如,见日本专利出版物No.2518445)。所述汽车根据转弯状态下的横向加速度的大小指定沿车辆纵向的目标加速度,并通过将所指定的目标加速度与基于取决于横向加速度的侧偏阻力的道路负荷(road load)转矩相加来设定目标驱动转矩。控制汽车发动机,以实现预设的目标驱动转矩。该技术旨在实现车辆的快速转弯,而即使在横向加速度较大时也无需为目标驱动转矩设定过小的值。

发明内容
现有技术的汽车考虑到基于侧偏阻力的道路负荷转矩来设定目标驱动转矩,但没有考虑在转弯状态下车辆沿车辆纵向的振动(纵倾,俯仰振动)和车辆沿车辆横向的振动(侧倾)。在转弯状态下纵倾和侧倾综合作用于车辆上并可能使车上的驾驶员和乘员不舒适。
因此,本发明的汽车和相应的汽车控制方法旨在实现车辆在转弯状态下可能产生的适当的纵倾和侧倾。
为了实现至少部分上述和其它目的,本发明的汽车和相应的汽车控制方法具有如下所述的设置。
本发明的汽车由来自驱动源的驱动力驱动并包括减速力估计单元,该减速力估计单元估计由车辆转向引起的并被施加以用于降低车速的沿车辆纵向的减速力;控制值计算单元,该控制值计算单元从所估计出的减速力计算用于调整由车辆转向引起的并作用于车辆上的基于转向的加速度的调整控制值;以及驱动控制单元,该驱动控制单元基于车辆的驱动变化要求和所计算出的调整控制值来驱动和控制所述驱动源以确保向车桥的驱动力输出。
本发明的汽车估计由车辆转向引起的并被施加以用于降低车速的沿车辆纵向的减速力,基于所估计出的减速力计算用于调整由车辆转向引起的并作用于车辆上的基于转向的加速度的调整控制值,并基于车辆的驱动变化要求和所计算出的调整控制值驱动和控制驱动源以确保向车桥的驱动力输出。通过计算调整控制值以将基于转向的加速度调整到希望的水平,有效地实现了由基于转向的加速度引起的纵倾和侧倾的适当水平。此处,术语“驱动源”是例如内燃机和电动机中的至少一个。术语“车辆的驱动变化要求”包括基于驾驶员的操纵的需求和没有驾驶员的操纵的自动控制需求。术语“车桥”包括连接车轮的轴和车轮本身。
本发明的汽车中,控制值计算单元可以包括大小调节器,该大小调节器调节基于转向的加速度之中沿车辆纵向的纵向加速度的大小,并基于该大小调节器的调节来计算所述调整控制值。通过调节纵向加速度的大小实现了由基于转向的加速度引起的车辆纵倾和侧倾的更适当的水平。在这种情况下,大小调节器可以调节纵向加速度的大小,以减小基于转向的加速度之中沿车辆横向的横向加速度的大小。这种设置可以如所希望地控制由横向加速度引起的振动。此外,大小调节器还可以减小纵向加速度的大小。这种设置可以如所希望地控制由纵向加速度引起的振动。此处,术语“减小纵向加速度的大小”包括将纵向加速度的大小减小到值“0”。此外,大小调节器还可调节纵向加速度的大小,以将由基于转向的加速度引起的车辆的纵倾水平和侧倾水平中的至少一个设定为指定的水平。该指定的水平是根据汽车的特征预先设定的。因此,由基于转向的加速度引起的汽车的纵倾和侧倾水平设定为适合汽车的特征的希望水平。此外,大小调节器可以调节纵向加速度的大小,以降低由基于转向的加速度引起的车辆的纵倾水平和侧倾水平中的至少一个。这种设置可以减小由基于转向的加速度引起的车辆的纵倾水平和侧倾水平。调节降低的程度确保了纵倾和侧倾的更适当的水平。此处,术语“降低纵倾水平和侧倾水平”包括完全消除纵倾和侧倾。
在本发明的汽车中,控制值计算单元可以包括调整基于转向的加速度之中沿车辆纵向的纵向加速度和沿车辆横向的横向加速度的相位的相位调整器,并基于相位调整器的调整来计算所述调整控制值。通过调整纵向加速度和横向加速度的相位确保了由基于转向的加速度引起的车辆的纵倾和侧倾的更适当的水平。在这种情况下,相位调整器可以调整纵向加速度的相位,以减小横向加速度的大小。这种设置可以如所希望地控制由横向加速度引起的振动。此外,相位调整器可以使纵向加速度的相位滞后于横向加速度的相位。纵向加速度的相位滞后于横向加速度的相位确保了由基于转向的加速度引起的车辆的纵倾和侧倾的更适当的水平。此外,相位调整器可以调整纵向加速度的相位,以将由基于转向的加速度引起的车辆的纵倾水平和侧倾水平中的至少一个设定为指定的水平。该指定的水平根据汽车的特征预先设定。因此,由基于转向的加速度引起的汽车的纵倾和侧倾水平设定为适合汽车的特征的希望水平。此外,相位调整器可以调整纵向加速度的相位,以降低由基于转向的加速度引起的车辆的纵倾水平和侧倾水平中的至少一个。该设置降低了由基于转向的加速度引起的车辆的纵倾和侧倾水平。调节降低的程度确保了纵倾和侧倾的更适当的水平。此处,术语“降低纵倾水平和侧倾水平”包括完全消除纵倾和侧倾。
本发明的汽车还可以包括检测转向角的转向角检测单元,和测量车速的车速测量单元;减速力估计单元可以基于所检测出的转向角和所测量出的车速估计减速力。在这种情况下,减速力估计单元可以估计减速力随所检测出的转向角的增加而增加并随所测量出的车速的增加而增加。该设置确保了对减速力的适当估计。
本发明的汽车控制方法是控制由来自驱动源的驱动力驱动的车辆的方法,该方法包括以下步骤(a)估计由车辆转向引起的并被施加以降低车速的沿车辆纵向的减速力;(b)从估计出的减速力计算用于调整由车辆转向引起的并作用于车辆上的基于转向的加速度的调整控制值;以及(c)基于车辆的驱动变化要求和所计算出的调整控制值驱动和控制所述驱动源,以确保向车桥的驱动力输出。
本发明的汽车控制方法估计由车辆转向引起的并被施加以降低车速的沿车辆纵向的减速力,从估计出的减速力计算用于调整由车辆转向引起的并被施加到车辆上的基于转向的加速度的调整控制值,并基于车辆的驱动变化要求和所计算出的调整控制值驱动和控制驱动源,以确保向车桥的驱动力输出。通过计算调整控制值以将基于转向的加速度调整到希望的水平,有效地实现了由基于转向的加速度引起的纵倾和侧倾的适当水平。此处,术语“驱动源”是例如内燃机和电动机中的至少一个。术语“车辆的驱动变化要求”包括基于驾驶员的操纵的需求和没有驾驶员的操纵的自动控制需求。术语“车桥”包括连接车轮的轴和车轮本身。
在本发明的汽车控制方法中,步骤(b)可以调节基于转向的加速度之中沿车辆纵向的纵向加速度的大小和相位,以便计算所述调整控制值。通过调节纵向加速度的相位和大小,有效地实现了由基于转向的加速度引起的纵倾和侧倾的更适当的水平。此外,步骤(b)可以计算所述调整控制值,以将由基于转向的加速度引起的车辆的纵倾水平和侧倾水平中的至少一个设定为指定的水平。该指定的水平是根据汽车的特征预先设定的。因此,由基于转向的加速度引起的汽车的纵倾和侧倾水平设定为适合汽车的特征的希望水平。此外,步骤(b)可以计算所述调整控制值,以降低由基于转向的加速度引起的车辆的纵倾水平和侧倾水平中的至少一个。调节降低的程度确保了纵倾和侧倾的更适当的水平。此处,术语“降低纵倾水平和侧倾水平”包括完全消除纵倾和侧倾。


图1示意性地示出本发明的一个实施例中的汽车20的构造;图2是示出转弯状态运动控制的控制方框的方框图;
图3示出侧偏阻力;图4示出在没有转弯状态运动控制的情况下,转弯状态下的车轮转向角(rudder angle)δ、纵向加速度Gx和横向加速度Gy随时间的变化;图5示出在没有转弯状态运动控制的情况下,转弯状态下的纵向加速度Gx随横向加速度Gy的变化;图6示出在仅将增益K设定为有效值的情况下,转弯状态下的车轮转向角δ和纵向加速度Gx随时间的变化;图7示出在仅将增益K设定为有效值的情况下,转弯状态下的纵向加速度Gx随横向加速度Gy的变化;图8示出在仅将附加阻尼系数C1设定为有效值的情况下,转弯状态下的车轮转向角δ和纵向加速度Gx随时间的变化;图9示出在仅将附加阻尼系数C1设定为有效值的情况下,转弯状态下的纵向加速度Gx随横向加速度Gy的变化;图10是示出增益K和附加阻尼系数C1的设定过程的流程图。
具体实施例方式
下面将一种实施本发明的方式作为优选实施例来说明。图1示意性地示出本发明的一个实施例中的汽车20的构造。如图所示,本实施例的汽车20具有由起动电动机23起动并由汽油驱动的发动机22、直接控制该发动机22的运转的发动机电子控制单元(下称发动机ECU)24、转换从发动机22输出到曲轴26的动力并将所述转换的动力经由差速器34传递到驱动轮或后轮36a、36b的自动变速器28、控制自动变速器28的换档的自动变速器电子控制单元(下称ATECU)30和控制整个车辆的中央电子控制单元(下称中央ECU)50。
尽管没有具体示出,但发动机ECU24构造成包括作为中心元件的CPU的微计算机。发动机ECU24接收从检测发动机22的驱动状态的各种传感器输出的信号,例如,测量进气量的空气流量计、检测曲轴26的转动位置的曲轴位置传感器和测量节气门开度的节气门位置传感器。发动机ECU24执行进气调整控制以调整节气门开度从而调节进气量,执行可变进气门定时控制以改变进气门的打开-关闭定时,执行燃料喷射控制以调节燃料喷射的时间,并执行点火控制以调节点火定时,从而控制发动机22的运转。发动机ECU24建立与中央ECU50的通信。发动机ECU24响应于来自中央ECU50的控制信号起动和停止发动机22并控制发动机22的运转,同时根据要求向中央ECU50输出与发动机22的驱动状态有关的数据。
尽管没有具体示出,但ATECU30也构造成包括作为中心元件的CPU的微计算机。ATECU30接合和释放作为多个行星齿轮的组合的离合器和制动器,以根据车速V和加速器开度Acc的测量值改变自动变速器28内的速度设定,从而控制自动变速器28。ATECU30也建立与ECU50的通信。ATECU30响应于来自中央ECU50的控制信号改变自动变速器28内的速度设定,同时根据要求向中央ECU50输出与自动变速器28的状态有关的数据。
中央ECU50也构造成包括作为中心元件的CPU的微计算机。中央ECU50从各种传感器以及发动机ECU24和ATECU30输入数据,同时将控制信号发送给发动机ECU24和ATECU30以基于输入数据控制整个车辆的运转。输入到中央ECU50的数据包括由安装在被操纵以使前轮32a、32b转向的方向盘38的转向轴上的转向角传感器40测量并发送出的方向盘38从参考位置的转向角θ或转动角,由换档机构位置传感器53检测并发送出的换档机构位置SP或换档杆52的当前位置,与驾驶员对加速踏板54的踩下量相对应的并由加速踏板位置传感器55测量并发送出的加速器开度Acc,与驾驶员对制动踏板56的踩下量相对应的并由制动踏板位置传感器57测量并发送出的制动踏板位置BP,以及由车速传感器58测量并发送出的车速V。
在上述构造的本实施例的汽车20中,换档机构位置传感器53和加速踏板位置传感器55分别检测驾驶员对换档杆52的变速操作和驾驶员对加速踏板54的踩下动作。基于换档机构位置SP、加速器开度Acc和车速V的测量值控制发动机22和自动变速器28,以确保向后轮36a、36b输出与驾驶员的变速操作和驾驶员对加速器的踩下操作相对应的驱动力。本实施例的汽车20控制分别由与驾驶员对方向盘38的操纵相对应的在车辆内产生的纵向力(侧偏阻力)和横向力引起的纵倾或纵向振动和侧倾或横向振动。下面描述对这种纵倾和侧倾的控制(以下称为转弯状态运动控制)。
图2是示出转弯状态运动控制的控制方框的方框图。转弯状态运动控制包括根据所测量的转向角θ和车速V计算和设定用于控制纵倾和侧倾的控制值的控制值计算系统60,以及根据由控制值计算系统60计算和设定的控制值对作为驱动源的发动机22执行控制的执行系统70。
控制值计算系统60包括从转向角θ和车速V的测量值估计侧偏阻力的侧偏阻力估计器61,将估计出的侧偏阻力与预设的增益K相乘以减小由侧偏阻力估计器61估计出的侧偏阻力的增益乘法器62,调整所估计并被降低的侧偏阻力的剩余部分的相位的相位调整器63,以及将增益乘法器62的输出与相位调整器63的输出相加的加法器67。
在本实施例中,侧偏阻力估计器61预先指定侧偏阻力随汽车20的转向角θ和车速V的变化,并将指定的变化以图谱的形式存储起来。从存储的图谱中读出与所输入的转向角θ和车速V相对应的侧偏阻力。如图3所示,侧偏阻力是当驾驶员操纵方向盘38给前轮32a、32b以车轮转向角δ时作用在前轮32a、32b上的横向力Fyf沿车辆纵向的分量。因此,侧偏阻力等于sinδ·Fyf。横向力Fyf是由车辆的离心力引起的并可以从转弯车辆的角速度和车辆的质量(重量)动态地计算出来。本实施例的程序使用车速V和与前轮32a、32b的车轮转向角δ相对应的方向盘38的转向角θ,来代替转弯车辆的角速度。侧偏阻力随转弯车辆的角速度的变化本质上是由侧偏阻力随转向角θ和车速V的变化给出的。侧偏阻力作为减速力作用于车辆。侧偏阻力除以车辆的质量得出沿车辆纵向的加速度(下称纵向加速度)Gx。因此,估计侧偏阻力与估计由转向引起的纵向加速度Gx意义是一样的。离心力增加导致角速度增加。因此,用于估计侧偏阻力的图谱示出侧偏阻力随转向角θ和车速V的增加而增加。
相位调整器63包括计算由侧偏阻力估计器61估计出并被增益乘法器62降低的侧偏阻力的剩余部分的运算器64,调整相位的等效纵倾阻尼器66,以及接收等效纵倾阻尼器66的反馈输出、从运算器64的输出减去反馈输出以得出差值并向等效纵倾阻尼器66输出所述差值的减法器65。等效纵倾阻尼器66由下述式(1)的传递函数表示[式1]C1·sI·s2+C·s+D---(1)]]>其中,C1、I、C、D和s分别表示附加阻尼系数、车辆纵倾惯量(纵倾惯性矩)、粘度、弹性和拉普拉斯算子。在向车辆施加纵向加速度Gx的情况下,纵倾角φ或车辆纵倾的旋转角表达为φ(s)/Gx(s),其中,φ(s)/Gx(s)与当将分子设定为值“1”时的式(1)相等。等效纵倾阻尼器66的反馈输出消除了微分项。如上所述,估计侧偏阻力与估计纵向加速度Gx意义是一样的。因此,相位调整器63调整纵向加速度Gx的相位。
执行系统70包括用发动机22的转速Ne校正从控制值计算系统60输出的控制值以补偿吸入到发动机22的空气的第一级滞后的进气滞后补偿器71,将进气滞后补偿器71的输出转换成驱动力的驱动力转换器72,从驱动力转换器72的输出和换档机构位置计算目标附加发动机转矩的等效转矩比值运算器73,以及从等效转矩比值运算器73的输出、基本节气门开度和发动机22的转速Ne计算节气门控制量的发动机转矩管理器74。
在本实施例的结构中,中央ECU50完成控制值计算系统60以及执行系统70的进气滞后补偿器71和驱动力转换器72的功能,而发动机ECU24完成执行系统70的等效转矩比值运算器73和发动机转矩管理器74的功能。
下面参照具体的示例描述控制值计算系统60和执行系统70的转弯状态运动控制以控制车辆的纵倾和侧倾的原理。转弯状态运动控制调节在增益乘法器62内设定的增益K和在控制值计算系统60的等效纵倾阻尼器66内设定的附加阻尼系数C1,以调整由侧偏阻力估计器61估计出的侧偏阻力降低的程度和相位,即,转弯状态下车辆的纵向加速度Gx的大小和相位。例如,使增益K变化并将附加阻尼系数C1固定为值“0”可以仅调整纵向加速度Gx的大小而不改变纵向加速度Gx的相位。另一方面,使附加阻尼系数C1变化并将增益K固定为值“0”可以仅调整纵向加速度Gx的相位而不改变纵向加速度Gx的大小。图4的曲线图示出在没有转弯状态运动控制情况下在转弯状态下车轮转向角δ随时间的变化(曲线A)、车辆的纵向加速度Gx随时间的变化(曲线B)和车辆的横向加速度Gy随时间的变化(曲线C)。图5的曲线图示出在图4的情况下纵向加速度Gx随横向加速度Gy的变化(曲线G)。图6的曲线图示出在将附加阻尼系数C1固定为值“0”并且有效值设定为增益K的情况下,在转弯状态下车轮转向角δ随时间的变化(曲线A)和车辆的纵向加速度Gx随时间的变化(曲线B1)。图7的曲线图示出在图6的情况下纵向加速度Gx随横向加速度Gy的变化(曲线G1)。图8的曲线图示出在将增益K固定为值“0”并且有效值设定为附加阻尼系数C1的情况下,在转弯状态下车轮转向角δ随时间的变化(曲线A)和车辆的纵向加速度Gx随时间的变化(曲线B2)。图9的曲线图示出在图8的情况下纵向加速度Gx随横向加速度Gy的变化(曲线G2)。图6和图8中的虚线B示出在没有转弯状态运动控制情况下纵向加速度Gx的变化,图7和图9中的虚线G示出在没有转弯状态运动控制情况下纵向加速度Gx随横向加速度Gy的变化。如图4所示,当驾驶员操纵方向盘38使车轮转向角δ以正弦曲线变化时,纵向加速度Gx随着车轮转向角δ的变化而变化为具有负值。横向加速度Gy以小相位滞后于纵向加速度Gx的变化的正弦曲线变化。横向加速度Gy的相位滞后使纵向加速度Gx随横向加速度Gy呈倾斜变化(diagonal variation),如图5所示。在将附加阻尼系数C1固定为值“0”并且有效值设定为增益K的情况下,纵向加速度Gx降低为如图6所示的曲线B1和图7所示的曲线G1。另一方面,在将增益K固定为值“0”并且有效值设定为附加阻尼系数C1的情况下,调整了纵向加速度Gx的相位。这导致纵向加速度Gx降低为如图8中的曲线B2所示并使倾斜变化变形为如图9所示。调节增益K可以完全消除纵向加速度Gx。调节增益K和附加阻尼系数C1可以调整纵向加速度Gx随横向加速度Gy的倾斜变化。
本实施例的汽车20设定增益K和附加阻尼系数C1,以使纵倾水平和侧倾水平从没有转弯状态运动控制的情况下的纵倾水平和侧倾水平降低,即,通过转动方向盘38实现适当水平的纵倾和侧倾。增益K和附加阻尼系数C1是根据汽车20的驾驶特征例如重点放在运动驾驶上或舒适驾驶上而设定的。可以使用图10的流程图中所示的设定过程设定增益K和附加阻尼系数C1。设定过程首先在假设将纵向加速度Gx设定为值“0”的基础上确定增益K和附加阻尼系数C1(步骤S100),并根据汽车的驾驶特征指定纵倾和侧倾水平(步骤S110)。然后,设定过程计算纵向加速度Gx以实现指定的纵倾水平和侧倾水平(步骤S120),并调节和设定增益K和附加阻尼系数C1以产生计算出的纵向加速度Gx(步骤S130)。该方法调节增益K和附加阻尼系数C1以调整纵向加速度Gx降低的程度和相位,但实际上在设定值“0”后纵向加速度Gx不变化到希望的水平。增益K和附加阻尼系数C1的这种调节实现了通过转动方向盘38产生适当水平的纵倾和侧倾。
如上所述,本实施例的汽车20调整所估计出的侧偏阻力降低的程度和相位,以实现转弯状态下车辆的适当水平的纵倾和侧倾。纵倾水平和侧倾水平是根据汽车的驾驶特征调节的。
本实施例的汽车20具有中央ECU50和发动机ECU24。中央ECU50完成控制值计算系统60以及执行系统70的进气滞后补偿器71和驱动力转换器72的功能,而发动机ECU24完成执行系统70的等效转矩比值运算器73和发动机转矩管理器74的功能。在一个可能的修改中,中央ECU50可以仅完成控制值计算系统的功能,而发动机ECU24可以完成整个执行系统70的功能。在另一修改中,发动机ECU24可以完成控制值计算系统60和执行系统70的功能。
本实施例的汽车20将发动机22作为车辆的驱动源,但也可以使用电动机作为车辆的驱动源。在后一种情况下,修改执行系统70使之适合于电动机。用作车辆的驱动源的电动机可以设计成直接向车轮输出驱动力,例如轮内电动机。
本实施例的汽车20调整所估计出的侧偏阻力降低的程度和相位。一个修改控制可以一旦消除侧偏阻力然后就产生希望水平的纵向加速度Gx。
在本实施例的汽车20中,后轮36a、36b是驱动轮,前轮32a、32b是从动轮。本发明的技术也适用于将前轮32a、32b作为驱动轮并且后轮36a、36b作为从动轮的汽车,同样也适用于前轮32a、32b以及后轮36a、36b都作为驱动轮的汽车。
上述实施例在所有方面都应认为是示例性的和非限制性的。可以在不脱离本发明的主要特征的范围或精神的情况下进行多种修改、改变和变型。
工业实用性本发明的技术可有效地适用于汽车工业。
权利要求
1.一种由来自驱动源的驱动力驱动的汽车,所述汽车包括减速力估计单元,该减速力估计单元估计由车辆转向引起的并被施加以用于降低车速的沿车辆纵向的减速力;控制值计算单元,该控制值计算单元从所估计出的减速力计算用于调整由车辆转向引起的并作用于车辆上的基于转向的加速度的调整控制值;以及驱动控制单元,该驱动控制单元基于车辆的驱动变化要求和所计算出的调整控制值驱动和控制所述驱动源以确保向车桥的驱动力输出。
2.根据权利要求1的汽车,其特征在于,所述控制值计算单元包括调节所述基于转向的加速度之中沿车辆纵向的纵向加速度的大小的大小调节器,所述控制值计算单元基于所述大小调节器的调节计算所述调整控制值。
3.根据权利要求2的汽车,其特征在于,所述大小调节器调节纵向加速度的大小,以减小所述基于转向的加速度之中沿车辆横向的横向加速度的大小。
4.根据权利要求2的汽车,其特征在于,所述大小调节器减小纵向加速度的大小。
5.根据权利要求2的汽车,其特征在于,所述大小调节器调节纵向加速度的大小,以将由所述基于转向的加速度引起的车辆的纵倾水平和侧倾水平中的至少一个设定为指定的水平。
6.根据权利要求2的汽车,其特征在于,所述大小调节器调节纵向加速度的大小,以降低由所述基于转向的加速度引起的车辆的纵倾水平和侧倾水平中的至少一个。
7.根据权利要求1的汽车,其特征在于,所述控制值计算单元包括调整所述基于转向的加速度之中沿车辆纵向的纵向加速度和沿车辆横向的横向加速度的相位的相位调整器,所述控制值计算单元基于所述相位调整器的调整计算调整控制值。
8.根据权利要求7的汽车,其特征在于,所述相位调整器调整纵向加速度的相位,以减小横向加速度的大小。
9.根据权利要求7的汽车,其特征在于,所述相位调整器使纵向加速度的相位滞后于横向加速度的相位。
10.根据权利要求7的汽车,其特征在于,所述相位调整器调整纵向加速度的相位,以将由所述基于转向的加速度引起的车辆的纵倾水平和侧倾水平中的至少一个设定为指定的水平。
11.根据权利要求7的汽车,其特征在于,所述相位调整器调整纵向加速度的相位,以降低由所述基于转向的加速度引起的车辆的纵倾水平和侧倾水平中的至少一个。
12.根据权利要求1的汽车,其特征在于,所述汽车还包括检测转向角的转向角检测单元;以及测量车速的车速测量单元,其中,所述减速力估计单元基于所检测出的转向角和所测量出的车速估计减速力。
13.根据权利要求12的汽车,其特征在于,所述减速力估计单元估计减速力随所检测出的转向角的增加而增加并随所测量出的车速的增加而增加。
14.根据权利要求1的汽车,其特征在于,所述驱动源包括内燃机和电动机中的至少一个。
15.一种控制由来自驱动源的驱动力驱动的汽车的汽车控制方法,所述汽车控制方法包括以下步骤(a)估计由车辆转向引起的并被施加以降低车速的沿车辆纵向的减速力;(b)从估计出的减速力计算用于调整由车辆转向引起的并被施加到车辆上的基于转向的加速度的调整控制值;以及(c)基于车辆的驱动变化要求和所计算出的调整控制值来驱动和控制驱动源,以确保向车桥的驱动力输出。
16.根据权利要求15的汽车控制方法,其特征在于,所述步骤(b)调节所述基于转向的加速度之中沿车辆纵向的纵向加速度的大小和相位,以计算调整控制值。
17.根据权利要求15的汽车控制方法,其特征在于,所述步骤(b)计算所述调整控制值,以将由所述基于转向的加速度引起的车辆的纵倾水平和侧倾水平中的至少一个设定为指定的水平。
18.根据权利要求15的汽车控制方法,其特征在于,所述步骤(b)计算调整控制值,以降低由所述基于转向的加速度引起的车辆的纵倾水平和侧倾水平中的至少一个。
全文摘要
在本发明的汽车中,侧偏阻力估计器(61)从转向角和车速V的测量值估计侧偏阻力。增益乘法器(62)将估计出的侧偏阻力与预设的增益K相乘,以减小估计出的侧偏阻力。相位调整器(63)调整所估计出的并且被减小的侧偏阻力的剩余部分的相位。执行系统(70)接收增益乘法器(62)的输出和相位调整器(63)的输出之和并根据该接收到的和调节发动机的节气门开度。这调整了所估计出的侧偏阻力降低的程度和相位。本发明的这种设置实现了车辆在转弯状态下产生适当水平的纵倾和侧倾。
文档编号B60W10/04GK101048291SQ20048003608
公开日2007年10月3日 申请日期2004年12月3日 优先权日2003年12月5日
发明者稻垣匠二 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1