混合动力电动车辆的倒溜控制的制作方法

文档序号:3894598阅读:198来源:国知局
专利名称:混合动力电动车辆的倒溜控制的制作方法
技术领域
本发明总体上涉及具有发动机、电机和多速动力换挡变速器的混合动力电动车辆 (HEV)的动力传动系统,具体涉及使用动力传动系统防止斜坡上的车辆倒溜 (rollback )。
背景技术
动力换挡变速器是机动车辆中不使用变矩器的动力传动装置的示例。动力换挡变 速器是产生向前驱动和向后驱动中的多个传动比,并具有将动力源,如发动机或电动 马达连接到两个传动轴的两个输入离合器的齿轮机构。动力换挡变速器使用同步的双 离合器换挡机构(clutch-to-clutch shifts)交替地传递动力到两个轴。
动力换挡变速器结合有在变速器输入及其输出之间以双中间轴配置排列的齿轮 机构。 一个输入离合器在输入和关联于偶数挡的第一中间轴之间传递扭矩;另一个输 入离合器在变速器输入和关联于奇数挡的第二中间轴之间传递扭矩。通过交替地接合 第一输入离合器并在当前挡位运行,分离第二输入离合器,在变速器中准备用于目标 挡位搡作的动力路径,分离第一输入离合器,接合第二输入离合器并在变速器中准备 用于下 一个挡位操作的另 一条动力路径,变速器改变传动比。
在其动力传动系统包括动力换挡变速器的机动车辆中,当驾驶员在斜坡停车状态 (hill-hold condition)之后下压加速器踏板(称为踩加速器踏板(tip-in))时,
该车辆具有倒溜倾向,在斜坡停车状态中,使用车轮制动器或不使用车轮制动器使车 辆在斜坡上保持静止。发动机停机情况下发动机起动的延迟,由于用可燃烧的空燃混 合物对进气歧管和汽缸充气产生的发动机扭矩的延迟,及产生输入离合器最大扭矩时 的延迟,会产生倒溜状态。这些和其他延迟会使足以防止车辆在斜坡上倒溜的车轮扭 矩的产生受到延迟。
在HEV停住,电池充电状态(SOC)足够并满足其他条件时,发动机停机。由于 车辆停止,发动机也可以在斜坡停车状态期间关闭。进行HEV斜坡停车时,驾驶员通 过应用车轮制动器,或如果释放车轮制动器,则可以用电机提供斜坡保持车轮扭矩来 停住车辆。
在车辆驾驶员而后下压加速器踏板(称为踩加速器踏板)并期望爬上斜坡时需要 防倒溜。如果用发动机向车轮提供扭矩以开动车辆,则由于发动机起动、歧管填充和 输入离合器启动的延迟,车轮扭矩在得以足够增加之前发生延迟。倒溜也可能在车辆 爬斜坡但车轮扭矩由于增加的坡度而不满足增加的道路负荷时发生。
本领域中需要可以在下述情况中消除不期望的车辆倒溜的方法(1)车辆驾驶 员在发动机停机时进行踩加速器踏板以在上坡坡度从车辆静止状态加速车辆;(2) 车辆驾驶员在发动机运行时进行踩加速器踏板以在上坡坡度从车辆静止状态加速车 辆;及(3)在发动机停机,车辆在爬斜坡且当前的最大车轮扭矩不满足增加的道路 负荷时,ERAD ( electric rear axle drive,电控后桥驱动单元)是唯一可用的扭矩 源。

发明内容
在包括传动连接到负荷的发动机和传动连接到该负荷的电机的动力传动系统中, 一种控制位于斜坡上的车辆以防止倒溜的方法包括确定防止车辆倒溜所需的车轮扭 矩的量,确定电机的当前最大扭矩是否等于或大于所需的车轮扭矩,如果电机的当前 最大扭矩能够产生所需的车轮扭矩,则使用电机产生所需的车轮扭矩,如果电机的当 前最大扭矩不能产生所需的车轮扭矩,则使用发动机产生所需的车轮扭矩。
对于在驾驶员踩加速器踏板时初始静止在上坡坡度的车辆,用ERAD提供防倒溜。 ERAD快速提供传递到车轮的扭矩以避免倒溜。如果ERAD最大扭矩不满足道路负荷, 或超过道路负荷,或如果达到ERAD的热限制,则起动发动机并使发动机的输出扭矩 与ERAD的输出扭矩混合。
在车辆由于因坡度增加造成的道路负荷的增加而开始减速时,车辆驾驶员还踩加 速器踏板以在斜坡上继续加速车辆。控制算法将增加的加速器踏板下压率解释为增加 的道路负荷的指示。增加的加速器踏板下压率和降低的车速的组合用于推断驾驶员正 在增加踏板位置以便克服增加的道路坡度。如果ERAD提供的车轮扭矩不足以保持车 辆加速度,则起动发动机以防止车辆倒溜状态发生。
最后,在发动机扭矩增加时,同步减少总扭矩所混合的ERAD扭矩,从而保持恒 定的车轮扭矩。这可以在使用发动机推进车辆时提供不易觉察的转换,同时可防止车 辆倒溜。
通过具体实施方式
、权利要求和附图,优选实施例的适用范围将变得显而易见。 应理解,说明和具体示例虽然表示本发明的优选实施例,但仅作为示例给出。对所述 实施例和示例的各种改变和修改对本领域技术人员来说是显而易见的。
通过结合附图参考下面的具体实施方式
,可以更加容易地理解本发明。


图l是可以应用本发明的控制方法的车辆动力传动系统的示意图2是示出图1的车辆动力传动系统的附加细节的示意图3示出防止车辆倒溜的控制方法的步骤;
图4是示出确定所需车轮扭矩的函数的示意图;图5A- 5D示出加速器踏板位置、ERAD扭矩、发动机扭矩、车轮扭矩、道路负荷、 车速和电池充电状态在控制车辆倒溜时随时间推移的变化;
图6A- 6C示出动力传动系统参数在对车轮扭矩的要求较高并控制车辆倒溜时随
时间推移的变化;及
图7示出包括第一和第二输入离合器的动力换挡变速器的细节。
具体实施例方式
如图1和图2所示,车辆动力传动系统12包括发动机14,如柴油发动机或汽油 发动机;变速器16,如双湿式离合器动力换挡变速器或另一种不具有变矩器的多速 变速器;电机18,如传动连接到变速器输入20的CISG ( crankshaft-integrated starter-generator,曲轴集成式起动机/发电机);及附加电机22,如电动马达。 电机18提供旋转动力以在起动发动机时转动发动机14并产生直接提供给电机22或 电池23或两者的电能。
有时称为电控后桥驱动单元或电控后轴驱动单元(ERAD)的电机22连接到后桥 或后轴24的主减速器(final drive),并以电驱动或混合(串联/并联)驱动模式 提供推进能力。电机22的动力输出通过ERAD传动装置28和形式为轮间差速器机构 的主减速器单元30驱动车轮26、 27。类似地,变速器输出32通过包括轮间差速器 机构的主减速器单元36 (以机械方式)传动连接到车轮34、 35。在前轮驱动(FWD) 应用中,电机22可以在变速器16的输出32处传动连接到前桥的主减速器36,其中 该电机称为电控前桥驱动(EFAD)单元。
图2示出选择性地将变速器16的输入轴20交替地连接到偶数挡42和奇数挡43 的输入离合器40、 41;电子变速器控制模块(TCM) 44,其通过发送给伺服器或电磁 阀的指令信号驱动输入离合器和变速箱换挡拨叉/同步器以控制输入离合器和变速箱 状态;控制发动机14的操作的电子发动机控制模块(ECM) 46;及控制CISG和ERAD 操作的ISC 48。未示出的车辆控制系统(VCS)向TCM和ECM发送控制指令。VCS、 TCM和ECM中的每个都包括微处理器,微处理器可访问电子存储器并包含以计算机代 码表示并以频繁的间隔重复地执行的控制算法。控制模块BCM 46、 VSC、 TCM 44和 ISC 48之间的数据通信在通信总线47上执行。
动力传动系统12包括到达负荷的两个动力路径机械路径和电气路径。发动机 14产生的动力通过机械动力路径中的变速器16和主减速器36传递到车轮34、 3、 ERAD 22产生的动力通过电气动力路径中的ERAD传动装置28和主减速器30传递到 车轮26、 27。
图3示出在车辆静止或发动机14初始停机而车辆由ERAD 22驱动时防止倒溜的 控制算法的步骤。在步骤49,在工况表明车辆停在斜坡上时,该控制算法由控制器 调用执行。
现在参考图4,如图4所示,车辆驾驶员对车轮扭矩的要求由发动机加速器踏板 50被下压的程度表示,这通常称为加速器踏板位置pps。 pps传感器产生的表示加速 器踏板位置的电子信号和轴转速传感器产生的表示当前车速(VS)的电子信号52, 作为输入由驾驶员要求确定函数(driver demand determination function) 54接 收,该函数可由处理器在电子存储器中访问,该函数由两个输入变量VS和pps索引 并产生当前所需车轮扭矩TuEs作为其输出。
现在回到图3,在56,进行检验以确定加速器踏板位置是否大于零或基准踏板位 置。如果检验56的结果逻辑上为真,则控制进行到58。如果检验56的结果为假, 则控制返回56。
在58,进行检验以确定电池充电状态(SOC)是否高于基准SOC。如果检验58的 结果为真,则控制进行到60,其中进行检验以确定ERAD 22的温度是否低于基准温 度。如果检验60的结果为真,则控制进行到62,其中进行检验以确定ERAD 22当前 的扭矩产生能力是否大于通过函数54确定的所需车轮扭矩。
如果下压踏板,电池的SOC高于基准SOC, ERAD温度低于基准温度,且ERAD扭 矩产生能力大于所需车轮扭矩,则在64使用ERAD22和电气动力路径驱动车轮负荷, 防止车辆倒溜,并爬上上坡坡度而不起动发动机。但如果检验58、 60和62中的任何 一个的结果为假,则控制进入步骤66,其中使用发动机14和机械动力路径驱动车轮 负荷并防止车辆倒溜。在步骤66, ERAD扭矩同步于发动机扭矩增加而减小,直到发 动机扭矩提供所需车轮扭矩。优选地,如图5B所示,控制ERAD扭矩,以使其与发动 机扭矩的叠加连续平滑地提供所需车轮扭矩。
在使用ERAD 22和电气动力路径防止倒溜时,控制算法以频繁的间隔重复地执行 检验68以确定加速器踏板位置的变化率是否大于零或基准踏板位置变化率。如果检 验68的结果逻辑上为真,则控制算法以频繁的间隔重复地执行检验70以确定车速 VS的变化率是否大于零或基准车速变化率。如果检验70的结果为真,则控制返回64。
如果检验68的结果为假,表明加速器踏板位置未改变或在慢速改变,则控制认 为ERAD扭矩在防止车辆倒溜,且控制返回58。
如果检验70的结果为假,表明车辆加速度未增加或快速减少,则控制认为ERAD 扭矩未防止车辆倒溜,且控制进行到66,其中使用发动机14和机械动力路径来驱动 车轮负荷并防止车辆倒溜。控制使用检验68和检验70的组合来推断驾驶员在下压加 速器踏板以克服由于坡度增加产生的道路负荷的增加且车轮处的扭矩不足以维持车 辆加速度。检验68和70提供对倒溜状态的最早的指示。
在图5A-5D中,在阶段A开始处,车辆停止在具有正坡度的斜坡上。加速器踏 板位置80在驾驶员要求车轮扭矩以爬上该斜坡时初始增加。ERAD向车轮提供增加的 扭矩以防止倒溜,之后,ERAD扭矩在车速稳定时保持稳定。加速器踏板位置的变化 率82典型地随之改变。在图5C中示出车速88和车辆加速度90。电池的SOC "如
图所示在ERAD 22从电池23中吸取电能时线性减小。
在图5A-5D中,阶段B、 C、 D和E表示其间车辆在坡度增加的斜坡上向前运动 的时间段,初始使用ERAD扭矩84在斜坡上推动车辆。在阶段B开始时,车辆减速, 因为ERAD扭矩84小于因道路坡度增加而增加的道路负荷86。在阶段C开始时,驾 驶员感觉到车辆减速并通过下压加速器踏板进行踩加速器踏板以便在斜坡上加速车 辆。使用CISG 18起动发动机14,发动机14在短时间之后开始产生发动机正扭矩98, 从而车轮扭矩IOO增加。加速器踏板下压率的增加和车辆加速度的同时减小导致发动 机在图3的步骤66起动。在阶段D开始时,车轮扭矩100由于加入的发动机扭矩98 而超过道路负荷86,从而在斜坡上加速车辆。
在阶段B中,由于随坡度增加而增加的道路负荷,车辆开始减速。在阶段C期间, 驾驶员进一步踩加速器以继续加速车辆上坡。控制策略推断出增加的加速器踏板下压 率以作为增加的道路负荷的指示。增加的加速器踏板下压率和减小的车速的组合用于 推断驾驶员在下压加速器踏板以便克服坡度的增加,但是源于ERAD的车轮扭矩不足 以维持车辆加速度。这提供倒溜状态的最早的指示。这些状态表明ERAD扭矩84由于 增加的道路负荷86而不能满足驾驶员要求的扭矩。检查这些状态是因为所需的车轮 扭矩不能补偿由增加的坡度造成的增加的道路负荷。 一旦在阶段C期间检测到这些状 态,发动机就起动以防止车辆倒溜状态。
在阶段D中,在发动机14与ERAD 22—起产生扭矩,如图所示增加的车轮扭矩 高于道路负荷时,车辆在斜坡上加速。最后,在阶段E期间,ERAD扭矩84在发动机 扭矩98增加时同步地减少,从而维持恒定的车轮扭矩100。这可在使用发动机推进 车辆时提供感觉不到的转换,同时防止车辆倒溜。
图6A - 6C示出如加速器踏板位置80及其变化率82所示,在驾驶员初始要求并
持续要求较大车轮扭矩时,在防止车辆倒溜期间的动力传动系统参数的变化。所需的 车轮扭矩IIO超过实际车轮扭矩100和ERAD扭矩84。在112,使用CISG 18起动发 动机14,发动机14在短时间后开始产生发动机正扭矩98。如图6B所示,发动机扭 矩98优选地在C工SG扭矩114减小时同步地增加,从而在各动力源之间产生平滑的扭 矩转换。发动机扭矩98保持恒定一段时间116。由于输入离合器40、41充油(filling)、 行程运动(stroking)和滑移(slipping)的延迟,产生变速器输出扭矩增加时的延 迟,其中输入离合器40、 41通过变速器16工作的挡位传递动力。
发动机扭矩98增加并在控制下向车轮提供所需的扭矩。车速88在发动机"起 动时均匀地增加,变速器16的输入离合器40、 41接合,且动力被传递到车轮34、 35。 ERAD扭矩84快速地增加,使车轮26、 27处的车轮扭矩在驾驶员初始要求较大 车轮扭矩时接近所需的车轮扭矩,然后以和发动机扭矩的增加同步的速率下降,以确 保车轮处的扭矩转换平滑。然后,ERAD 22在120关闭。
图7示出包括第一输入离合器40和第二输入离合器41的动力换挡变速器l6的 细节,第一输入离合器40选择性地将变速器16的输入2G交替地连接到关联于第一 中间轴244的偶数挡42,第二输入离合器41选择性地将输入20交替地连接到关联 于第二中间轴249的奇数挡43。
中间轴244支撑通过轴颈连接到中间轴244上的各个小齿轮260、 262 、 264,及 固定到中间轴244上的连接器266、 268。小齿轮260、 262、 264分别与第二、第四 和第六挡关联。连接器266包括套管270,该套管可以向左移动以接合小齿轮260并 将小齿轮260传动连接到中间轴244。连接器268包括套管272,该套管可以向左移 动以接合小齿轮262并将小齿轮262传动连接到中间轴244,还可以向右移动以接合 小齿轮264并将小齿轮264传动连接到中间轴244。
中间轴249支撑通过轴颈连接到中间轴249上的各个小齿轮274、 276、 278 ,及 固定到中间轴249上的连接器280、 282。小齿轮274、 276、 278分别与第一挡、第 三挡和第五挡关联。连接器280包括套管284,该套管可以向左移动以接合小齿轮274 并将小齿轮274传动连接到中间轴249。连接器282包括套管286,该套管可以向左 移动以接合小齿轮276并将小齿轮276传动连接到中间轴249,还可以向右移动以接 合小齿轮278并将小齿轮278传动连接到中间轴249。
变速器输出32支撑固定到轴32上的各个齿轮288、 290、 292。齿轮288啮合小 齿轮260和274。齿轮290啮合小齿轮262和276。齿轮292啮合小齿轮264和278。
连接器266、 268、 280和282可以是同步器,或牙嵌式离合器,或其组合。
虽然是参考动力换挡变速器描述本发明,但本发明适用于任何常规的手动变速 器、自动换挡手动变速器,或不具有位于发动机和变速器输入之间的动力路径中的变 矩器的自动变速器。
根据专利法的规定,对优选实施例进行了描述。然而,应注意,可以实施不同于 具体示出和描述的实施例的替代实施例。
权利要求
1.在包括传动连接到负荷的发动机和传动连接到所述负荷的电机的动力传动系统中,一种控制位于斜坡上的车辆以防止倒溜的方法,所述方法包括下述步骤(a)确定防止所述车辆倒溜所需的车轮扭矩的量;(b)确定所述电机的当前最大扭矩是否能够产生所需的车轮扭矩的量;(c)如果所述电机的当前最大扭矩能够产生所需的车轮扭矩,且所述电机的温度低于基准温度,则使用所述电机产生所需的车轮扭矩;及(d)如果所述电机的当前最大扭矩不能产生所需的车轮扭矩,或所述电机的温度高于基准温度,则使用所述发动机和所述电机产生所需的车轮扭矩。
2. —种控制位于斜坡上的车辆以防止倒溜的系统,所述系统包括 传动连接到负荷的发动机; 传动连接到所述负荷的电机;及控制器,所述控制器配置为确定防止所述车辆倒溜所需的车轮扭矩的量,如果所 述电机的当前最大扭矩能够产生所需的车轮扭矩,则使用所述电机产生所需的车轮扭 矩,如果所述电机的当前最大扭矩不能产生所需的车轮扭矩,则使用所述发动机和所 述电机产生所需的车轮扭矩。
3. 如权利要求2所述的系统,其特征在于,所述控制器还配置为如果加速器踏 板的下压率大于基准下压率,且车辆减速的量大于基准车辆减速,则起动所述发动机,及从使用所述电机转换为使用所述发动机来向车轮提供扭矩。
4. 如权利要求2所述的系统,其特征在于,所述控制器还配置为同时增加发动 机扭矩和减小所述电机产生的扭矩以便向车轮提供扭矩。
5. 如权利要求2所述的系统,其特征在于,所述控制器还配置为 使用加速器踏板的下压率和车辆减速的量来指示增加车轮扭矩以防止车辆倒溜的要求;及响应于所述指示同时增加发动机扭矩和减小所述电机产生的扭矩。
全文摘要
本发明提供混合动力电动车辆的倒溜控制,其中在包括传动连接到负荷的发动机和传动连接到该负荷的电机的动力传动系统中,一种控制位于斜坡上的车辆以防止倒溜的方法包括确定防止车辆倒溜所需的车轮扭矩的量,确定电机的当前最大扭矩是否等于或大于所需的车轮扭矩,如果电机的当前最大扭矩能够产生所需的车轮扭矩,则使用电机产生所需的车轮扭矩,如果电机的当前最大扭矩不能产生所需的车轮扭矩,则使用发动机产生所需的车轮扭矩。
文档编号B60W30/18GK101367339SQ20081013106
公开日2009年2月18日 申请日期2008年8月15日 优先权日2007年8月16日
发明者伊哈勃·S·索里曼, 安德鲁·J·西尔韦里 申请人:福特环球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1