用于混合动力电动车的能量存储系统的制作方法与工艺

文档序号:12041090阅读:460来源:国知局
用于混合动力电动车的能量存储系统的制作方法与工艺
用于混合动力电动车的能量存储系统相关申请的交叉引用本申请要求于2010年12月7日提交的美国临时专利申请61/420389的优先权,其通过引用方式结合到本申请中。

背景技术:
本发明一般性地涉及能量存储系统,并且更特别涉及待结合到混合电动汽车中以存储高压能量的能量存储模块。在过去几年中,由于二氧化碳水平的增加以及油料供应的短缺,对全球气候变化的关注日益增加。结果,一些汽车制造商和消费者开始对具有低排放和较高燃料效率的汽车具有更大的兴趣。一个可行的选择是混合动力电动车(HEV),其允许车辆由电动马达、内燃机或两者的结合来驱动。尽管多个特征对于整体HEV的设计是重要的,但是存储车辆能使用的能量的系统是一项关键部件。在HEV中提供能量存储系统以存储发电机产生的能量,从而混合系统能在随后的一些时间使用这些能量。例如,所存储的能量可用于驱动电动马达以独立地驱动汽车或辅助内燃机,因此降低汽油的消耗。但是,能量存储系统面临着多种设计问题,例如过热、重量、复杂性、结合到车辆中的容易度、维护的容易度和成本,这里仅举了几个例子。此外,已知的能量存储系统仅使用特定和已知数量的设计为达到特定HEV设计规格的电池组或模块。例如,电池组可特别设计为向300V的车辆提供特定量的能量。但是,当要求不同量的电能时,例如600V的系统,必须设计不同的电池包以达到所述应用的需求。没有显著量的再设计和翻修,已知的电池包和存储系统不能使用或应用到不同的设置中。一些已知的系统允许单独的电池包与单独的控制箱电连接。尽管可向整体系统中加入或从中移除独立的电池包,但是仍需要单独的控制箱。但是,由于可用于HEV部件的空间很珍贵,因此应当避免包括单独的控制箱。此外,在该单独的控制箱出现故障的情况中,整个能量存储系统不能工作。因此,需要在此领域中进行改进。

技术实现要素:
这里描述的能量存储系统解决了数个上文提及的问题以及其他问题。例如,根据本公开的一个实施方案的能量存储系统具有多个能量存储模块。能量存储模块至少包括用于存储高压能量的多个第二电池阵列。能量存储控制器模块与能量存储模块内的多个部件电连接,所述部件例如但不限于电池阵列、低压线束、热敏电阻线束和/车辆信号连接器组件,这里仅举了几个例子。根据本发明的一个方面,能量存储系统内的能量存储模块适于彼此通信。在一个实施方案中,在每个能量存储模块之间提供有包对包CAN总线。当采用多个能量存储模块来构成能量存储系统时,一个能量存储模块用作主能量存储模块,而其他的用作从属能量存储模块。主能量存储模块内的能量存储控制器模块适用于接收来自从属能量存储模块的信息,并且作为单个能量存储系统与变速箱/混合控制模块和混合系统的剩余部分通信。根据本公开的另一方面,能量存储系统包括至少一个用于向混合动力车辆提供电能的能量存储模块。能量存储模块包括基础包壳、至少一个处于基础包壳内的电池阵列,以及位于基础包壳内且与电池阵列电连接的能量存储控制器模块。能量存储控制器模块还通过低压连接器与混合动力车辆的混合控制模块相连。高压接线箱与基础包壳的第一端部相连并且具有多个高压连接端子。高压接线箱具有相应于基础包壳的第二开口的第一开口,使得基础包壳和高压接线箱限定了密封的腔体。至少一个高压连接端子构造为接收可连接在能量存储模块和混合动力车辆的逆变器之间的高压导体。在高压连接端子和至少一个电池阵列之间的电流路径中连接有紧急断电开关。根据本公开的另一方面,能量存储系统包括设置在电池阵列和基础包壳的内表面之间的散热垫。在基础包壳的外表面上设置有散热片。散热片包括多个可相对于基础包壳的纵轴以对称方式成角度地向外设置的翅片。安装在基础包壳的第一端部的外表面上的风扇操作为引导空气经过翅片朝向基础包壳的第二端部。翅片的高度或长度可相对于风扇的位置而变化,以提供经过电池阵列内的蓄电池组电池的均匀冷却。在散热片的外部安装了包壳片体并且限定了空气流腔体,其中包壳片体还引导空气从风扇经过散热片。根据本公开的另一方面,能量存储系统包括插入式总线电气中心,其中使用片式端子实现了在电池阵列和总线电气中心之间的高压连接的至少一部分。基础包壳可还包括设置在基础包壳内的并且能操作为限制基础包壳内的内压的压力释放板。根据本公开的另一方面,电池阵列包括两个平行的侧部导轨和垂直于侧部导轨的两个平行板。电池阵列也可包括设在蓄电池组电池之间的电池定位器。电池定位器由足够厚度的绝缘材料形成,以将在相邻蓄电池组电池之间的热传递限制到能阻止第一蓄电池组电池的排放会导致相邻的第二蓄电池组电池排放的水平。蓄电池组电池也包括具有多个设置在其中的总线条带的电压检测板。总线条带将第一蓄电池组电池的正端子连接于第二蓄电池组电池的负端子。电压检测板在电压检测板的指定位置中具有缺失的终端总线条带,以在初始装配期间将暴露电压限制到50伏。终端总线条带最后连同安全盖一起安装,所述安全盖具有重叠部分以覆盖所安装的终端总线条带。根据本公开的另一方面,控制器模块任选地包括存储部件。该存储部件用于记录能量存储模块的使用和状态历史,例如所达到的功率水平和负载循环,这里仅举了几个例子。通过详细描述和随之提供的附图,本发明其他的形式、目的、特征、方面、好处、优点和实施方案将变清楚。附图说明图1是混合系统的一个实施例的示意图。图2是图1的混合系统中的电通信系统的总图。图3是根据本公开的一个实施方案的能量存储模块的前部透视图。图4是图3中的能量存储模块的后部透视图。图5是图3中的能量存储模块的底部透视图。图6是图3中的能量存储模块的端部视图。图7A是根据本公开的一个实施方案的带有安装了接口盖的能量存储模块的端部视图。图7B是根据本公开的一个实施方案的能量存储模块的端部视图,其中移除了接口盖但安全盖就位。图8是根据本公开的一个实施方案的能量存储模块的堆叠设置的端部视图。图9是根据本公开的一个实施方案的带有移除了顶盖的能量存储模块的顶视图。图10是根据本公开的一个实施方案的带有移除了顶盖的图9所示能量存储模块的透视图。图11是根据本公开的一个实施方案的带有移除了顶盖的图10所示能量存储模块的另一透视图。图12是根据本公开的一个实施方案的送风端盖的透视图。图13是根据本公开的一个实施方案图12所示端盖的A-A截面图。图14是根据本公开的一个实施方案的示出了冷却空气流的能量存储模块的底部透视图。图15是根据本公开的一个实施方案的风扇组件的分解图。图16是根据本公开的一个实施方案的总线电气中心组件的透视图。图17是根据本公开的一个实施方案的电池阵列组件的分解图。图18是蓄电池组电池的透视图。图19是根据本公开的一个实施方案的蓄电池阵列和送风组件的一个端部的横截面图。图20是根据本公开的一个实施方案的蓄电池阵列和送风组件的另一端部的横截面图。图21是根据本公开的一个实施方案的能量存储控制器模块的透视图。图22是根据本公开的一个方面的能量存储模块的堆叠设置的透视图。图23是根据本公开的一个方面的能量存储模块的车辆安装装置的透视图。图24是根据本公开的一个实施方案的能量存储模块的前部透视图。图25是在图24中显示的能量存储模块的后部透视图。图26是根据本公开的一个实施方案的能量存储模块的堆叠设置的后部透视图。图27是在图24中显示的能量存储模块下部后部透视图。图28是根据本公开的一个实施方案的设置散热翅片的下部后部透视图。图29是根据本公开的一个实施方案的具有散热垫的能量存储模块上部后部透视图。图30是图24的能量存储模块高压接线箱的前部透视图。图31是移除了接口盖的图31所示的高压接线箱的前部透视图。图32是移除了内部安全盖的图31的所示高压接线箱的前部透视图。图33A是图24的能量存储模块的插入式总线电气中心的前部透视图。图33B是图24的能量存储模块的插入式总线电气中心的后部透视图。图34是图24的能量存储模块的分解的前部透视图。图35是移除了顶盖和风扇组件的图24的能量存储模块的分解的后部透视图。图36是图24的能量存储模块的分解的后部透视图。图37是根据一个实施方案的图24的能量存储模块的卸压板的透视图。图38是根据本公开的一个实施方案的电池阵列的分解的透视图。图39是根据本公开的一个实施方案的装配的电池阵列的透视图。图40是显示了图39的安装在电池阵列中的单个蓄电池组电池的电池阵列的前视图。图41是根据本公开的一个实施方案的电压检测板组件的顶视图。图42是图24的安装在车辆框架的能量存储模块的前视图。图43是根据一个实施方案的用于支撑能量存储模块的隔离器适配器的透视图。图44是根据本公开的一个实施方案的热敏电阻安装设置的前视图。图45是图44的热敏电阻安装设置的透视图。图46A是显示了根据一个实施方案的用于能量存储系统中的单个能量存储模块的图。图46B是显示了根据一个实施方案的并联连接的两个能量存储模块的图。图46C是显示了根据一个实施方案的串联连接的两个能量存储模块的图。图46D是显示了根据一个实施方案的串联/并联连接设置的两对能量存储模块的图。具体实施方式出于更好地理解本发明原理的目的,现在将参照在附图中说明的实施方案,并且使用详细的语言来对其进行描述。然而需要理解的是,本发明的范围并不因 此而受到限制。如同与本发明相关的领域的技术人员所通常想到的那样,可以构思出对在此描述的实施方案的任何修改和进一步的改进,以及对此处所描述的本发明原理的进一步应用。这里非常详细地显示了本发明的一个实施方案,然而对于本领域的技术人员来说很明显,为了简要起见,一些与本发明无关的特征也许不会显示出来。在下述描述中的标记数字用于帮助读者快速识别出首次显示了各种部件的附图。特别是,首次出现了元件的附图典型地由相应的标记数字的最左侧的数字来表示。例如,由“100”系列标记数字标出的元件将首次出现在图1中,由“200”系列标记数字标出的元件将首次出现在图2中,以此类推。对于说明书、摘要和权利要求书来说,应当注意地是,单数形式“一”、“该”等也包括复数,除非另有明确说明。作为说明,关于“一个装置”或“该装置”包括一个或多个这种装置或其等效物。图1显示了根据一个实施方案的混合系统100的示意图。图1中说明的混合系统100适合用于商用卡车以及其他类型的车辆或运输系统,但是可以设想混合系统100的多个方面可结合到其他环境中。如所示,混合系统100包括发动机102、混合模块104、自动变速箱106和用于将动力从变速箱106传递到车轮110的传动系108。混合模块104中结合入了通常称之为电机112的电机器,和使发动机102与电机112和变速箱106操作性连接和断开的离合器114。混合模块104设计成操作为自立式单元,即其通常能够独立于发动机102和变速箱106而工作。特别是,其液压、冷却和润滑不直接依赖于发动机102和变速箱106。混合模块104包括底槽116,所述底槽用于存储和提供流体如燃油、润滑剂或其他流体到混合模块104,以用于液压、润滑和冷却的目的。虽然这里可互换地使用用语燃油或润滑剂,但是这些用语以较宽的意义来使用,以包括不同类型的润滑剂,例如天然油或合成油,以及具有不同性质的润滑剂。为了循环流体,混合模块104包括机械泵118和电动(或电气)泵120。通过机械泵118和电动泵120两者的这种结合,能减小泵的整体尺寸以及整体费用。电动泵120可补充机械泵118,以便当需要时提供额外的泵排量。此外可以理解,流经过电动泵120的流体可用于检测用于混合模块104的低流体情况。在一个实施例中,电动泵120由加拿大安大略省奥罗拉的MagnaInternationalInc.制造(零件编号29550817),但是可以理解,可以使用其他类型的泵。混合系统100还包括冷却系统122,所述冷却系统用于冷却供给到混合模块104的流体以及供给到混合系统100的随后将详细描述的多种其他部件的水-乙二醇(WEG)。在一个变体中,WEG也可循环经过电机112的外部壳体以冷却电机112。应当注意地是,将相对于WEG冷却剂来描述混合系统100,但是也可使用其他类型的防冻剂和冷却流体,例如水、乙醇溶液等。如图1所示,循环系统122包括冷却用于混合模块104的流体的流体散热器124。冷却系统122还包括构造为冷却用于混合系统100中的多种其他部件的防冻剂的主散热器126。通常在大多数车辆中,主散热器126是发动机散热器,但是主散热器126不必须为发动机散热器。冷却风扇128驱动空气流经流体散热器124和主散热器126。循环或冷却剂泵130使得防冻剂循环到主散热器126处。应理解地是,使用冷却系统122可冷却已经说明的部件之外的其他多种部件。例如,通过冷却系统122同样可冷却变速箱106和/或发动机102。混合模块104内的电机112根据操作模式有时用作发电机,而在其他时候用作马达。当用作马达时,电机112使用交流电(AC)。当用作发电机时,电机112产生AC。逆变器132转换来自电机112的AC并将其提供给能量存储系统134。在一个实施例中,电机112为由美国印第安纳州彭德尔顿的RemyInternational,Inc.生产的HVH410系列电机,但是可以设想可使用其他类型的电机。在所说明的实施例中,能量存储系统134存储能量,并且将其作为直流电(DC)再提供出去。当混合模块104中的电机112用作马达时,逆变器132将DC电转换成AC,其又提供给电机112。在所说明的实施例中,能量存储系统134包括三个串联在一起的能量存储模块136,以向逆变器132提供高压电能。实质上,能量存储模块136为用于存储由电机112产生的能量和将能量快速提供回电机112的电化学电池。能量存储模块136、逆变器132和电机112通过图1所示线条示出的高压线而操作性地耦合在一起。虽然所说明的实施例显示了包括三个能量存储模块136的能量存储系统134,但应当理解地是,能量存储系统134可包括比所示的更多或更少的能量存储模块136。此外可以设想,能量存储系统134可包括任何用于存储势能的系统,例如通过化学方式、气动蓄能器、液压蓄能器、弹簧、储热系统、飞轮、重力装置和电容器,这里仅举了几个例子。高压线将能量存储系统134连接于高压抽头138。高压抽头138将高电压提供给连接于车辆的多种部件。包括一个或多个DC-DC转换器模块142的DC-DC 转换系统140将由能量存储系统134提供的高压电能转换成较低压的电能,所述较低压的电能又提供给要求低电压的多种系统和附件144。如图1所示,低压线将DC-DC转换器模块142连接于低压系统和附件144。混合系统100结合了多个用于控制多种部件的操作的控制系统。例如,发动机102具有发动机控制模块146,用于控制发动机102的多种操作特征,例如燃料喷射等。变速箱/混合控制模块(TCM/HCM)148取代了传统的变速箱控制模块,并且设计为控制变速箱106以及混合模块104的操作。变速箱/混合控制模块148和发动机控制模块146连同逆变器132、能量存储系统134和DC-DC转换系统140一起沿着如图1中描述的通信线路通信。为了控制和监测混合系统100的操作,混合系统100包括界面150。界面150包括用于选择车辆是否处于驾驶、空档、倒车等的换档选择器152,以及包括混合系统100的操作状态的多种指示器156(如检查变速箱、制动压力和空气压力的指示器,这里仅举了几个例子)的仪表板154。如之前所述,混合系统100构造为易于对整体设计影响最小地改装现有的车辆设计。混合系统100的所有系统(包括但不限于机械系统、电气系统、冷却系统、控制系统和液压系统)已经构造为通常自立式的单元,使得不需要显著地改动车辆的其余部件。需要改动的部件越多,则对车辆设计和测试的要求越高,这又降低了车辆制造者采用相比于较低效率的、已存在的车辆设计而言更新的混合设计的机会。换句话说,对于混合改造,对已经存在的车辆设计的布局的显著修改又要求车辆和产品生产线的修改和昂贵的测试,以保证车辆的正确操作和安全度,并且这种费用趋向于减少或减缓使用混合系统。如将理解的是,混合系统100不但包括最小地影响已存在的车辆设计的机械系统的机械结构,而且混合系统100也包括最小化地影响已存在的车辆设计的控制系统和电系统的控制结构/电结构。图2显示了可用于混合系统100中的通信系统200的一个实施例的图。虽然显示了一个实施例,但是应当理解地是,在其他实施方案中通信系统200可构造为与所显示的不同。通信系统200构造为最小地影响车辆的控制系统和电系统。为了便于对现有的车辆设计进行改装,通信系统200包括混合数据线路202,混合系统100的大多数各种部件通过所述混合数据线路进行通信。特别是,混合数据线路202方便了在变速箱/混合控制模块148和换档选择器152、逆变器132、 能量存储系统134、低压系统/附件144以及DC-DC转换模块142之间的通信。在能量存储系统134中,能量存储模块数据线路204方便了在多种能量存储模块136之间的通信。但是,可以构思出在其他实施方案中,多种能量存储模块136可经混合数据线路202彼此通信。通过将混合数据线路202和能量存储模块数据线路204与用在车辆剩余部分中的数据线路分开,混合系统100的控制/电部件可以容易地关联于车辆而影响最小。在所说明的实施例中,混合数据线路202和能量存储模块数据线路204均具有500比特/秒(kbps)的传输速率,但是可设想地是,在其他实施例中可以其他速率来传递数据。车辆的其他部件通过车辆数据线路206与变速箱/混合控制模块148通信。特别是,换档选择器152、发动机控制模块146、仪表板154、防抱死制动系统208、整体控制器210、低压系统/附件144和服务工具212连接于车辆数据线路206。例如,车辆数据线路206可为250kJ1939型的数据线路、500kJ1939型的数据线路、通用汽车LAN或PT-CAN型的数据线路,这里仅举了几个例子。所有这些类型的数据线路可为任意的形式,例如金属线、光纤、无线频率和/或其结合,这里仅举了几个例子。在总体功能方面,变速箱/混合控制模块148接收来自能量存储系统134和其中的多个能量存储模块136的功率限值、有效电流容量、电压、温度、充电阶段、状态和风扇速度信息。变速箱/混合控制模块148又发出用于连接多个能量存储模块136的指令,以向逆变器132提供电压或由逆变器提供电压。变速箱/混合控制模块148也接收关于电动泵120的操作的信息,以及向辅助电动泵120发出指令。变速箱/混合控制模块148从逆变器132接收多个输入,例如发动机/发电机的有效扭矩、扭矩限值、逆变器的电压电流和实际的扭矩速度。基于这些信息,变速箱/混合控制模块148控制扭矩速度和冷却系统的泵130。变速箱/混合控制模块148也会从逆变器132接收高电压总线功率和消耗信息。变速箱/混合控制模块148也监测输入电压和电流以及输出电压和电流,连同DC-DC转换系统140的单个DC-DC转换模块142的操作状态。变速箱/混合控制模块148也与发动机控制模块146通信和接收来自其的信息,并且作为响应而通过发动机控制模块146控制发动机102的扭矩和速度。来看图3,现在将讨论能量存储模块136的特定的实施方案。如所示,能量存储模块136包括具有底部壳体302和上部盖304的基础包壳301。底部壳体302和上部盖304构造并设置为可承受大的振动载荷和高的冲击载荷。为了在特定的 环境(即重型卡车)中操作而提供高负载强度的同时也考虑重量,在一个实施方案中底部壳体302和上部盖304由铝来构造,尽管也可使用他材料,例如钢。根据一个实施方案,能量存储模块136构造为可承受100G的冲击载荷和25G的振动载荷。多个安装脚306位于底部壳体302的底部,以帮助将能量存储模块136安装到HEV主体或框架上。此外,在底部壳体302的外周提供有多个凹陷316,以便也帮助多个能量存储模块的选择性堆叠。在能量存储模块136的一个端部307处设置有高压接线箱308。如将在下文中详细描述地,一系列高压线缆310与高压接线箱308相连,以向能量存储模块136输送高电压能量和由其输送高电压能量。高电压接线箱308可与基础包壳301整体式形成,或作为单独的单元。在能量存储模块136的端部307上也提供了紧急断电开关312和低压车辆信号连接器314。紧急断电开关312提供用于切断基础包壳301内的高压电源和高压接线箱308内的电子器件之间的电流路径。紧急断电开关312保证了在能量存储模块136的紧急操作期间的使用者的安全。车辆信号连接器314允许能量存储模块136与混合系统的其他部件、例如但不限于变速箱/混合控制模块148的电连接和通信连接。在一个实施方案中,车辆信号连接器314为包括金端子的四十七(47)路连接器。根据本公开的一个方面,车辆信号连接器314也为重型负载应用而设置并得到验证。尽管图3中显示的实施方案包括单个车辆信号连接器314,其他的实施方案可包括两个或更多个信号连接器。图4显示了能量存储模块136的另一端部315的透视图。如所示,在能量存储模块136的该相同端部315处提供了送风入口盖402和送风出口盖404。盖402、404构造并设置为引导空气进入和离开能量存储模块136。在一些实施方案中,盖子402、404可以相连并具有统一的设计。提供了排放口406以允许安全地排放在蓄电池组电池出现故障的情况中的潜在有害的气体和烟气,如将在下文中详细描述的那样。在上部盖304上提供了多个凹口408,以帮助多个能量存储模块的选择性堆叠和匹配。在一些实施方案中,能量存储模块136具有1100mm×470mm×235mm的物理尺寸,然而基于特定的HEV设计可使用更大和更小的尺寸,这些都在本公开的范围内。在一些实施方案中,能量存储模块具有在50到100千克之间的重量, 尽管更轻和更重的重量均处于本公开的范围内。图5提供了能量存储模块136的底部壳体302的底侧的透视图。如所示,底部壳体302在其底部表面上包括多个凸起502。在所说明的实施方案中,凹口408与凸起502的结构相一致,以便当额外的能量存储模块堆叠在上部盖304的顶部上时提供稳定的设置。图6提供了包括高压接线箱308的能量存储模块136的端部307的更详细的图。在所说明的实施方案中,在能量存储模块136的相同端部307上提供了所有的电连接器。高压接线箱308包括两个辅助直流(DC)连接器602和相应的辅助保险丝604。这些部件提供了待由混合系统和/或车辆附属设备使用的额外的高压DC功率源。在一个实施方案中,一个DC连接器602允许能量存储模块136与DC-DC转换系统140相连。高压接线箱308也包括高压内锁(HVIL)606,当促动时,所述高压内锁会将高压部件与车辆的其余部件安全地隔离开。如上文所述,一系列高压线缆310通过高压连接器616使一系列外围部件与高压接线箱308相连。更特别地,正逆变线缆608为逆变器132提供正连接,而负逆变线缆610为逆变器132提供负连接。正配合线缆612为额外的、堆叠的能量存储模块或其他高压装置提供正连接,以及负配合线缆614为额外的、堆叠的能量存储模块或其他高压装置提供负连接。正线缆608、612与正端子618电连接,并且负线缆610、614与负端子620电连接。在一个实施方案中,线缆310的端部和连接器616键式连接以阻止连接错误。在一个实施方案中,每根线缆具有单独的键。在另一实施方案中,正线缆608、612同样地键连接,而负线缆610、614同样地键连接但是不同于正线缆608、612。图7A、7B显示了根据本公开的一个实施方案的高压接线箱308的安全接口特征。如图7A所示,高压接线箱308是由接口盖702保护的密封单元。为了能接触到接线箱308的内侧,必须将紧固件704移除并且将接口盖702移开。图7B显示了带有移除了接口盖702的高压接线箱308。为了预防的目的,在接口盖702后面提供了安全盖706,以用作高压端子的另一屏障。为了接触到图5中所示的电子器件,必须移除HVIL电阻器708,以将HV功率与正端子618和负端子620断开。此外,在可将安全盖706移除之前,必须取出紧固件710。一旦这些动作完成,则可安全地接触到图5中示出的高压接线箱308内的电子器件。图8显示了在堆叠的能量存储模块之间的HV功率连接。如所示,一个能量 存储模块802用作主模块。主模块802通过线缆608、610与混合系统逆变器132相连。第二能量存储模块804用作从属模块。在所说明的实施方案中,从属模块804不与逆变器132相连,而仅通过线缆612、614与主模块802相连。因此,主模块802本质上包含两组主功率连接:一个与混合系统相连,一个与从属模块804相连。图9显示了能量存储模块136的顶视图,在其中已经移除了顶部盖304以显示各种部件。在所说明的实施方案中,能量存储模块136包括第一电池阵列902和第二电池阵列904。电池阵列902、904允许(a)存储接收自逆变器132的高压电能和(b)向逆变器132提供高压电能以通过辅助DC连接器602给适当的混合系统部件以及其它的系统部件提供能量。电池阵列902、904中的每一个与电连接于控制器模块908的高压线束906相连。电池阵列902、904也电连接于总线电气中心(BEC)918,其中所述总线电气中心构造并设置为至少适当地将高压电能分配给高压接线箱308和线缆310。除了高压线束906,控制器模块908也与低压线束910电连接。低压线束910提供了在控制器908和能量存储模块136内的多个部件(例如但不限于风扇组件912、车辆信号连接器组件914和BEC918)之间的通信连接。作为进一步的安全防范,在能量存储模块136的内部也提供了高电压内锁开关916。高电压内锁开关916与BEC918电连接并与其通信连接。如果高压电状况变得不安全,则BEC918用于触发开关916,并且断开高电压源和高压接线箱308。在其他未说明的实施方案中,可将多个部件重新设置和重新定位,例如但不限于BEC918和风扇组件912的一部分。在一个实施方案中,风扇组件912可设置在基础包壳301的外部。在另一实施方案中,BEC918可设置在高压接线箱308的内部。如本领域中的技术人员所理解的那样,可以实施这些修改和其他修改,以在维修条件下降低高压暴露。图10和11提供了能量存储模块136内的部件的更详细的整体视图。如所示,高压接线箱308包括正集管组件1002和负集管组件1004。在接口盖702的下方设置有保证将颗粒物和湿气隔离在高压接线箱308之外的接口盖密封件1006。也提供了高压内锁导体1008。在特定的实施方案中,可相对于下部壳体302打开高压接线箱308的后部,以允许在高压接线箱308和BEC918或控制器908之间的不同的电连接。在其他实施方案中,可将高压接线箱的后部相对于下部壳体302 而密封,其中高压接线箱308和BEC918之间的线路连接被单独地密封,从而通过高压接线箱308阻止了污染物进入基础包壳301中。紧急断电开关312包括紧急断电插塞1010和底座1012。提供了紧急断电开关312的紧急断电插塞1010以断开能量存储模块136内的高压电源和高压接线箱308内的电子器件之间的电流路径。密封件1014设置在上部盖304的下方,以保证将颗粒物和湿气隔离在能量存储模块136之外。一系列螺栓1016用于将上部盖304固定于下部壳体302,然而也可使用其他已知的技术。在上部盖304和下部壳体302两者的外周设有用于方便升举能量存储模块136以及堆叠多个能量存储模块136的多个孔1024。安全盖1018设置在电池阵列902的顶部。安全盖1018保护包含电池阵列902的蓄电池组电池不受损坏,并且不与能量存储模块136内的其他部件接触。电池端部板密封件1032提供在电池阵列902、904的每个端部处,以进一步保护阵列不受污染和损坏。在送风入口盖402和风扇组件912之间设置有送风/风扇界面1020。入口空气传感器1022设置在送风/风扇界面1020的下游,并且用于监测进入能量存储模块136内的空气流。风扇壳体密封件1030也提供为与风扇组件912相邻。如相对于图9所讨论的那样,控制器模块908与低压线束910以及热敏电阻高线束1026和热敏电阻低线束1028电连接和通信连接。如本领域中的技术人员所理解地,热敏电阻为其电阻随着温度的变化而变化的电阻器。因此,热敏电阻线束1026、1028可传送关于BEC918、入口空气、出口空气、电池阵列902、904、风扇组件912等的温度数据。现在来看图11,BEC918包括与正集管组件1002电连接的正高压导体1102和与负集管组件1004电连接的负高压导体1104。BEC918还包括负导体1106。相邻于高压接线箱308提供有高压内锁集管通道1108。现在也参考图9和10,HVIL通道1108将HVIL导体1008与HVIL开关916电连接。因此,当将HVIL电阻器708从HVIL606中移除时,HVIL通道1108指示断路,并且HVIL开关916被触发,以使高压电源与高压接线箱308内的电子器件断开。在操作期间,能量存储模块136内的多个部件会产生显著量的热,特别是电池阵列902、904。为了部件能适当地运行,必须充分地将热量驱散。根据所说明的实施方案,能量存储模块136内的电池阵列902、904和其他的部件被空气冷 却。为了沿着电池阵列902、904引导和提供单独的空气流,在电池阵列902、904之间提供了送风盖1110。送风盖1110具有相邻于风扇组件912而设置的风扇端部1112,以及位于BEC918附近的BEC端部1114。在所说明的实施方案中,风扇端部1112比BEC端部1114更高。送风盖1110的逐渐变细部分保证了随着空气流从风扇组件912处流走,空气流经过送风室会保持足够的速度。送风空气密封件1116设置在送风盖1110的下方。中部包扎导体1118将第一电池阵列902与第二电池阵列904电连接。中部包扎导体1118允许控制器模块908监测电池阵列902、904,犹如所述电池阵列为单个阵列。如前文所讨论地,送风入口盖402和送风出口盖404提供在基础包壳301的一个端部315处。为了保证不会将碎屑或湿气引入能量存储模块136中,在送风入口盖402的外侧周围和下部壳体302之间提供了入口盖密封件1120。类似地,在送风出口盖404的外侧周围和下部壳体302之间提供了出口盖密封件1122。在一个实施方案中,沿着电池阵列902、904的长度提供了用于潜在有害和有毒气体的排放歧管1124,所述潜在有害和有毒气体会在电池阵列902、904内的蓄电池组电池的误用或故障情况中排出。包含歧管1124的排放管连接于排放三通1126,由此废气会被输送到排放口406。也可使用已知技术以处理或以其它方式处置废气。图12提供了送风端盖1200的透视图。送风端盖1200可用作送风入口盖402和/或送风出口盖404。端盖1200包括主体1202和多个安装法兰1204。安装法兰1204构造并设置为平置地顶靠下部壳体302,并且提供固定于下部壳体302的表面。在所说明的实施方案中,端盖1200通过多个穿过孔1206而设置的紧固件固定于下部壳体302。在其他实施方案中,端盖1200可通过其他已知的技术,例如但不限于钉合、焊接、粘结等与下部壳体302固定在一起。提供了过滤器1208以限制进入空气送风的碎屑的量。图13是图12所示的端盖1200的沿线13-13的截面图。如所示,帽主体1202的底部端部是敞开的,以提供外部的空气流开口1302,这有助于限制进入空气送风的碎屑的量。但是,为了进一步保证碎屑不会进入空气送风中,任选地在开口1302内提供了颗粒筛网1304。在端盖1200内设有空气导流器1306。安装法兰1204内的区域限定了空气入口开口1308,其任选地填充有过滤器1208。相邻于 送风/风扇界面1020设置了空气入口开口1308。在一个实施方案中,空气入口开口1308具有100mm×75mm的尺寸,尽管根据设计说明可使用其他尺寸。根据本公开的一个实施方案,相邻于送风/风扇界面1020设置了加热和/或冷却单元。在这种实施方案中,控制器模块908与热敏电阻线束1206、1208协同工作,以决定是否保证将热的或冷的空气引入能量存储系统中。在其他一些实施方案中,入口盖402和出口盖404流体连接,这在冷的气候条件中允许空气循环经过能量存储模块136。在其他实施方案中,送风入口盖402和送风出口盖404与通气管类型的装置相连。通气管装置提供了在能量存储模块136被淹没的情况中保持能量存储模块136免受水浸的方法。通气管装置也可用于输送冷空气到能量存储模块136的送风入口盖402。图14整体描绘了流经能量存储模块136的冷却空气。如前文所讨论地,送风入口盖402和送风出口盖404提供在能量存储模块136的相同的端部315上。当风扇组件912通电时,外部空气被吸入到能量存储模块136内,如箭头1402所示。空气被迫使沿着电池阵列902、围绕BEC918流动,并且沿电池阵列904返回。排气大体上如箭头1404所示。冷却空气流被沿着送风盖1110以U型方式被引导,如箭头1403所示。如本领域的技术人员所理解地,在操作期间,电池阵列902、904会产生显著量的热量。如果热量不被驱散,则阵列可会过热或故障。因此,本公开提供的空气流足以驱散所述热量。图15是根据一个实施方案的风扇组件912的分解图。如所示,风扇组件912包括第一风扇壳体1502、入口空气传感器1022、第二风扇壳体1504和无刷风扇1506。第一风扇壳体1502设置为与送风/风扇界面1020相邻,并且直接安装到下部壳体302处。入口空气传感器1022构造并设置为监测进入到冷却送风的空气流。这些信息被传送到控制器模块908。第一风扇壳体1502构造并设置为可接收第二风扇壳体1504。风扇1506通过多个螺钉1508安装到第二风扇壳体1504。风扇1506包括允许控制器模块908监测和控制风扇1506的操作的通信连接器1510。在一个实施方案中,风扇1506为无刷的,并且在12V下操作,然而也可使用其他类型或电压水平的风扇。图16提供了BEC918的更详细的图。根据所说明的实施方案,BEC918为可被整体替换的单个耐用的单元。BEC918包括正接头1602、负接头1604和预充电接头1606。接头1602、1604、1606将电池阵列902、904与高压接线箱308 内的适当的电连接器相连。因此,接头1602、1604、1606与HVIL606协同工作,以使高电压与车辆的其余部件断开。提供了预充电电阻1608,以当在车辆启动期间从能量存储模块136输出能量时缓慢地给逆变器132充电。提供了Y-电容1610以降低来自DC线的高频噪声。电流传感器1612监测流入或流出能量存储模块136的高压电流的量。这些信息被任选地提供给控制器模块908。如果电流超过特定的阈值,则高压内锁606会被触发,并且会将高压电源与高压接线箱308内的电子器件断开。在一个实施方案中,电流传感器1612为双量程传感器。图17是电池阵列1700的分解图。电池阵列1700包括多个通过电池定位器1704而间隔开的蓄电池组电池1702。蓄电池组电池1702为能够重复充电和放电的二次电池,例如但不限于镍镉(Ni-Cd)、镍氢和/或锂-铁型。根据设计和尺寸因素,已经发现由三星、三洋和汤浅公司制造的蓄电池组电池是可接受的。在电池阵列1700的每个端部处是端部片体1706,其与两侧的导轨1708一起用于将蓄电池组电池1702和电池定位器1704保持在位置中。一旦蓄电池组电池1702、电池定位器1704、端部片体1706和侧部导轨1708适当地对齐,则通过一系列螺钉1710(也可使用其他已知的方式)将该结构保持在一起。在一个实施方案中,电池阵列1700由四十六个单独的蓄电池组电池1702制成。一系列密封件1712以三明治方式处于排放歧管部分1714之间。排放歧管部分1714的端部构造并设置为与废气排放歧管1124相连。在排放歧管部分1714的上方设置有电压检测板1716,之后是安全盖1720。电压检测板1716包括构造并设置为与高压线束906相连的线束连接器1718。图18是单个蓄电池组电池1702的透视图。蓄电池组电池1702包括两个端子1802和排放孔1804。端子1802提供了高压电能可从中经过以存储到电池1702内的接触点。端子1802也提供了高压电能可经过其而从蓄电池组电池1702中提取的接触点,以向混合动力车辆系统提供电能。排放孔1804提供了在蓄电池组电池1702被误用、过热或故障的情况中将废气排出的特定的位置。图19和20说明了当电池阵列1700安装在能量存储模块内时电池阵列的端部图。总线条带1902提供了在电压检测板1716和电池端子1802之间的电连接。此外,应注意地是,电池排放孔1804直接设置在排放歧管部分1714的下方,排放歧管部分1714又连接于排放歧管1124。这种设置保证了来自蓄电池组电池1702的任何有害或有毒的气体被适当地从能量存储模块136中排出。图21是控制器模块908的透视图。沿着控制器模块908的一个边缘设置了多个高压连接器2102。如这里上文所述,高压连接器2012主要用于接收与电池阵列902、904相连的高压线束906。通过高压线束906,控制器模块908可单独地监测电池阵列902、904内的每个单独的蓄电池组电池1702的充电状态。控制器模块908也可控制电池阵列902、904的充电和放电。沿着控制器模块908的与上述不同的边缘设置了多个低压连接器2104。低压连接器2104与能量存储模块136内的多个部件(例如但不限于低压线束910、热敏电阻高线束1026和热敏电阻低线束1028)相连。低压线束910与车辆信号连接器组件814通信式相连。能量存储模块内的其他的部件也可通过高压线束906、低压线束910或通过其他线束或连接器与控制器模块908通信式连接。根据本公开的一个方面,能量存储系统134内的能量存储模块136用于彼此通信。为了提供通信连接,在每个能量存储模块136之间提供了能量存储模块数据线204。在一个实施方案中并大体上根据图8,一个能量存储模块136用作主能量存储模块802,而其他的用作从属能量存储模块804。主能量存储模块802内的控制器模块908接着接收来自从属能量存储模块804的信息,并且作为单个能量存储系统134与变速箱/混合控制模块148和混合系统的剩余部分通信。如这里所讨论地,变速箱/混合控制模块148接收来自能量存储系统134以及其中的能量存储模块136的功率限值、有效电流容量、电压、温度、充电阶段、状态和风扇速度的信息。变速箱/混合控制模块148又发送用于连接多个能量存储模块136的指令,以向逆变器132提供电压和由逆变器提供电压。由于能量存储模块136内的控制器模块908为相同的,因此哪一个能量存储模块处于“主”位置并不重要。根据本公开的一个实施方案,控制器模块908用于周期性证实主能量存储模块802是否在工作。如果没有,则从属能量存储模块804接着开始用作主能量存储模块,并且与变速箱/混合控制模块148通信,因此提供了系统冗余。根据本公开的原理,单独的控制器箱或结构不是必须的,并且能量存储模块136可容易地互换。此外,本公开的原理还提供了能量存储系统134,在其中甚至在主模块802变得不能操作的情况下整个系统会保持工作。在一个实施方案中,基于所接收的由低压信号连接器314内的跳线来编程的地址,将能量存储模块136指示为主模块或从属模块。尽管没有说明,然而控制器模块908任选地包括存储部件。存储部件可为任 何已知的存储装置,例如但不限于非易失性存储器、硬盘驱动器、磁性存储器、光学存储器、RAM或ROM,这里仅举了几个例子。非易失性存储器用于记录能量存储模块的使用和状态历史,例如所达到的功率水平和工作循环,这里仅举了几个例子。存储器提供了有效的可靠的工具,在其中可快速得到和估计能量存储模块部件的性能。控制器908可包括额外的部件,例如能够进行各种控制、通信和切换功能的微处理器。为了将多个能量存储模块136一个堆叠在另一个的上方,考虑了多种实施方案。图22说明了一个这种实施方案。尽管图8和相关的说明主要涉了主能量存储模块802和从属能量存储模块804之间的电连接,但是图22关注地是两者的物理设置和连接。如所示,从属能量存储模块804堆叠在主存储模块802上。穿过存储模块802、804两者的安装孔1024提供了多个螺栓2202。靠近孔1024设置有凹陷316,并且该凹陷沿着能量存储模块136的高度延伸,以在存储模块802、804的堆叠期间为用于紧固螺栓2202的扭矩扳手或其他装置提供了足够的间隙。通过设置四个螺栓2202,堆叠设置足够结实,以便承受显著的振动载荷和冲击载荷。如本领域的技术人员所理解地,可提供或更多或更少的螺栓2202和安装孔1024。根据本公开的一个方面,能量存储模块136构造为使得其可以任何设置、方向或取向来安装。例如,主能量存储模块802可堆叠在第二能量存储模块804上。在其他实施方案中,能量存储模块并不彼此堆叠,但是设置在HEV内的不同位置中。图23描绘了框架安装概念。能量存储模块2302包括具有接收元件2306和凸起元件2308的盖子2304。接收元件2306和凸起元件2308允许额外的能量存储模块2302安全地彼此堆叠。能量存储模块2302还包括构造并设置为坐落并安装在安装板2312上的壳体2310。安装板2312包括多个固定到车辆框架2316的脚2314。在一个实施方案中,能量存储模块2302构造为能安装在典型地为重载卡车燃料箱预留的面积中的尺寸。图24和25显示了与能量存储模块136类似的能量存储模块2402的另一实施方案,但是其具有外部的风扇壳体2416和散热片2418。能量存储模块2402包括具有上部盖2406的包壳2404,上部盖2406如所示地通过螺钉2408固定于下部壳体2407,然而本领域中已知的其他方法也可用来固定上部盖2406。上部盖 2406优选地与下部壳体2407相密封,以阻止外部污染物进入包壳2404。与高压接线箱308相似的高压接线箱2410连同低压连接器2412和紧急断电开关2414安装在能量存储模块2402的一个端部。能量存储模块2402使用了内部传导冷却和外部对流冷却,这将在下文中描述。如所示,外部风扇壳体2416安装在包壳2404的相对于高压接线箱2410的相反端部2413。具有翅片2419的散热片2418安装在包壳2404的底部表面2420上或与其形成一个整体。如所示,包壳片体2422安装到包壳2404处,以进一步引导空气经过散热片2418。通过使用外部冷却风扇和散热片,包壳2404和高压接线箱2410可单独地或整体地与外界污染物隔绝。根据特定应用的需要,包壳2404和高压接线箱2410还可适于没入水中。图26显示了两个能量存储模块2402堆叠并且电连接以提供如特定的应用所需要的增加的操作电压或电流容量的设置。同样,包括了螺栓2202以将能量存储模块2402固定在一起。图27显示了散热片2418的设置的底部透视图。如所示,散热片2418包括多个相对于能量存储模块2402的纵向方向成角度地向外设置的翅片2419。当需要冷却时,风扇2709会驱动空气在由箭头2702指示的方向中经过中心腔体2708。接着,空气在能量存储模块2402的每个侧部上在翅片2719之间沿向外倾斜的方向引导。为了在每个蓄电池组电池中提供更均匀的冷却,翅片2419的高度、长度和/或相对距离可随着空气流的方向或速度而变化。例如,距离冷却风扇2706最近的翅片可具有比远离冷却风扇2706的翅片更小的高度或长度。图28显示了散热片2418的半对称反向透视图,其说明了翅片2419的不同高度和长度。图29显示了能量存储模块壳体2902的另一部分的半对称反向透视图,在其中设置了电池散热垫2904以在其上安装电池阵列。散热垫2904由导热但电绝缘的材料、例如由Bergquist公司生产的商标为的材料制成。散热垫优选构造为用于每个电池阵列的单独片体,以提供最大的热传递。散热垫2904的大小优选地制造为在70-120平方英寸的范围内,也可使用更小和更大的尺寸。当电池阵列安装在散热垫2904上时,散热垫2904从电池阵列中吸走热量,并且通过热传导将热量送入散热片2418。如上文所述,由于沿翅片2419的空气运动,接着可通过对流从散热片2418处移除额外的热量。图30提供了包括与高压接线箱308相似的高压接线箱3010的能量存储模块 2402的一个端部的更细节的视图。如所示,高压接线箱3010的前部边界由接口盖3012密封并保护。高压接线箱3010的后部优选地通到与下部壳体2407相应的开口3604(见图36)中。也可在下部壳体2407的开口3604的周围密封高压接线箱3010的后部边界3020,以允许高压接线箱3010和包壳2404整体式与异物污染物隔绝,和/或可没入水中。高压导体3014和3016连接在高压接线箱3010内部,并且也优选地被密封以阻止异物污染物的进入。可包括应力消除器3018和3024以进一步固定高压导体3014和3016。图31显示了移除了接口盖3012的高压接线箱3010。为了小心的目的,与图7B的安全盖706类似,提供了安全盖3110以作为位于其后面的高压端子的另一屏障。为了接触到在安全盖3110后面的高压端子,必须首先将高压内锁(HVIL)电阻器3114移除。图32显示了移除了安全盖3112和HVIL电阻器3114的高压接线箱3010。在所说明的实施方案中,插入式总线电气中心(BEC)3210设置在高压接线箱3010内,并且在包壳2404外。通过将BEC3210设置在包壳2404外,当维护能量存储模块2402时,不需要移除上部盖2406。这降低了技术人员的安全风险,并且还阻止了污染物非必要地到达位于包壳2406内的部件。如图33A和33B所示,插入式BEC3210提供了其他优点:在装配和维护期间其要求较少的手动连接,还降低了技术人员的安全风险。更具体地说,使用总线条带片式端子3316和3318产生了在BEC3210和使用中的电池阵列之间的高压连接,在BEC3210安装后,总线条带片体端子3316和3318与高压接线箱3010内的相应的接收端子相匹配。接着可以连接将插入式BEC3210与车辆动力系统相连的端子3312和3314。换句话说,当安装或移除BEC3210以便维护时,操作者不必操作可能与使用中的电池阵列相连的柔性线缆。插入式BEC也可包括电流传感器3320、电流传感器连接器3321、保险丝盒3222、高压传感器连接器3324、低压连接器3326和高压接触器3328。图34显示了移除了上部盖2406的能量存储模块2402的分解透视图。如所示,在一替代性的设置中,与图9的能量存储控制器模块908类似的能量存储控制器模块3410安装在包壳2404内。图35显示了移除了上部盖2406和风扇壳体2416的能量存储模块2402的后部透视图。如所示,能量存储模块2402包括功能与图9的电池阵列902和904类似的两个电池阵列3510和3512。图36显示了风扇壳体2416的分解图。由于能量存储模块2402实施为密封的或能没入水中的单元,因此从电池阵列3510和3512内的蓄电池组电池中逸出的电池气体将被困在包壳2404内。由此增加的压力可损坏包壳2404和相关的密封。因此,提供了压力释放板3610,以便当压力到达预确定的阈值时允许电池气体逸出。如图37进一步细节所示,压力释放板3610包括密封了包壳2404内的排放口3616的顺应性密封件3710。压力释放板3610和密封件3710通过托架3614和弹簧3612保持为顶靠着排放口。托架3614通过紧固件、例如螺钉3617固定于包壳2404上。弹簧3612保持在托架3614和压力释放板3610之间,并且将压力释放板3610保持在位置中。弹簧3612可通过压力释放板内的凸起3712和托架3614内的相应的凸起3615而侧向地固定。当将单元装配时,凸起3712和3615延伸进入弹簧3612的内部。弹簧选择为允许压力释放板3610在所选择的阈值压力下从下部壳体2407中临时性地向外运动,压缩弹簧并且释放包壳2404内的压力。一旦已经将压力降低,弹簧会迫使压力释放板3610返回到顶靠着下部壳体2407,再次密封包壳2404。图38显示了电池阵列3510、3512中的一个的分解图。如所示,电池阵列3510包括以与图17的蓄电池组电池1702类似的方式通过电池定位器3812彼此间隔开的多个蓄电池组电池3810。电池定位器3812可由绝缘材料、例如塑料或其他适当的绝缘体形成,并且具有足够的厚度以将单个蓄电池组电池3810之间的热传递限制到可接受的水平。在电池3810出现内部短路并在排放前被加热的情况中,电池定位器3812的绝缘性能将降低传递给相邻电池3810的热的总量。这允许短路电池内的热量通过其他冷却路径而释放,阻止附近的电池被加热以及自我排气。同样,蓄电池组电池3810为能够重复充电和放电的二次电池,例如但不限于镍镉(Ni-Cd)、镍氢和/或锂-铁型。根据设计和尺寸因素,已经发现由三星、三洋和汤浅公司制造的蓄电池组电池是可接受的。在电池阵列3510的每个端部处是端部片体3814,其与两侧的导轨3816一起用于将蓄电池组电池3810和电池定位器3812保持在位置中。也可包括绝缘层3815,当装配时,所述绝缘层改善了蓄电池组电池3810在装配后的漏电性能和间隙。也可提供压缩限制器3826,以便当侧部导轨3816实施为桁架时(如图38所示)提供额外的强度。一旦蓄电池组电池3810、电池定位器3812、端部片体3814和侧部导轨3816适当地对齐,则通过螺钉3818和螺母3819将该结构保持 在一起。螺钉3818分别插入到侧部导轨3816和绝缘层3815中的孔3820、3822内。端部片体3814包括将端部片体3814固定在螺钉3820后面的法兰3823。螺钉的设置提供了更稳定的保持,并且有助于在操作期间阻止转矩松弛。在一个实施方案中,电池阵列1700由四十六个单独的蓄电池组电池1702制成。在蓄电池组电池的上方设置有电压检测板组件3830,之后是安全盖3032。安全盖3032由塑料或其他适当的电绝缘材料构成。电压检测板组件3830包括构造并设置为与控制器模块3410和/或插入式BEC3210相连的线束连接器3834。图39显示了装配后的电池阵列3510的透视图。图40显示了安装在电池阵列3510内的蓄电池组电池3810的端部视图。总线条带4010提供了电压检测板组件3830和电池端子4012之间的电连接,其将蓄电池组电池的正端子与相邻蓄电池组电池的负端子相连。这导致了在蓄电池组电池3810之间的串联式电连接,整体式地提供了所要求的总阵列电压。可包括热敏电阻4020以监测蓄电池组电池3810的温度,并且将温度读数传递给控制器模块3410。在特定的实施方案中,电压检测板组件3830首先具有缺失的特定总线条带4010,如图41中的箭头4114所示。由于这种缺失的总线条带,电压检测板组件3830被电分成若干电压部分4112,直到接近装配过程的末尾。盖子3032包括缺失的或终端的总线条带(如图38中的4116所示),随着将单个盖子3032顺序安装,完成了缺失连接。盖子3032包括覆盖了相邻盖子3032的端部总线条带4116的绝缘的重叠部分4118。结果是,技术人员仅暴露于来自暴露的蓄电池组电池端子的有限的安全电压水平(例如,低于50伏)下,直到完成最终连接。图42显示了根据本公开的另一实施方案的框架安装概念。如所示,能量存储模块2402的包壳2404使用隔离器座4210安装到车辆框架4208上。隔离器座由顺应性材料,例如橡胶或硅树脂构造成,并且可降低从车辆框架4208传递到能量存储模块2402的振动。适当的隔离器座的一个实施例是BarryControls200系列的杯座隔离器。如图43所示,可提供适配器托架4310以沿着隔离器座4210的支撑表面4312均匀地分散能量存储模块2402的重量,并且允许使用单个紧固件4314与能量存储模块2402相连。图44和45显示了根据一个实施方案的热敏电阻4020的安装设置的细节图。热敏电阻4020需要保持与蓄电池组电池3810机械接触,以提供精确的监测。但 是,蓄电池组电池3810的高度会因由于制造误差而变化,这导致在电压检测板3830(在其中安装有热敏电阻)和蓄电池组电池3810的顶部表面4410之间的距离的相应变化。为了解决这种距离变化,可将热敏电阻4020安装在柔性夹4412中,如所示。柔性夹4412包括可垂直地弯曲以保持热敏电阻尖端4416顶靠在蓄电池组电池3810的顶部表面4410上的横向部分4414。柔性夹4412还包括通过突起部4422固定在孔4420中的垂直部分4418。如所示,可使用灌封材料4424将热敏电阻4020固定于夹子4412中。也可使用其他类型的材料以将热敏电阻固定在夹子4412中,例如粘合剂、胶粘剂等。为了提供进一步的适应性和公差,可将热敏电阻尖端4416封装在提供了机械柔性和热传递的顺应性材料4426、例如热塑性弹性体(TPE)中。顺应性材料4426和夹子4412共同工作,以保持热敏电阻4020的尖端顶靠在蓄电池组电池3810的顶部表面4410上。如本领域的技术人员所理解地,可使用单个能量存储模块136或可将多个能量存储模块136以串联、并联或串联/并联方式彼此连接。在一个实施方案中,可将多个能量存储模块136并联连接以提供300V的系统,而可将两对或多对能量存储模块以串联或串联/并联方式连接以提供600V的系统。由于可容易地将能量存储模块136结合到300V或600V的HEV应用中,因此将电子器件设计为达到较高压系统的规格,例如能解决漏电问题和间隙问题。因此,当能量存储模块用在600V的设置中时,不用考虑会形成电弧。图46A显示了使用单个能量存储模块136的实施方案。图46B显示了两个能量存储模块136并联连接的实施方案。图46C显示了两个能量存储模块136串联连接的实施方案。图46D显示了两对能量存储模块136以串联/并联设置而连接的实施方案。应理解地是,能量存储模块2402也可以相对于能量存储模块136所讨论的不同的串联、并联或串联/并联设置而连接。尽管已经在附图和前文描述中详细说明和描述了本发明,但是这应被认为是说明性的且相应地是非限制性的,应理解地是,仅显示和描述了优选的实施方案,并且属于由接下来的权利要求所限定的本发明的精神内的改动、等效物和改进均要求得到保护。这里,引用在本说明书中的所有公开、专利和专利申请以引用方式而结合入本发明,就像每个单独的公开、专利或专利申请均特别和单独地通过引用和说明其全部而结合入本发明。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1