混合动力车辆的制作方法

文档序号:11500021阅读:154来源:国知局
混合动力车辆的制造方法与工艺

本发明涉及一种混合动力车辆。



背景技术:

传统上,提出一种混合动力车辆(例如,参见日本专利申请公开no.2003-201880(jp2003-201880a))。这种混合动力车辆包括被连接到行星齿轮传动装置的太阳齿轮的电动发电机、被连接到齿轮架的发动机、被连接到齿圈的驱动轴、被连接到驱动轴的推进马达以及抑制发动机的反向旋转(负旋转)的单向离合器。在这种混合动力车辆中,在发动机停止期间,当要求最大加速度时并且当推进马达和电动发电机的估计总扭矩小于推进马达和发动机的最大总扭矩时,发动机起动。

具有上述硬件构造的混合动力车辆能够选择所谓的双驱动模式,在双驱动模式中,在发动机处被置于旋转停止状态的同时,混合动力车辆通过使用来自推进马达的扭矩和来自电动发电机的扭矩(在负方向中旋转电动发电机的扭矩)来行驶。在起动发动机时,通过使用来自电动发电机的扭矩(在正方向中旋转电动发电机的扭矩)来启动发动机。因而,发动机被起动。因此,在以双驱动模式起动发动机时,来自电动发电机的扭矩方向反向,所以从电动发电机输出的作用在驱动轴上的扭矩方向反向,结果是存在输出至驱动轴的总扭矩大量地降低至一定程度的可能性。在起动发动机时,由于要求扭矩变得比起动阈值大,则可假定驾驶员正在提高加速器操作量(提出加速请求)。为此,如果发生了上述现象,则驾驶员可能经历迟钝感。为此,当假定要求扭矩在当前时间之后变得相对大时,期望提前进行测量,以便不使驾驶员在起动发动机时经历迟钝感。



技术实现要素:

本发明涉及一种混合动力车辆,当假定要求扭矩在当前时间之后变得相对大时,该混合动力车辆提前采取措施,以便不使驾驶员在起动发动机时经历迟钝感。

本发明的一方面提供一种混合动力车辆。该混合动力车辆包括发动机、第一马达、行星齿轮组、第二马达、旋转限制机构、电池和电子控制单元。行星齿轮组包括至少一个行星齿轮。发动机、第一马达和驱动轴被连接到所述至少一个行星齿轮的至少部分旋转元件,以便第一马达、发动机和驱动轴被以这种顺序布置在列线图中。驱动轴被联接到车轴。第二马达被机械地联接到驱动轴。旋转限制机构被构造成限制发动机的旋转。电池被构造成与第一马达及第二马达交换电力。电子控制单元被构造成(i)以包括混合动力驱动模式和电动驱动模式的多个驱动模式中的任一种模式控制发动机、第一马达和第二马达,以便通过使用驱动轴响应于加速器操作量而要求的要求扭矩使混合动力车辆行驶,混合动力驱动模式是在将发动机置于旋转状态以使发动机运行的同时混合动力车辆行驶的模式,并且电动驱动模式是在将发动机置于旋转停止状态以使发动机不运行的同时混合动力车辆通过使用来自至少第二马达的扭矩来行驶的模式,(ii)当要求扭矩小于或者等于选择阈值时,选择电动驱动模式中的单驱动模式,并且当要求扭矩大于选择阈值时选择电动驱动模式中的双驱动模式,其中,所述选择阈值小于或等于在单驱动模式时可输出至驱动轴的第一最大扭矩,单驱动模式是混合动力车辆通过使用来自仅仅第二马达的扭矩来行驶的模式,并且双驱动模式是混合动力车辆通过使用来自第一马达和第二马达的扭矩来行驶的模式,(iii)控制混合动力车辆,以便在要求扭矩变为大于电动驱动模式中的起动阈值时,通过使用来自第一马达的扭矩来启动待被起动的发动机,并且(iv)在电动驱动模式中,当满足第一预定条件,将起动阈值从大于选择阈值的第三值变为小于或者等于选择阈值并且大于或者等于第二值的第四值,所述第一预定条件是存在要求扭矩已经变得比小于或者等于选择阈值的第一值大的历史并且当前时间的要求扭矩小于或者等于第二值,其中第二值小于或者等于第一值。

通过根据本发明的上述混合动力车辆,在电动驱动模式中,当驱动轴响应于加速器操作量而要求的要求扭矩小于或者等于选择阈值时,则在单驱动模式和双驱动模式之间选择单驱动模式,并且当要求扭矩大于选择阈值时,选择双驱动模式,其中,选择阈值小于或者等于在单驱动模式中可输出至驱动轴的第一最大扭矩,在单驱动模式中,混合动力车辆通过使用来自仅仅第二马达的扭矩来行驶,并且在双驱动模式中,混合动力车辆通过使用来自第一马达的扭矩(负扭矩)和来自第二马达的扭矩来行驶。当要求扭矩变得比电动驱动模式(单驱动模式或者双驱动模式)下的起动阈值大时,则混合动力车辆被控制成使得通过使用来自第一马达的扭矩(正扭矩)启动发动机以使发动机被起动。在电动驱动模式中,当满足第一预定条件时,则起动阈值从大于选择阈值的第三值变为小于或者等于选择阈值并且大于或者等于第二值的第四值,其中第一条件是存在要求扭矩已经变得比小于或者等于选择阈值的第一值大的历史并且当前要求扭矩小于或者等于第二值的条件,其中第二值小于或者等于第一值。当满足第一预定条件时,即要求扭矩已经在当前时间之前变得相对地大(驾驶员已经展现加速的意图)的情况,则假定要求扭矩能在当前时间之后变得相对地大(驾驶员能展现加速的意图)。在电动驱动模式中,当满足第一预定条件时,当前要求扭矩小于或者等于第二值,并且选择单驱动模式。因此,通过将起动阈值从第三值变为第四值,在要求扭矩之后变得大于起动阈值(第四值)时以单驱动模式起动发动机。因而,与其中以双驱动模式起动发动机的情况相比,能降低在发动机起动时被输出至驱动轴的总扭矩的降低量,所以能降低驾驶员经历的迟钝感。作为这些动作的结果,当假定要求扭矩可能在当前时间之后再次变得相对地大时,能提前采取措施,以便不使驾驶员在起动发动机时经历迟钝感。直到满足所述条件之前,通过将起动阈值设置成大于选择阈值的第三值,能减少发动机的起动。

行星齿轮组可以包括行星齿轮。行星齿轮包括连接到第一马达的太阳齿轮、连接到发动机的齿轮架和连接到驱动轴的齿圈。第二马达可以被直接地联接到驱动轴。行星齿轮组可以包括行星齿轮和减速齿轮。行星齿轮包括连接到第一马达的太阳齿轮、连接到发动机的齿轮架和连接到驱动轴的齿圈。减速齿轮连接到齿圈。第二马达可以通过经由减速齿轮连接到齿圈而机械地联接到驱动轴。行星齿轮组可以包括第一行星齿轮、第二行星齿轮、离合器和制动器。第一行星齿轮包括第一太阳齿轮、连接到驱动轴的第一齿轮架和连接到发动机的第一齿圈。第二行星齿轮包括连接到第一马达的第二太阳齿轮、连接到驱动轴和第一齿轮架的第二齿轮架以及第二齿圈。离合器将第一太阳齿轮和第二齿圈彼此连接,或者释放它们之间的连接。制动器固定第二齿圈使得第二齿圈不可旋转,或者释放第二齿圈使得第二齿圈可旋转。第二马达可以通过连接到第一太阳齿轮而机械地联接到驱动轴。

旋转限制机构可以是单向离合器。单向离合器允许发动机在正方向中旋转,或者限制(禁止)发动机在负方向中的旋转。可替选地,旋转限制机构可以是制动器。制动器固定发动机使得发动机不可旋转,或者释放发动机使得发动机可旋转。

第一值的意思是预定高扭矩范围的下限边界值。第二值的意思是预定低扭矩范围的上限边界值。

在由此构造的根据本发明的混合动力车辆中,第三值可以是大于可在双驱动模式中输出至驱动轴的第二最大扭矩的值。因而,能够进一步减少发动机的起动。

在该混合动力车辆中,电子控制单元可以被构造成当满足车速条件、扭矩条件或者时间条件中的至少一个条件时将起动阈值变为第三值。车速条件可以是下列条件:在起动阈值变为第四值之后,在电动驱动模式中车速跨预定车速降低。扭矩条件可以是下列条件:要求扭矩小于或者等于第二值的状态持续第一预定时间。时间条件可以是下列条件:从起动阈值变为第四值时起经过第二预定时间。因而,例如,当不假定要求扭矩在从当前时间起的一定时间段中超过第三值时,能够进一步减少发动机的起动。

在该混合动力车辆中,电子控制单元可以被构造成:(i)执行控制,使得当在混合动力驱动模式中要求扭矩变得小于或者等于第五值时,发动机停止,其中所述第五值小于或者等于第四值,和(ii)当满足第二预定条件时,即使不满足第一预定条件时,也将起动阈值从第三值变为第四值,其中第二预定条件是要求扭矩大于第一值的状态持续超过第三预定时间。如上所述,第一值和第四值两者都小于或者等于选择阈值。当满足第二预定条件时,要求扭矩大于第一值。因此,作为将起动阈值变为第四值的结果,可能存在发动机以单驱动模式被起动的情况以及发动机以双驱动模式被起动的情况。然而,当要求扭矩在混合动力驱动模式中变得小于或者等于第五值时,发动机停止,并且电动驱动模式被恢复。因此,在电动驱动模式被恢复后,能够以单驱动模式起动发动机。

附图说明

下面将参考附图描述本发明的示例性实施例的特征、优点以及技术和工业意义,其中相同附图标记指示相同元件,并且其中:

图1是示意性地示出根据作为本发明的示例的第一实施例的混合动力车辆的构造的构造图;

图2是示出第一实施例中的单驱动模式中的行星齿轮的列线图的示例的视图;

图3是示出第一实施例中的双驱动模式中的行星齿轮的列线图的示例的视图;

图4是示出由根据第一实施例的混合动力电子控制单元执行的发动机起动判定例程的示例的流程图;

图5是示出当在第一实施例中起动发动机时的行星齿轮的列线图的示例的视图;

图6是示出在根据第一实施例的混合动力车辆中最大单驱动扭矩、最大双驱动模式扭矩、用于选择单驱动模式或者双驱动模式的选择阈值、起动阈值、高扭矩范围的下限边界值以及低扭矩范围的上限边界值之间的关系的示例的视图;

图7是示出由根据第一实施例的混合动力电子控制单元执行的第一可替选实施例的发动机起动判定例程的流程图;

图8是示出由根据第一实施例的混合动力电子控制单元执行的第二可替选实施例的发动机起动判定例程的流程图;

图9是示意性地示出根据本发明的第二实施例的混合动力车辆的构造的构造图;

图10是示意性地示出根据本发明的第三实施例的混合动力车辆的构造的构造图;

图11是示出在第三实施例中离合器被设定到接合状态并且制动器被设定到释放状态的状态下的在单驱动模式中的两个行星齿轮的列线图的示例的视图;

图12是示出在第三实施例中离合器被设定到接合状态并且制动器被设定到释放状态的状态下的在双驱动模式中的两个行星齿轮的列线图的示例的视图;以及

图13是示出在第三实施例中离合器被设定到接合状态并且制动器被设定到释放状态的状态下当起动发动机时的两个行星齿轮的列线图的示例的视图。

具体实施方式

将描述本发明的实施例。

图1是示意性地示出根据本发明的第一实施例的混合动力车辆20的构造的构造图。如图1中所示,根据第一实施例的混合动力车辆20包括发动机22、用作行星齿轮组的行星齿轮30、单向离合器cl1、马达mg1、马达mg2、逆变器41、逆变器42、电池50、充电器60和混合动力电子控制单元(下文称为hv-ecu)70。

发动机22被构造成通过使用汽油、轻油等作为燃料而输出动力的内燃机。发动机22经历由发动机电子控制单元(下文称为发动机ecu)24执行的操作控制。

虽然图中未示出,但是发动机ecu24为主要包括cpu的微处理器,并且除了cpu之外还包括rom、ram、输入/输出端口和通信端口。rom存储处理程序。ram临时地存储数据。

在发动机22上执行操作控制所要求的来自各种传感器的信号被经由输入端口输入至发动机ecu24。被输入至ecu24的信号包括曲柄角θcr以及节气门开度th。从检测发动机22的曲轴26的旋转位置的曲柄位置传感器23输入曲柄角θcr。从检测节气门位置的节气门位置传感器输入节气门开度th。

经由输出端口从发动机ecu24输出用于对发动机22的操作控制的各种控制信号。从发动机ecu24输出的信号包括被输出至调节节气门位置的节气门马达的驱动控制信号、被输出至燃料喷射阀的驱动控制信号以及被输出至与点火器一体的点火线圈的驱动控制信号。

发动机ecu24经由通信端口连接到hv-ecu70。ecu24响应于来自hv-ecu70的控制信号执行对发动机22的操作控制,并且在必要时向hv-ecu70输出关于发动机22的操作状态的数据。发动机ecu24基于来自曲柄位置传感器23的曲柄角θcr来计算曲轴26的转速,即发动机22的转速ne。

行星齿轮30是单小齿轮行星齿轮。行星齿轮30包括太阳齿轮31、齿圈32、多个小齿轮33和齿轮架34。太阳齿轮31是外齿轮。齿圈32是内齿轮。所述多个小齿轮33与太阳齿轮31和齿圈32啮合。齿轮架34支撑所述多个小齿轮33,使得每个小齿轮33都可自转并且可公转。马达mg1的转子连接到太阳齿轮31。驱动轴36连接到齿圈32。驱动轴36经由差动齿轮38和齿轮机构37联接到驱动轮39a、39b。发动机22的曲轴26连接到齿轮架34。

单向离合器cl1连接到发动机22的曲轴26(行星齿轮30的齿轮架34),并且也连接到被固定至车体的壳体21。单向离合器cl1允许发动机22在正旋转方向中相对于壳体21旋转,并且限制(禁止)发动机22在负旋转方向中相对于壳体21旋转。

马达mg1例如为同步电动发电机。如上所述,马达mg1的转子被连接到行星齿轮30的太阳齿轮31。马达mg2例如为同步电动发电机。马达mg2的转子经由减速齿轮35连接到驱动轴36。逆变器41、42与电池50一起连接到电力线54。平滑电容器57连接到电力线54。在由马达电子控制单元(下文称为马达ecu)40执行的逆变器41、42中的对相应一个逆变器的多个切换元件(未示出)的切换控制下,驱动马达mg1、mg2中的每一个马达旋转。

虽然图中未示出,但是马达ecu40为主要包括cpu的微处理器,并且除了cpu之外还包括rom、ram、输入/输出端口和通信端口。rom存储处理程序。ram临时地存储数据。

执行对马达mg1、mg2的驱动控制所要求的来自各种传感器的信号被经由输入端口输入至马达ecu40。被输入至马达ecu40的信号包括旋转位置θm1、θm2以及相电流。从检测马达mg1的转子的旋转位置的旋转位置检测传感器43输入旋转位置θm1。从检测马达mg2的转子的旋转位置的旋转位置检测传感器44输入旋转位置θm2。从分别检测分别流经马达mg1、mg2中的每个马达的相的电流的电流传感器输入相电流。

切换控制信号等被从马达ecu40输出至逆变器41、42的切换元件(未示出)。

马达ecu40经由通信端口连接到hv-ecu70。马达ecu40响应于来自hv-ecu70的控制信号执行对马达mg1、mg2的驱动控制,并且在必要时向hv-ecu70输出关于马达mg1、mg2的驱动状态的数据。马达ecu40基于来自旋转位置检测传感器43的马达mg1的转子的旋转位置θm1来计算马达mg1的转速nm1,并且基于来自旋转位置检测传感器44的马达mg2的转子的旋转位置θm2来计算马达mg2的转速nm2。

电池50例如为锂离子二次电池或者镍金属氢化物二次电池,并且与上述逆变器41、42一起连接到电力线54。电池50由电池电子控制单元(下文称为电池ecu)52管理。

虽然图中未示出,但是电池ecu52为主要包括cpu的微处理器,并且除了cpu之外还包括rom、ram、输入/输出端口和通信端口。rom存储处理程序。ram临时地存储数据。

管理电池50所要求的来自各种传感器的信号被经由输入端口输入至电池ecu52。被输入至电池ecu52的信号包括电池电压vb、电池电流ib(当电池50放电时,电池电流ib为正值)和电池温度tb。从安装在电池50的端子之间的电压传感器51a输出电池电压vb。从被连接到电池50的输出端子的电流传感器51b输出电池电流ib。从被连接到电池50的温度传感器51c输出电池温度tb。

电池ecu52经由通信端口连接到hv-ecu70,并且在必要时向hv-ecu70输出关于电池50的状态的数据。电池ecu52基于来自电流传感器51b的电池电流ib的积分值来计算荷电状态soc。荷电状态soc是可从电池50放电的电力的容量与电池50的总容量的百分比。电池ecu52基于计算出的荷电状态soc和来自温度传感器51c的电池温度tb来计算输入和输出极限win、wout。输入极限win是可允许充电电力,允许在所述可允许充电电力或所述可允许充电电力以下对电池50充电。输出极限wout是可允许放电力,允许在所述可允许放电力或在所述可允许放电力以下使电池50放电。

充电器60连接到电力线54,并且包括ac/dc变换器和dc/dc变换器。ac/dc变换器将经由电源插头61从外部电源供应的交流电力变换为直流电力。dc/dc变换器变换来自ac/dc变换器的直流电力的电压,并且向电池50供应直流电力。当电源插头61连接到外部电源,诸如家中电源时,充电器60在hv-ecu70对ac/dc变换器和dc/dc变换器的控制下将来自外部电源的电力供应给电池50。

虽然图中未示出,但是hv-ecu70为主要包括cpu的微处理器,并且除了cpu之外还包括rom、ram、输入/输出端口和通信端口。rom存储处理程序。ram临时地存储数据。

来自各种传感器的信号被经由输入端口输入至hv-ecu70。被输入至hv-ecu70的信号包括点火信号、挡位sp、加速器操作量acc、制动踏板位置bp和车速v。从点火开关80输出点火信号。从检测换挡杆81的操作位置的挡位传感器82输出挡位sp。从检测加速器踏板83的踏下量的加速器踏板位置传感器84输出加速器操作量acc。从检测制动踏板85的踏下量的制动踏板位置传感器86输出制动踏板位置bp。从车速传感器88输出车速v。

经由输出端口从hv-ecu70向充电器60等等输出控制信号。

如上所述,hv-ecu70经由通信端口连接到发动机ecu24、马达ecu40和电池ecu52,并且与发动机ecu24、马达ecu40和电池ecu52交换各种控制信号和数据。

由此构造的根据第一实施例的混合动力车辆20控制发动机22和马达mg1、mg2,以便在包括混合动力驱动(hv驱动)模式和电动驱动(ev驱动)模式、电量耗尽(cd)模式或者电量维持(cs)模式的多种驱动模式中的任一模式中,基于加速器操作量acc和车速v,通过使用驱动轴36的要求扭矩tp*来行驶。

cd模式是与cs模式相比,在hv驱动模式和ev驱动模式之间向ev驱动模式赋予更高优先级的模式。在第一实施例中,当电池50的荷电状态soc高于系统启动时的阈值shv1(例如,45%、50%、55%等)时,混合动力车辆20以cd模式行驶,直到电池50的荷电状态soc变得低于或者等于阈值shv2(例如,25%、30%、35%等等),并且在电池50的荷电状态soc变得低于或者等于阈值shv2之后以cs模式行驶,直到系统停止。当电池50的荷电状态soc低于或者等于系统启动时的阈值shv1时,混合动力车辆20以cs模式行驶,直到系统停止。当电源插头61在系统停止期间连接到处于充电点诸如家中的外部电源时,充电器60被控制成以来自外部电源的电力对电池50充电。

hv驱动模式是在行星齿轮30的齿轮架34(发动机22)被置于旋转状态从而使发动机22运行的同时混合动力车辆20行驶的模式。ev驱动模式是在行星齿轮30的齿轮架34(发动机22)被置于旋转停止状态从而使发动机22不运行的同时混合动力车辆20通过使用来自至少马达mg2的扭矩来行驶的模式。ev驱动模式包括单驱动模式和双驱动模式。在单驱动模式中,混合动力车辆20通过来自仅仅马达mg2的扭矩来行驶。在双驱动模式中,混合动力车辆20通过来自马达mg1和马达mg2的扭矩来行驶。

在hv驱动模式或者ev驱动模式(单驱动模式或者双驱动模式)中,在hv-ecu70、发动机ecu24和马达ecu40的协同控制下控制发动机22和马达mg1、mg2。下面将以这种顺序描述ev驱动模式(单驱动模式、双驱动模式)中的操作和hv驱动模式中的操作。

图2是示出单驱动模式中的行星齿轮30的列线图的示例的视图。图3是示出双驱动模式中的行星齿轮30的列线图的示例的视图。在图2和图3中,s轴线代表太阳齿轮31的转速和马达mg1的转速nm1,c轴线代表齿轮架34的转速和发动机22的转速ne,r轴线代表齿圈32的转速和驱动轴36的转速np,并且m轴线代表减速齿轮35的转速降低之前的齿轮的转速以及马达mg2的转速nm2。ρ代表行星齿轮30的传动比(太阳齿轮33的齿数/齿圈32的齿数)。gr代表减速齿轮35的减速传动比。在图2中,m轴线上的宽线箭头指示从马达mg2输出扭矩tm2,并且r轴线上的宽线箭头指示在从马达mg2输出扭矩tm2时作用在驱动轴36上的扭矩(tm2×gr)。在图3中,s轴线上的宽线箭头指示从马达mg1输出的扭矩tm1,并且m轴线上的宽线箭头指示从马达mg2输出的扭矩tm2,并且r轴线上的两个宽线箭头共同地指示在从马达mg1输出扭矩tm1并且从马达mg2输出扭矩tm2时作用在驱动轴36上的扭矩(-tm1/ρ+tm2×gr)。

下面,在列线图中,在图2或者图3中当转速比零高时则转速为正,并且在图2或者图3中当转速比零低时则转速为负,并且在图2或者图3中当转速方向向上时则扭矩为正,并且在图2或者图3中当转速方向向下时则扭矩为负。在这种情况下,由于马达mg2的转速nm2的符号与驱动轴36的转速np的符号彼此不同,所以减速齿轮35的减速传动比gr为负值。

在单驱动模式中,hv-ecu70最初基于加速器操作量acc和车速v设定推动混合动力车辆20所要求的要求扭矩tp*。之后,马达mg1的扭矩指令tm1*被设定为零,并且马达mg2的扭矩指令tm2*被设定成使得在电池50的输入极限win和输出极限wout以及马达mg2的负侧(图2中的向下侧)额定扭矩tm2rt1的范围内将要求扭矩tp*输出至驱动轴36。马达mg2的负侧额定扭矩tm2rt1的绝对值随着马达mg2的转速nm2的绝对值增大而减小。马达mg1、mg2的扭矩指令tm1*、tm2*被发送至马达ecu40。马达ecu40在逆变器41、42的多个切换元件上执行切换控制,以便以扭矩指令tm1*驱动马达mg1,并且以扭矩指令tm2*驱动马达mg2。

因而,如图2中所示,混合动力车辆20能够通过从马达mg2输出负扭矩tm2从而使正扭矩(tm2×gr)作用在驱动轴36上而行驶。可在单驱动模式中输出至驱动轴36的最大单驱动扭矩tpmax1等于通过将马达mg2的负侧额定扭矩tm2rt1乘以减速齿轮35的减速传动比gr获得的值(tm2rt1×gr)。这易于从图2的列线图导出。随着驱动轴36的转速np增大,最大单驱动扭矩tpmax1减小。

在双驱动模式中,hv-ecu70最初基于加速器操作量acc和车速v设定推动混合动力车辆20所要求的要求扭矩tp*。之后,马达mg1、mg2的扭矩指令tm1*、tm2*被设定成使得在电池50的输入和输出极限win、wout、马达mg1的负侧(图3中的向下侧)额定扭矩tm1rt1和马达mg2的负侧(图3中的向下侧)额定扭矩tm2rt1范围内将要求扭矩tp*输出至驱动轴36。马达mg1的负侧额定扭矩tm1rt1的绝对值随着马达mg1的转速nm1的绝对值增大而减小。马达mg1、mg2的扭矩指令tm1*、tm2*被发送至马达ecu40。马达ecu40在上述逆变器41、42的多个切换元件上执行切换控制。

因而,如图3中所示,混合动力车辆20能够通过从马达mg1输出负扭矩tm1并且从马达mg2输出负扭矩tm2从而使正扭矩(-tm1/ρ+tm2×gr)作用在驱动轴36上而行驶。可在双驱动模式中输出至驱动轴36的最大双驱动扭矩tpmax2等于通过将马达mg1的负侧额定扭矩tm1rt1乘以行星齿轮30的传动比ρ的倒数及(-1)获得的值与通过将将马达mg2的负侧额定扭矩tm2rt1乘以减速齿轮35的减速传动比gr获得的值的和(-tm1rt1/ρ+tm2rt1×gr)。这易于从图3的列线图导出。最大双驱动扭矩tpmax2随着驱动轴36的转速np增大而减小。

在第一实施例中,在ev驱动模式中,当要求扭矩tp*小于或者等于比最大单驱动扭矩tpmax1小的选择阈值tpref时,从单驱动模式和双驱动模式之间选择单驱动模式,并且当要求扭矩tp*大于选择阈值tpref时,从单驱动模式和双驱动模式之间选择双驱动模式。选择阈值tpref随着驱动轴36的转速np增大而减小。

在第一实施例中,在双驱动模式中,在被输出至驱动轴36的总扭矩内从马达mg1输出的作用在驱动轴36上的扭矩和从马达mg2输出的作用在驱动轴36上的扭矩的分配比被调节成使得来自马达mg2的扭矩变得接近值(tpref/gr)或负侧额定扭矩tm2rt1,值(tpref/gr)是通过将用于选择单驱动模式或者双驱动模式的选择阈值tpref除以减速齿轮35的减速传动比gr获得的。

在hv驱动模式中,hv-ecu70最初基于加速器操作量acc和车速v设定推动混合动力车辆20所要求的要求扭矩tp*,并且通过将所设定的要求扭矩tp*乘以驱动轴36的转速np计算推动混合动力车辆20所要求的要求功率pp*。驱动轴36的转速np例如可以是通过将马达mg2的转速nm2除以减速齿轮35的减速传动比gr获得的转速、通过将车速v乘以变换系数获得的转速,等等。之后,通过从要求功率pp*减去要求充电和放电功率pb*(当电池50放电时,要求充电和放电功率为正值)计算车辆所要求的要求功率pe*。发动机22的目标转速ne*和目标扭矩te*以及马达mg1、mg2的扭矩指令tm1*、tm2*被设定成使得在电池50的输入和输出极限win、wout、马达mg1的负侧额定扭矩tm1rt1以及马达mg2的负侧额定扭矩tm2rt1的范围内,从发动机22输出要求功率pe*,并且将要求扭矩tp*输出至驱动轴36。发动机22的目标转速ne*和目标扭矩te*被发送至发动机ecu24,并且马达mg1、mg2的扭矩指令tm1*、tm2*被发送至马达ecu40。在发动机ecu24从hv-ecu70接收目标转速ne*和目标扭矩te*时,发动机ecu24对发动机22执行进气量控制、燃料喷射控制、点火控制等等,使得发动机22基于目标转速ne*和目标扭矩te*运行。在马达ecu40从hv-ecu70接收扭矩指令tm1*、tm2*时,马达ecu40对上述逆变器41、42的多个切换元件执行切换控制。

然后将描述由此构造的根据第一实施例的混合动力车辆20的操作,特别是判定是否在cd模式中的ev驱动模式起动发动机22时的操作。图4是示出由根据第一实施例的hv-ecu70执行的发动机起动判定例程的示例的流程图。(当不执行是否起动发动机22的判定时)在ev驱动模式中重复地执行该例程。

在执行图4中所示的发动机起动判定例程时,hv-ecu70最初输入数据,诸如要求扭矩tp*和高扭矩历史标志f(步骤s100)。将输入的要求扭矩tp*是通过上述控制设定的值。高扭矩历史标志f是指示是否存在要求扭矩tp*已经达到ev驱动模式中的预定高扭矩范围的历史的标志。将输入的高扭矩历史标志f是通过标志设定例程(未示出)设定的值。在标志设定例程中,高扭矩历史标志f作为系统启动时的初始值被设定为0,并且高扭矩历史标志f在要求扭矩tp*已经达到ev驱动模式中的高扭矩范围时从0变为1。在第一实施例中,在要求扭矩tp*变得比高扭矩范围的下限边界值tphi大时,判定要求扭矩tp*已经达到高扭矩范围。在第一实施例中,该边界值tphi是比用于选择单驱动模式或者双驱动模式的选择阈值tpref小的值。随着驱动轴36的转速np增大,边界值tphi减小。边界值tphi是根据本发明的第一值的示例。

在以这种方式输入数据时,判定发动机22的起动阈值tst是否为作为初始值(刚好在系统启动后的值)的值tst1(步骤s110)。下文将描述值tst1。当判定起动阈值tst为值tst1时,检查高扭矩历史标志f的值(步骤s120)。

当在步骤s120中高扭矩历史标志f为0时,判定不存在要求扭矩tp*已经达到ev驱动模式中的高扭矩范围的历史,并且发动机22的起动阈值tst被设定为值tst1(步骤s140)。在第一实施例中,值tst1是稍微大于最大双驱动扭矩tpmax2的值。随着驱动轴36的转速np增大,值tst1减小。值tst1是根据本发明的第三值的示例。

在以这种方式设定起动阈值tst时,将要求扭矩tp*与起动阈值tst相比较(步骤s160)。由于认为是在不存在要求扭矩tp*已经达到高扭矩范围的历史的状态下的操作,所以要求扭矩tp*小于起动阈值tst(=tst1>tpmax2>tpref>tphi)。因此,判定继续ev驱动模式,之后例程终止。

当步骤s120中高扭矩历史标志f为1时,则判定存在要求扭矩tp*已经达到ev驱动模式中的高扭矩范围的历史,并且判定要求扭矩tp*是否落入预定低扭矩范围内(步骤s130)。在第一实施例中,当要求扭矩tp*小于或者等于低扭矩范围的上限边界值tplo时,则判定要求扭矩tp*落入低扭矩范围内;当要求扭矩tp*大于边界值tplo时,则判定要求扭矩tp*落在低扭矩范围外。在第一实施例中,该边界值tplo是小于高扭矩范围的下限边界值tphi的值。随着驱动轴36的转速np增大,边界值tplo减小。边界值tplo是根据本发明的第二值的示例。

当在步骤s130中判定要求扭矩tp*落在低扭矩范围外时,起动阈值tst被设定为值tst1(步骤s140),并且将要求扭矩tp*与起动阈值tst比较(步骤s160)。当要求扭矩tp*小于或者等于起动阈值tst时,判定继续ev驱动模式,之后例程终止。当要求扭矩tp*变得大于起动阈值tst时,判定起动发动机22(步骤s170),之后例程终止。

当判定起动发动机22时,通过hv-ecu70、发动机ecu24和马达ecu40的协同控制起动发动机22。图5是示出起动发动机22时的行星齿轮30的列线图的示例的视图。如图5中所示,当发动机22被启动时,从马达mg1输出用于启动发动机22的正扭矩tm1,并且在电池50的输入和输出极限win、wout、马达mg1的正侧额定扭矩tm1rt2以及马达mg2的负侧额定扭矩tm2rt1的范围内,从马达mg2输出通过将正扭矩(tcr+tp*)除以减速齿轮35的减速传动比gr获得的扭矩,其中正扭矩(tcr+tp*)是用于取消从马达mg1输出的作用在驱动轴36上的扭矩(-tm1/ρ)的取消扭矩tcr和要求扭矩tp*的和。随着发动机22被启动并且发动机22的转速ne变得高于预定转速(例如,800rpm、1000rpm等等),对发动机22的操作控制(燃料喷射控制、点火控制等等)开始。随着发动机22的起动完成,驱动模式转变为hv驱动模式。

由于认为是在起动阈值tst被设定为值tst1(>tpmax2)的状态下的操作,所以当要求扭矩tp*变得大于双驱动模式中的起动阈值tst时,发动机22起动,并且驱动模式转变为hv驱动模式。

当在步骤s130中判定要求扭矩tp*落入低扭矩范围内时,起动阈值tst被设定为tst2(步骤s150),并且执行来自步骤s160的处理。在第一实施例中,值tst2是小于用于选择单驱动模式或者双驱动模式的选择阈值tpref并且大于低扭矩范围的上限边界值tplo的值。该值tst2以及值tst1随着驱动轴36的转速np增大而减小。值tst2是根据本发明的第四值的示例。

由于认为是在要求扭矩tp*落入低扭矩范围内(小于或者等于边界值tplo)的状态下的操作,所以要求扭矩tp*小于起动阈值tst。因此,判定执行ev驱动模式,之后程序终止。

当下次或者随后执行例程时,在步骤s110中判定起动阈值tst不是值tst1,起动阈值tst被设定为值tst2(步骤s150),并且执行来自步骤s160的处理。由于认为是起动阈值tst被设定为值tst2(<tpref)的状态下的操作,所以当要求扭矩tp*变得大于单驱动模式中的起动阈值tst时,发动机22起动,并且驱动模式转变为hv驱动模式。在第一实施例中,之后,当系统停止或者下次系统启动时,起动阈值tst变为(恢复为)作为初始值的值tst1。

将描述为何起动阈值tst在高扭矩历史标志f为1(当存在要求扭矩tp*已经达到在ev驱动模式中的高扭矩范围的历史时)并且要求扭矩tp*落入低扭矩范围内时从值tst1(>tpmax2)变为值tst2(<tpref)的原因。

图6是示出最大单驱动扭矩tpmax1、最大双驱动扭矩tpmax2、用于选择单驱动模式或者双驱动模式的选择阈值tpref、起动阈值tst(值tst1或者值tst2)、高扭矩范围的下限边界值tphi以及低扭矩范围的上限边界值tplo之间的关系的示例的视图。在图6中,用阴影画出高扭矩范围和低扭矩范围。如图6中所示,从较大侧按顺序开始,存在值tst1、最大双驱动扭矩tpmax2、最大单驱动扭矩tpmax1、选择阈值tpref、边界值tphi、值tst2和边界值tplo。边界值tphi和值tst2中的任一个可以更大,或者边界值tphi和值tst2可以为相同的值。如上所述,边界值tphi、边界值tplo、值tst1和值tst2分别是第一值、第二值、第三值和第四值的示例。

由于认为是cd模式中的ev驱动模式中的操作,所以与cs模式相比,需要赋予ev驱动模式更高的优先级。因此,通过将大于最大双驱动扭矩tpmax2的扭矩tst1设定作为起动阈值tst,能够起动发动机22,即进一步减少驱动模式从ev驱动模式转变至hv驱动模式。

然而,当值tst1被用作起动阈值tst时,发动机22以双驱动模式起动。通过图3和图5应明白,在以双驱动模式起动发动机22时,来自马达mg1的扭矩从负变为正,所以从马达mg1输出的作用在驱动轴36上的扭矩从正变为负,结果是存在被输出至驱动轴36的总正扭矩大量地降低至一定程度的可能性。在发动机22起动时,由于要求扭矩tp*增大并且变得大于起动阈值tst,所以可假定加速器操作量acc正在增大(驾驶员正在提出加速请求)。为此,如果发生了上述现象,则驾驶员可能经历迟钝感。在双驱动模式中,来自马达mg2的扭矩接近于通过将用于选择单驱动模式或者双驱动模式的选择阈值tpref除以减速齿轮35的减速传动比gr获得的值(tpref/gr)或者负侧额定扭矩tm2rt1,所以可能不可能引起上述消除扭矩tct从马达mg2作用在驱动轴36上。在这种情况下,可能引起驾驶员进一步经历迟钝感(例如更长时间段)。

在第一实施例中,当存在要求扭矩tp*已经达到ev驱动模式中高扭矩范围的历史并且要求扭矩tp*落入低扭矩范围内时,则起动阈值tst从值tst1(>tpmax2)变为值tst2(<tpref)。当存在要求扭矩tp*已经达到ev驱动模式中的高扭矩范围的历史时,即要求扭矩tp*在当前时间之前已经变得相对地大的情况(驾驶员已经展现加速的意图),所以假定要求扭矩tp*能在当前时间之后再次变得相对地大(驾驶员能展现加速的意图)。通过将起动阈值tst设定为值tst2,当要求扭矩tp*变得大于起动阈值tst时,发动机22以单驱动模式起动。通过图2和图5应明白,在以单驱动模式起动发动机22时,来自马达mg1的扭矩从零变为正扭矩。因而,与来自马达mg1的扭矩从负变为正的情况相比,能够减小在起动发动机22时被输出至驱动轴36的总正扭矩的减小量。结果,在起动发动机22时,能够减小驾驶员经历的迟钝感。作为这些动作的结果,当假定要求扭矩tp*在当前时间之后再次变得相对地大时,能够提前采取措施,以便不使驾驶员在起动发动机22时经历迟钝感。

当值tst2被设定为比最大单驱动扭矩tpmax1小的值使得能够使消除扭矩tcr从马达mg2作用在驱动轴36上时,能够进一步充分地减小被输出至驱动轴36的总正扭矩的减小,所以能够进一步减小驾驶员经历的迟钝感。

当存在cd模式中的ev驱动模式中要求扭矩tp*已经达到高扭矩范围的历史并且要求扭矩tp*落入低扭矩范围内时,根据第一实施例的上述混合动力车辆20将起动阈值tst从大于最大双驱动扭矩tpmax2的值tst变为小于用于选择单驱动模式或者双驱动模式的选择阈值tpref的值tst2。因而,当假定要求扭矩tp*在当前时间之后再次变得相对地大时,能够提前采取措施,以便不使驾驶员在起动发动机22时经历迟钝感。

在根据第一实施例的混合动力车辆20中,描述了判定是否以cd模式中的ev驱动模式起动发动机22时的操作。在发动机22起动并且驱动模式转变为hv驱动模式之后,例如,当要求扭矩tp*变得小于或者等于值tst2时,发动机22可被停止,并且驱动模式可以转变为ev驱动模式。

在根据第一实施例的混合动力车辆20中,描述了判定是否以cd模式中的ev驱动模式起动发动机22时的操作。在cs模式中的ev驱动模式中,例如,起动阈值tst可以被与加速器操作速度δacc和快速踏下阈值δaref之间的大小关系无关地设定为值tst2,并且当要求扭矩tp*变得大于起动阈值tst时,发动机22可以起动,并且驱动模式可以转变为hv驱动模式。在cs模式中,电池50的荷电状态soc通常低于cd模式中的荷电状态soc。因此,通过以这种方式设定起动阈值tst,能够减少电池50的荷电状态soc的减小。

在根据第一实施例的混合动力车辆20中,描述了判定是否以cd模式中的ev驱动模式起动发动机22时的操作。当不选择cd模式或者cs模式时(例如,当混合动力车辆不包括充电器60时),可以与第一实施例的情况相同,不变地判定是否以ev驱动模式起动发动机22。

根据第一实施例的混合动力车辆20被构造成执行图4中所示的发动机起动判定例程。作为代替,混合动力车辆20可以被构造成执行根据下文所述的图7中所示的第一可替选实施例的发动机起动判定例程。除了执行步骤s200的处理而非步骤s100的处理,并且添加了步骤s210至步骤s230的处理之外,图7中所示的发动机起动判定例程与图4中所示的发动机起动判定例程都相同。因此,相同步骤号指示相同处理,并且省略其详细说明。

在图7中所示的发动机起动判定例程,以及图4中所示的发动机起动判定例程的步骤s100的处理中,hv-ecu70输入要求扭矩tp*和高扭矩历史标志f,并且输入车速(步骤s200)。将被输入的车速v是由车速传感器88检测的值。

之后,判定发动机22的起动阈值tst是否为值tst1(步骤s110)。当判定起动阈值tst不是值tst1,即起动阈值tst为值tst2时,则判定是否满足用于重置起动阈值tst的条件(用于将起动阈值tst从值tst2变为值tst1的条件)(步骤s210至步骤s230)。当判定不满足重置条件时,起动阈值tst被设定为值tst2(步骤s150),并且执行来自步骤s160的处理。当判定满足重置程序时,起动阈值tst被设定为值tst1,即起动阈值tst从值tst2变为值tst1(步骤s140),并且执行来自步骤s160的处理。

车速条件、扭矩条件和时间条件被用作重置条件。车速条件是在起动阈值tst变为值tst2之后,车速v已经跨阈值vref1降低的条件。阈值vref1例如可以为40km/h、50km/h、60km/h等等。扭矩条件可以是在起动阈值tst变为值tst2之后,要求扭矩tp*落入低扭矩范围的状态已经持续超过预定时间t11的条件。预定时间t11例如可以为2秒、3秒、5秒等等。时间条件是已经从起动阈值tst变为值tst2起经过了预定时间t12的条件。预定时间t12例如可以约为几分钟至几小时。

在该可替选实施例中,当不满足车速条件、扭矩条件和时间条件时,则判定不满足重置条件;而当满足车速条件、扭矩条件或者时间条件中的至少一个条件时,则判定满足重置条件。

以这种方式,通过在满足重置条件时将起动阈值tst从值tst2变为值tst1,与在将起动阈值tst保持为值tst2时相比,能够例如在当不假定要求扭矩tp*在从当前时间的一定时间内变得大于值tst1时进一步较少发动机22的起动。

在这种可替选实施例中,车速条件、扭矩条件和时间条件可以被用作重置条件。作为代替,可以仅使用车速条件、扭矩条件和时间条件中的一部分条件。

根据第一实施例的混合动力车辆20被构造成执行图4中所示的发动机起动判定例程。作为代替,混合动力车辆20可以被构造成执行根据下文所述的图8中所示的第二可替选实施例的发动机起动判定例程。除了添加了步骤s300和步骤s310的处理之外,图8中所示的发动机起动判定例程与图4中所示的发动机起动判定例程都相同。因此,相同步骤号指示相同处理,并且省略其详细说明。在该可替选实施例中,在发动机22起动并且驱动模式转变为hv驱动模式后,当要求扭矩tp*变得小于或者等于比值tst2小的值tst3时,发动机22停止,并且驱动模式转变为ev驱动模式。值tst3以及值tst2随着驱动轴36的转速np增大而减小。值tst3是根据本发明的第五值的示例。

在图8中所示的发动机起动判定例程中,在步骤s120中当高扭矩历史标志f为1时(当存在要求扭矩tp*已经达到高扭矩范围的历史时),hv-ecu70判定要求扭矩tp*是否落入高扭矩范围内(步骤s300)。当判定要求扭矩tp*落在高扭矩范围外时,hv-ecu70执行来自步骤s130的处理。

当在步骤s300中判定要求扭矩tp*落在高扭矩范围内时,则判定状态是否已经持续超过预定时间t13(步骤s310)。当判定状态还未持续超过预定时间t13时,则起动阈值tst被设定为值tst1(步骤s140),并且执行来自步骤s160的处理。

当在步骤s310中判定要求扭矩tp*落在高扭矩范围内的状态已经持续超过预定时间t13时,则起动阈值tst被设定为值tst2,即起动阈值tst从值tst1变为值tst2(步骤s150),并且执行来自步骤s160的处理。如上所述,高扭矩范围的下限边界值tphi和值tst2两者都小于用于选择单驱动模式或者双驱动模式的选择阈值tpref。当要求扭矩tp*落在高扭矩范围内的状态已经持续超过预定时间t13时,则当前要求扭矩tp*大于边界值tphi。因此,作为将起动阈值tst变为值tst2的结果,能够存在发动机以单驱动模式起动的情况以及发动机以双驱动模式起动的情况。然而,在这种可替选实施例中,当要求扭矩在hv驱动模式中小于或者等于值tst3(≤tst2)时,发动机停止,并且驱动模式转变为ev驱动模式。因此,在ev驱动模式重新开始后,能够以单驱动模式起动发动机。

在根据第一实施例的混合动力车辆20中,用于选择单驱动模式或者双驱动模式的选择阈值tpref被设定为小于最大单驱动扭矩tpmax1的值。作为代替,选择阈值tpref可以是与最大单驱动扭矩tpmax1相同的值。

在根据第一实施例的混合动力车辆20中,高扭矩范围的下限边界值tphi是小于用于选择单驱动模式或者双驱动模式的选择阈值tpref的值。作为代替,边界值tphi可以是与选择阈值tpref相同的值。

在根据第一实施例的混合动力车辆20中,低扭矩范围的上限边界值tplo是小于高扭矩范围的下限边界值tphi的值。作为代替,边界值tplo可以是与边界值tphi相同的值。在这种情况下,对于要求扭矩tp*,小于或者等于边界值tplo的范围被设定为低扭矩范围,并且大于边界值tphi(=tplo)的范围被设定为高扭矩范围。

在根据第一实施例的混合动力车辆20中,用于设定起动阈值tst的值tst1是大于最大双驱动扭矩tpmax2的值。作为代替,值tst1可以是与最大双驱动扭矩tpmax2相同的值,或者可以是小于最大双驱动扭矩tpmax2并且大于选择阈值tpref的值。

在根据第一实施例的混合动力车辆20中,被用于设定起动阈值tst的值tst2是小于用于选择单驱动模式或者双驱动模式的选择阈值tpref并且大于低扭矩范围的上限边界值tplo的值。作为代替,值tst2可以是与选择阈值tpref相同的值,或者可以是与边界值tplo相同的值。当选择阈值tpref和边界值tplo为相同的值时,值tst2是与这些值相同的值。

在根据第一实施例的混合动力车辆20中,单向离合器cl1被连接到发动机22的曲轴26(行星齿轮30的齿轮架34)。作为代替,下面将描述的根据第二实施例的混合动力车辆也适用。图9示出根据第二实施例的混合动力车辆120。可以设置制动器br1。制动器br1将发动机22的曲轴26固定(连接)至壳体21,使得曲轴26不可旋转,或者从壳体21释放发动机22的曲轴26,使得曲轴26可旋转。在这种情况下,在ev驱动模式中,通过将制动器br1设定为接合状态而将发动机22设定为旋转停止状态。在hv驱动模式中,通过将制动器br1设定为释放状态而将发动机22设定为旋转状态。

在根据第一实施例的混合动力车辆20中,马达mg2经由减速齿轮35连接到驱动轴36。作为代替,马达mg2可以直接联接到驱动轴36。可替选地,马达mg2可以经由变速箱连接到驱动轴36。

根据第一实施例的混合动力车辆20包括作为行星齿轮组的单行星齿轮30。作为代替,可以将多个行星齿轮设置为行星齿轮组。在这种情况下,可以采用示出为根据下文将描述的图10中所示的第三实施例的混合动力车辆220的构造。

根据图10中所示的第三实施例的混合动力车辆220包括代替混合动力车辆20的行星齿轮30作为行星齿轮组的行星齿轮230、240,并且也包括离合器cr2和制动器br2。

行星齿轮230为单小齿轮行星齿轮。行星齿轮230包括太阳齿轮231、齿圈232、多个小齿轮233和齿轮架234。太阳齿轮231为外齿轮。齿圈232为内齿轮。所述多个小齿轮233与太阳齿轮231和齿圈232啮合。齿轮架234支撑多个小齿轮233,使得每个小齿轮233都可自转和可公转。马达mg2的转子被连接到太阳齿轮231。发动机22的曲轴26连接到齿圈22。驱动轴236经由差动齿轮38联接到驱动轮39a、39b,并且齿轮机构37连接到齿轮架234。

行星齿轮240是单小齿轮行星齿轮。行星齿轮240包括太阳齿轮241、齿圈242、多个小齿轮243和齿轮架244。太阳齿轮241为外齿轮。齿圈242为内齿轮。所述多个小齿轮243与太阳齿轮241和齿圈242啮合。齿轮架244支撑多个小齿轮243,使得每个小齿轮243都可自转和可公转。马达mg1的转子被连接到太阳齿轮241。驱动轴236连接到齿轮架244。

离合器cr2将行星齿轮230的太阳齿轮231和马达mg2的转子连接到行星齿轮240的齿圈242,或者释放它们间的连接。制动器br2将行星齿轮240的齿圈242固定(连接)至壳体21,使得齿圈242不可旋转,或者从壳体21释放齿圈242,使得齿圈242可旋转。

图11是示出在根据第三实施例的混合动力车辆中,在离合器cr2被设定成接合状态并且制动器br2被设定成释放状态的同时,单驱动模式中的行星齿轮230、240的列线图的示例的视图。图12是示出在根据第三实施例的混合动力车辆中,在离合器cr2被设定成接合状态并且制动器br2被设定成释放状态的同时,双驱动模式中的行星齿轮230、240的列线图的示例的视图。图13是示出在根据第三实施例的混合动力车辆中,离合器cr2被设定成接合状态并且制动器br2被设定成释放状态的同时,在发动机22起动时的行星齿轮230、240的列线图的示例的视图。

在图11至图13中,s1和r2轴线代表行星齿轮230的太阳齿轮231的转速或者马达mg2的转速nm2,并且也代表行星齿轮240的齿圈242的转速,c1和c2轴线代表行星齿轮230的齿轮架234的转速或者行星齿轮240的齿轮架244的转速,并且也代表驱动轴236的转速np,r1轴线代表行星齿轮230的齿圈232的转速,并且也代表发动机22的转速ne,并且s2轴线代表行星齿轮240的太阳齿轮241的转速,并且也代表马达mg1的转速nm1。

在图11中,s1和s2轴线上的宽线箭头指示从马达mg2输出的扭矩tm2,并且c1和c2轴线上的宽线箭头指示从马达mg2输出从而作用在驱动轴236上的扭矩(tm2×k2)。变换系数k2是用于将马达mg2的扭矩tm2变换为驱动轴236的扭矩的系数。在图12和图13中,s2轴线上的宽线箭头指示从马达mg1输出的扭矩tm1,s1和r2轴线上的宽线箭头指示从马达mg2输出的扭矩tm2,并且c1和c2轴线上的两个宽线箭头指示从马达mg1、mg2输出从而作用在驱动轴236上的扭矩(tm1×k1+tm2×k2)。变换系数k1是用于将马达mg1的扭矩tm1变换为驱动轴236的扭矩的系数。

在图11至图13的情况下,离合器cr2被设定为接合状态,所以行星齿轮230的太阳齿轮231的转速和马达mg2的转速nm2与行星齿轮240的齿圈242的转速相同。因此,行星齿轮230、240起所谓的四元件行星齿轮组的作用。

在单驱动模式中,如图11中所示,混合动力车辆220能够通过从马达mg2输出正扭矩tm2从而引起正扭矩(tm2×k2)作用在驱动轴236上而行驶。最大单驱动扭矩tpmax1等于通过将马达mg2的正侧额定扭矩tm2rt2乘以变换系数k2获得的值(tm2rt2×k2)。这易于从图11的列线图导出。

在双驱动模式中,如图12中所示,混合动力车辆220能够通过从马达mg1输出负扭矩tm1并且从马达mg2输出正扭矩tm2从而引起正扭矩(tm1×k1+tm2×k2)作用在驱动轴236上而行驶。最大双驱动扭矩tpmax2等于通过将马达mg1的负侧额定扭矩tm1rt1乘以变换系数k1获得的值以及通过将马达mg2的正侧额定扭矩tm2rt2乘以变换系数k2获得的值的和(tm1rt1×k1+tm2rt2×k2)。这易于从图12的列线图导出。

在起动发动机22时,如图13中所示,通过从马达mg1输出正扭矩tm1来启动发动机22。通过图12和图13应明白,以双驱动模式起动发动机22时,马达mg1的扭矩从负扭矩变为正扭矩,并且从马达mg1输出从而作用在驱动轴236上的扭矩从正变为负。为此,存在被输出至驱动轴236的总正扭矩大量地降低至一定程度的可能性。相反,与第一实施例的情况相同,当执行图4中所示的发动机起动判定例程时,存在要求扭矩tp*已经在ev驱动模式中达到高扭矩范围的历史并且要求扭矩tp*落入低扭矩范围内,起动阈值tst从大于最大双驱动扭矩tpmax2的值tst1变为小于用于选择单驱动模式或者双驱动模式的选择阈值tpref的值tst2。因而,获得与第一实施例类似的有利效果。

将描述实施例的主要元件和发明内容中所述的本发明的主要元件之间的相应关系。在第一实施例中,发动机22是发动机的示例。马达mg1是第一马达的示例。行星齿轮30是行星齿轮组的示例。马达mg2是第二马达的示例。单向离合器cl1是旋转限制机构的示例。电池50是电池的示例。hv-ecu70、发动机ecu24和马达ecu40对应于电子控制单元的示例。另外,执行图4中所示的发动机起动判定例程的hv-ecu70也是电子控制单元的示例。

第一实施例的主要元件和发明内容中所述的本发明的主要元件之间的对应关系无意限制发明内容中所述的本发明的元件,因为第一实施例是特别地示出一种用于执行发明内容中所述的本发明的模式的示例。因而,应基于发明内容中的说明解释发明内容中所述的本发明,并且第一实施例仅是发明内容中所述的本发明的特定示例。

上文描述了本发明的实施例;然而,本发明不限于那些实施例。当然,不偏离本发明的范围,可以通过各种形式实施本发明。

本发明适用于混合动力车辆的制造行业等。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1