用于电动汽车的逆变器的制作方法

文档序号:18190150发布日期:2019-07-17 05:33阅读:324来源:国知局
用于电动汽车的逆变器的制作方法

本发明涉及一种用于电动汽车的逆变器。本发明还涉及一种对应的电动汽车。



背景技术:

在电子技术中,用于在无需取出能量储存器(如电动汽车的牵引电池)的情况下通过简单地置入或插入来向可移动的电池驱动的装置、机器或机动车辆供应能量的任何固定装置或者电子设备都称为充电站。用于电动汽车的充电站在口语中还被称为“加电站”并且可以包括多个充电点,这些充电点根据结构形式表征为“充电桩”。

在此,尤其已知基于直流(directcurrent,dc)的快速充电系统(highperformancecharging,hpc),如在欧洲推广的所谓组合充电系统(combinedchargingsystem,ccs)。在所属类型的直流充电下,来自充电桩的直流电直接被馈入至车辆中,并在此通过电网的高效整流器或通过太阳能加电站的缓冲蓄能器提供直流电。在车辆中存在电池管理系统,该电池管理系统与充电桩通信,以便调整电流强度或在达到容量极限时终止该过程。

根据现有技术,为此必要的电力电子器件通常集成在充电桩中且能够承受最高达50kw的功率极限。由于充电桩的直流端直接与牵引电池的对应端相连接,所以能够以低损耗传输高充电电流,这可以实现短的充电时间。

然而,现代化高性能电动车辆和商用车辆为其驱动系统耗用电压,而这有时远高于通常低于400v的典型快速充电桩的输出电压。尽管如此,为了能够在现有的快速充电桩处进行充电,必须进行直流电压转换,其将例如400v的充电桩电压提高到用于汽车电池的800v。

可以由专用的直流电压转换器来进行这样的直流电压转换,但这种直流电压转换器因其高性能要求而成本高昂、占据大的结构空间并且显著增加车辆重量,由此影响行驶里程。

诸如us2004178756a、us2009230917a和us2013187446a各自公开了具有dc/dc转换器的电动车辆电池安全系统。各系统均被配置成用于确定是否达到极限值:在us2004178756a和us2009230917a的情况下确定电压极限,在us2013187446a的情况下确定温度极限。

us2017126165a同样涉及具有变流器的电动车辆电池安全系统。该系统包括电流传感器和电压传感器,以便确定是否达到极限值并阻断某些低压侧开关。

us5687066a探讨了具有dc/dc转换器的电动车辆电池安全系统,该系统包括温度传感器,以便确定是否达到极限值。

替代性地,车辆的驱动逆变器(inverter)可以用作直流电压转换器。在此,通过电动机器的相电感进行转换(从相位到星形接点)。采用驱动逆变器和电动机器的主要问题是叠加交流电(ripplecurrent,波纹电流),这归因于车辆中所使用的、缓慢的绝缘栅双极晶体管(insulated-gatebipolartransistor-igbt)的通常较低的电动机器相电感和较低的可能切换速率。在当今车辆的极高充电功率(100-500kw,相当于一个村庄的供电)下,这种电流纹波和电压纹波在车辆的许多敏感电子系统中产生强电磁干扰并造成能量损失增大以及随之而来的升温。



技术实现要素:

本发明提供了一种根据如下项1、8和11所述的用于电动汽车的逆变器以及一种对应的电动汽车和充电方法。

1.一种用于电动汽车的逆变器,

其特征在于以下特征:

-该逆变器被配置成一方面连接到该电动汽车的至少一个牵引电池,而另一方面连接到该电动汽车的至少一个三相电动机;

-该逆变器被配置成在该至少一个三相电动机的星形接点连接到充电站时对该至少一个牵引电池充电;并且

-该逆变器包括用于在超过该逆变器的预定运行极限时中断充电的低压侧开关。

2.根据如上项1所述的逆变器,

其特征在于以下特征:

-该逆变器包括用于测量该三相电动机的相电流的电流传感器,并且

-该运行极限与这些相电流相关。

3.根据如上项2所述的逆变器,

其特征在于以下特征:

-该逆变器包括用于调节相电流的调节器,并且

-这些调节器连接到这些开关。

4.根据如上项2或3所述的逆变器,

其特征在于以下特征:

-该逆变器包括用于使该三相电动机放电的放电装置,并且

-该逆变器被配置成在超过该运行极限时启用该放电装置。

5.根据如上项4所述的逆变器,

其特征在于以下特征中的至少一者:

-该放电装置包括硬件过压检测器,或者

-该放电装置包括电子控制系统。

6.根据如上项2或3所述的逆变器,

其特征在于以下特征:

-这些电流传感器包括阈值开关,并且

-这些阈值开关分别包括滤波器、放大器、施密特触发器和数字输入端。

7.根据如上项2或3所述的逆变器,

其特征在于以下特征中的至少一者:

-这些电流传感器包括直流传感器,并且

-这些电流传感器包括交流传感器。

8.一种电动汽车,

其特征在于以下特征:

-该电动汽车包括根据如上项1至7之一所述的逆变器、牵引电池、以及三相电动机,并且

-该逆变器一方面连接到该牵引电池,而另一方面连接到该三相电动机。

9.根据如上项8所述的电动汽车,

其特征在于以下特征:

-该电动汽车包括直流充电插座,并且

-该直流充电插座被配置成使星形接点经由线缆连接到该充电站。

10.根据如上项8或9所述的电动汽车,

其特征在于以下特征:

-该电动汽车具有驱动桥,并且

-该驱动桥承载该三相电动机。

11.一种用于根据如上项8至10之一所述的电动汽车的充电方法,

其特征在于以下特征:

-在检测故障情况时停用至少一个开关。

12.根据如上项11所述的充电方法,

其特征在于,存在至少两类故障情况。

13.根据如上项11所述的充电方法,

其特征在于以下特征:

至少在出现以下事件之一时存在故障情况:

-dc中间电路电压u电池超过预定极限值;

-至少一个电池接触器断开。

14.根据如上项12所述的充电方法,

其特征在于以下特征:

-在第一类故障情况中的故障情况终止时,继续进行充电。

15.根据如上项12至14之一所述的充电方法,

其特征在于以下特征:

-在第二类故障情况中的故障情况终止时,不继续进行充电。

16.根据如上项15所述的充电方法,

其特征在于以下特征:

-在第二类故障情况下,启用放电。

17.根据如上项16所述的充电方法,

其中,通过硬件检测第二类故障情况。

18.根据如上项11至14之一所述的充电方法,

其特征在于以下特征:

-通过该开关中断对该牵引电池的充电,并且优选根据硬件和软件方面的规则继续进行充电。

19.根据如上项11至14之一所述的充电方法,

其特征在于以下特征:

-在通过至少一个开关中断对该牵引电池的充电时,能够进行各种故障响应并且这些能够进行的故障响应包括阻断这些开关、启用放电、通过这些开关的占空比或占空因数来减少电流激励、以及适配充电桩的充电要求。

20.根据如上项11至14之一所述的充电方法,

其中,在充电过程中,至少在出现以下事件之一时存在故障情况:

-测量同一变量或处于固定数学关系的至少两个电流传感器和/或电压传感器的测量值相差超过预定值或预定百分比;

-至少一个传感器的测量值离开预定范围;

-至少一个传感器的测量值具有高于预定极限的噪声分量;

-至少一个传感器失效;

-这些充电桩与车辆的至少一个控制系统之间的通信失效;

-插头的连接断开;

-该逆变器的至少一个控制系统与至少一个上级控制系统之间的通信失效;

-该逆变器的至少一个控制系统在预定时间内未从上级控制系统接收到信号;

-至少一个接触器断开。

根据本发明的方案基于以下观点:直流充电桩的正极可以连接到电动机器的引出的星形接点。与此同时,充电桩的负极置于高压电池(hv电池)的负电位。

因此,借助电动机器的相电感并通过对逆变器的半导体元件的适当控制,可以将该逆变器用作升压转换器、升压变换器或升压调节器(step-upconverter、boostconverter)。通过由这种升压转化器将充电桩的低压转化成hv电池的电压,从而可以在常规的充电桩处对高压电池进行充电,而无需采用额外的充电电子设备(例如,另外的dc/dc转化器)。

复杂的相位控制以及大的电流纹波和电压纹波会增加充电过程中的运行风险。考虑到各种可能情况的安全结构对于保护用户和部件而言不可或缺。

所提出的解决方案的优势在于:提供了这样的安全结构,该安全结构能够确保充电过程中的正常运行并且在超过电流、电压或温度的情况下自动干预。

本发明的其他有利构型在如上项2-7、9-10和12-20中给出。

附图说明

本发明的实施例在附图中示出并在下文中进一步描述。

图1示出电气驱动系的示意性结构。

图2示出充电电流的第一时间曲线。

图3示出充电电流的第二时间曲线。

图4示出根据本发明的第一调节回路的一部分。

图5示出根据本发明的第二调节回路的一部分。

图6示出用于过压保护的箝位电路(crowbarcircuit,撬棒电路)。

图7示出电控放电装置。

图8示出充电电流的第三时间曲线。

图9示意性示出电流传感器的阈值开关。

图10示出具有电流传感器的驱动系的结构。

图11示出电压传感器的阈值开关。

图12示出连接到充电桩的第一电动汽车。

图13示出双桥驱动的第二电动汽车。

图14和图15示出滤波器的替代性实施方式。

具体实施方式

图1展示了安装在电动车辆中的驱动系的示意性结构,该驱动系具有高压牵引电池11,在该高压牵引电池中集成有由电池本身控制的电池接触器29。该车辆还包括:至少三相的逆变器10,该逆变器将牵引电池11的直流电压转换成三相交流电压;以及三相电动机12,其用于将电能转换成用于使车辆运动的机械能。

三相电动机12的在图中可看到的星形接点25可以用作触及点,以形成逆向于行驶过程中能量流方向作用的升压转换器。在此,三相电动机12的支路电感作为直流电压转换器的升压电感起作用。通常,就三相电动机而言,该星形接点25既不可触及、又不可电气接触,但在当前车辆中,有针对性地将其从三相电动机12的壳体引出并且经由带有可选的保险装置31的充电插座33连接到400v的dc充电站35。

这种安全架构基于优选通过硬件监控的以下输入标准:ac与dc电流极限、逆变器10到牵引电池11的中间电路输出端上的dc电压极限、以及针对牵引电池11与逆变器10断开情况的电池接触器29的可选信号。另外,还可以提供温度极限以及更严格的、或在数学上从电流信号推导出的额外的电流极限和电压极限。

通过硬件实施或在硬件电路中实施尤其是通过不允许用软件编程的数字或模拟电子电路来进行的。

可能的故障响应包括阻断低压侧开关13、启用有源放电、以及通过低压侧开关13的占空比或占空因数(dutycycle、dutyfactor)减少电流激励。就此而言,如图所示,在图1中用附图标记13标示的电路下侧被称作低压侧(lowside)。

如果超过通过硬件监控的运行极限,则必须立即中断运行(至少所涉及的相位)。

如果逆变器10的单相或所有相的低压侧晶体管被阻断(即,阻碍),则电流不再继续馈入电动机器的电感lem中和增强,而是以下列速度缓慢地放电。

可以采用各种基于硬件的方式来阻断低压侧开关13:对应的低压侧开关13(诸如,在场效应晶体管情况下的栅极驱动器)的控制电子设备的电压源(例如,12v、15v或20v)可以在超过极限时断开。这种断开可以优选通过指示自锁(normallyoff,常闭)行为的电路来完成,即,检查极限的电路需要明确启动,以便提供用于控制的电源电压。

替代性地,借助逻辑电路(例如,与门(and-gatter))获得栅极驱动器的控制信号,使得接通命令与检查安全极限的电路的启动信号组合。

如果在仅一个相中超过极限,例如,在一个相的ac电流传感器中超过电流极限,则替代阻断所有相的低压侧开关13,也可以仅阻断对应相的低压侧开关13。如果接着功率被分配到其他相,以至于同样也超过它们的极限,则一旦识别出超过,就对应地将其切断。

逆变器中的ac电流传感器的目的通常在于,测量所连接的三相电动机12的相电流,以便进行调节。此外,还可以设置dc电流传感器,例如用于测量电动机运行期间的功率流量。

在许多驱动逆变器中,就n相而言,仅实施n-1个ac相电流传感器。在这种情况下,这些相可以用自身的传感器直接进行监控,而其余相中的电流强度则通过由dc电流传感器测量的值或者ac电流传感器值与dc电流之差算出。

如果每个相均有ac电流传感器,则与之相比原则上可以省去dc电流传感器。然而,额外的电流传感器通过冗余信息提高了安全性并且还允许校正测量误差。

dc值也显示了所有相的总电流。此外,如果该值在一定精确度内不等于相电流之和,则其可以用来指示故障。

例如,从本发明的意义上而言,触发响应的可能故障情况如下:

-测量不一致:冗余的电流传感器和/或电压传感器的值相互间或与预期关系(例如基尔霍夫定律)相差超过预定值和/或预定百分比(优选通过至少一个硬件监控和响应执行)。

-检测到不可信的值,例如非物理值(例如高噪音)。

-检测到传感器失效(优选通过至少一种根据硬件进行的监控和响应执行)。

-车辆与充电桩失去通信。

-超过预定的极限值(电压、电流、温度)(优选通过至少一种根据硬件进行的监控和响应执行,可选地在例如软件中具有额外的软限制)。

-触发插拔识别。

-逆变器控制系统与上级车辆控制系统之间失去通信,该上级车辆控制系统优选通过总线与逆变器控制系统进行通信。

-例如逆变器的信号接收单元或通信接收单元触发超时。

-触发逆变器控制系统的看门狗机制(watch-dog-mechanismus),该逆变器控制系统指示控制系统崩溃。

-在充电过程中检测到至少一个接触器断开(优选通过至少一种根据硬件进行的监控和响应执行)。

如图所示,实施为具有续流二极管的igbt的低压侧开关13负责使输入端电流流入三相电动机12的两个绕组电感中。因此,这些开关13中的一个阻断阻止能量传输到对应的相。然而,在这种情况下,电感中已有的能量必须引出到牵引电池11中或者(诸如在开路电池接触器29的情况下)被有源放电。

图2阐明了在切断低压侧开关13的阶段期间阻断低压侧开关13时的电感电流曲线。此时,电流通过续流二极管或经过所谓的高压侧流到输出端。在这种情况下,不会直接产生电流曲线的变化。然而,不再开启低压侧开关13并且不再向所涉及的电感继续导入电流,由此电流进而下降到零。虚线表示未阻断情况下的假想电流曲线。

与此相比,倘若在低压侧开关闭合期间阻断该低压侧开关13(如图3所示),则立即停止继续充电,并且电流和电感的相关联的能量以近似指数衰减曲线的方式向输出端中放电。

图4和图5简要示出下调一个或多个电流的示例性执行方式。倘若在故障情况下必须减小某些相电流,则对应的调节器14的电流调节目标可以例如缩减某个绝对值或因数(参见图4)。

由于调节回路具有相对较长的响应时间,由于调节误差必须首先经过例如执行比例积分pi的调节器14并且通常需要一段时间的积累,因此例如同样能够以相同的比例减少调节器14的输出(参见图5),该调节器通常控制开关13的相对接通时长。

如果通过集成电路上的调节器14进行下调而不减少其输出,则应执行额外的电流极限,该额外的电流极限阻断该或这些相关联的低压侧开关13。

替代性地(但并非优选地),能够通过以下方式实现对应的调节:在一定时间内阻断所涉及的低压侧开关13的接通信号,以便延迟一定的时间或者在一定的时间上仅启动部分接通信号(例如,仅每隔两个或三个)。

因为虽然阻断一个或多个低压侧开关13能够阻止另外的能量继续充电到三相电动机12的相关电感中,但尽管如此已经磁性储存在电感中的能量仍必须向输出端中放电,由此向中间电路电容器或牵引电池11放电,因此需要如下装置,该装置在紧急情况或故障情况下能够安全地释放出这种能量,优选可以将其转化为热量。

尤其,在电池接触器29断开时,吸收能量的牵引电池11不再连接到逆变器10,并且中间电路电容器将是唯一的储存器,该储存器就能够减缓急剧升压。然而,三相电动机12的电感中的能量

对于逆变器相或电动机器支路j而言,显然能够超出在当前充电电压vakt下仍可储存的能量

直至达到最大容许电压v最大容许。如果是这种情况,则在本发明的框架下有必要使用有源放电装置15,如图6和图7所示。

尤其,当dc电压超过设定的极限值时或者可选地当例如借助牵引电池11的信号识别出电池接触器29断开时,启用有源放电(通过决策回路中不带软件的硬件,即,通常通过不允许用软件编程的数字或模拟电子电路)。

有源放电装置15优选地包括可电启用(常闭)或优选可停用(常开)的开关93,通过该开关能够使中间电路电容器的正极与负极经由可选的、但有利的放电电阻导电连接。图6示例性示出对应的箝位电路,其具有晶闸管作为开关93、不具有单独的电阻、以及具有示例性的硬件过压检测器16。图7阐明了电子安全监控系统和控制系统17的替代性方案,其除有源放电之外还应同时控制低压侧开关13的阻断。

优选地,执行多个电流极限:如果超过第一极限(“内部电流极限”),则下调所涉及的电流,而如果超过第二极限(“外部电流极限”),则阻断相关联的低压侧开关13。这种措施被证明是有益于对内部电流极限的监控失效、停止或不足的情况。

超过内部极限仅仅减小电流,而不会像超过外部极限那样通过阻断低压侧开关13完全停止该(这些)相关相的转换。内部极限小于外部极限。优选地,这两者皆用硬件执行。至少外部极限是纯粹用硬件实现的。从图8可以获知电流达到内部极限并被减小的示例性行为;当达到外部极限时,至少暂时调整运行。

应当避免的危险是功率晶体管或电动机绕组可能过载,其原因可能在于:经过各相的单独电流不均衡(例如由于电动机器的电感不同,一个相会产生比另一个相明显更大的电流);电动机器绕组短路,结果导致降低有效电感或者因改变转子位置而降低电感(尤其是在转子中具有永磁体的三相电动机12中)。

因此,逆变器10的每个ac电流传感器和dc电流传感器配备有阈值开关18,其一个相的示意结构可从图9看出。

阈值开关18的数字输入端22在故障电流下触发并断开充电接触器(图1中的32)、例如通过逻辑门(und,与)(如果未同时存在匹配的电流极限监控信号,该逻辑门禁止转发开关信号)防止启用所涉及的低压侧开关13、或者断开对应低压侧栅极驱动器的电源电压。

除了完全切断所有低压侧开关13之外,对于交流传感器24而言,还可能分阶段进行切断。所测量的电流的干扰和其他不理想部分可以可选地在输入侧由放大器20或分压器借助滤波器19来减小。

此外,利用可选的施密特触发器21,能够自动重启低压侧开关13,而同时阻止其振荡。

图10阐明了冗余的可选构型,其具有三个交流传感器24和一个直流传感器23。应理解的是,根据最低配置的替代性方案,在不脱离本发明范围的情况下,可以提供仅两个交流传感器24和一个直流传感器23、或仅三个交流传感器24。

这种电路要求交流传感器24能够测量直流电(dc),这样就排除了例如纯电感式传感器。在此,在igbt功率开关中,交流传感器24的带宽优选至少对应于例如12khz至25khz的切换速率;或者在具有宽的带隙(widebandgap)的功率半导体中,诸如由氮化镓(gan)或碳化硅(sic)制成的晶体管中,优选对应于40khz至100khz的切换速率。对于交流传感器24和直流传感器23,可以将用于触发数字输入端的阈值设定得不一样。

要避免的危险还在于,在没有逆变器10的信息的情况下,牵引电池11例如因故障而突然脱离。在这种情况下持续馈入充电电流会导致电压骤升,因为只有已有的大约1mf的中间电路电容能够吸收电流。牵引电池11的坏、牵引电池11的制冷压缩机或其他大耗电器负载突降、调节系统故障或“失控”均是必须要避免的其他危险。

作为可行的执行方式,逆变器10的中间电路的dc电压传感器配备有阈值开关18,在图11中能够看到其针对一个相的示意性结构。阈值开关18的数字输入端22在故障电压下触发并且确保断开低压侧的电源电压。所测量的电压可以可选地在输入侧由放大器20或分压器进行滤波。此外,利用可选的施密特触发器21能够实现自动重启低压侧。

除监控逆变器10的标称电气变量之外,优选还进行热学监控。在此,在逆变器10的功率半导体或其他关键元件过热时,低压侧立即发生切断,从而能够仅在特定温度内运行。这样就能防止逆变器10的部件在其运行期间损坏。

图12示例性示出在升压运行中借助充电插座26连接到充电桩27的电动汽车30。在通过电动汽车30断开电池接触器29时(不一定因升压运行所致),牵引电池11不再连接到hv回路并由此不再连接到逆变器10。在通过根据本发明的逆变器10的升压运行进一步向hv回路馈入电流时,只有中间电路电容抑制升压,因此其时间导数对应于方程式。

这种情况同样应通过升压运行中快速上升的dc电压来识别。电池接触器29的对应信号有利于在其断开时直接设定升压运行。

根据本发明应存在硬件切断规则来确保安全地完成切断或其他调节,但在替代性实施方式中可以执行通过软件可参数化的或甚至自动更改运行时间的规则。因此,这些规则可以设计得明显更复杂并且例如包含难以由模拟电子设备实现的方程式和运算程序。

通常,保守情况下选择软件规则,而硬件切断规则可以遵循最大容许极限值,因为可以假定通常先前已可应用软件规则。在这种情况下,只有当至少一个软件规则由于错误原因而未被采用时,才达到硬件极限。

在某些情况下,在触发安全规则和对应的响应后,可以恢复到先前状态。在使用施密特触发器21的情况下,在启用响应时,如果明显低于触发极限值,则能够恢复到正常运行状态。但是,这种解决方案尤其对于单纯的电流下调而言是有意义的。倘若过压或者电池接触器29断开是触发原因,则存在未连接可吸收能量的牵引电池11的危险。相对应地,只有在消除原因后才能启动并且要以低电流缓慢地开始(如通常在插电后初始起动充电运行那样)。

在恢复到正常运行状态之前,离开临界区域后要等待所谓的停机时间。例如,重启次数可能受移位寄存器限制,以免在实际故障持续时反复切断和恢复;此后,需要例如完全重置(reset)控制系统17。

在通过硬件切断的情况下,建议将同时发送的信号发送到可以撤销阻断的集成电路(integratedcircuit,ic)。必须阻止因故障的ic或软件而意外撤销,例如通过额外的停机时间,必须启用两者的两个独立的控制ic、或必须启用其中至少两者的三个独立的控制ic。

优选地,在每次触发硬件故障极限之后,原则上随后以较低的电流开始,而然后才再次逐步增加电流。例如可以经过部分的或全部的初始化循环,插电后充电过程以该初始化循环开始。

例如,与硬件相比,在软件规则中可以相对较容易地计算用于确定实际临界的运行极限的模型。因此限制电流的实际背景例如是预防半导体过热和损毁。尤其,除了高压侧二极管之外,还考虑到低压侧igbt或其他晶体管。

软件限制可能比硬件限制更加严格,并且包含更加复杂的公式关系。尤其,可以从测量值估计其他无法获得的变量。

例如可以根据以下关系式一阶地计算出半导体的温度t:

kt,1在此表示远离半导体的散热(周围环境、散热体等);kt,2表示有效热容量,vce是半导体上的与电流相关的压降(在从集电极到发射极的igbt中),ke,1是表示开关损耗的常数,f切换是切换速率,以及i(t)是时间上的电流曲线。参数k例如可以被存储在数字电路的存储器中,测量电流、压降近似为常数或者被存储为与电流强度的相关的查找表,并且当前的切换频率由控制系统17来告知或者作为常数或参数存储在存储器中。借助数字电路,可以例如通过欧拉法、克兰克-尼科尔森法或类似方法来求解微分方程式。

此时,对应的软件规则可能根据上述公式或更准确的模型来估计温度。当达到或超过一定的温度极限时,可以作出所描述的故障响应。

软件规则还能够进行预测工作并考虑固定时间段内、或优选直至计划响应(例如,阻断低压侧开关13或下调相)前的最大预期延时或者总电流。这样就能够以前瞻性方式做出反应,以对抗故障发生或预防故障。

相对应地,可以估算给定的未来时间段内或者在已知响应时间后的时间点的半导体温度。为此,必须进行合理的假设:诸如维持当前电流、电流随当前时间梯度线性延续、使用预期的最大电流(用于确定最差情况)、或者包含过去循环的周期性电流曲线。

能够通过硬件或软件检测的极限值涉及:电流强度

i最大=i标称+δi=1,1·i标称(其中例如δi=10%(i标称))

以及积分

直流电压

u最大=u标称+δu=1,1·u标称(其中例如δu=10%(u标称))

以及积分

以及温度

t最大=t标称+δt=1,1·t标称(其中例如δt=10%(t标称))

积分和导数可以例如用模拟硬件执行。

图13以结合图14和图15的总览图示出使用两台电动机器时的可选的电路执行方式。在此,驱动桥28可以连接或断开。

除了对根据上述实施方案的系统进行电力监控和热力监控之外,此外还可以进行机械监控,以确保电动机器的转子位置变化不超过限定量并且在电动机器中形成的转矩不超过一定极限值,从而不引发安全响应。否则,在充电过程中由于电流经过电动机器的定子绕组而在定子中产生的磁场可能在转子中产生转矩,并且可能导致转子在所产生的磁场中重新定向。

在充电过程中,由于可能形成噪音且甚至由于在电动机器与车轮之间发生机械耦合,这是不期望的。因此,必须识别并通过适当措施来阻止转子位置或转子转速的变化或者产生转子转矩。优选地,对此已动用车辆架构的现有传感器系统(例如,解角器/编码器/转子位置指示器)。

倘若转子位置在限定时间内变化了待定的量,则必须做出响应。例如,该响应能够以某一值或某一比例减小电流或者通过切断(阻断晶体管控制线路)来进行。例如,还可以在第一极限时减小电流,而在第二极限时进行切断。

在此,也能够定义软极限和硬极限,它们可能导致不同的措施。

还应注意的是,在前述实施方案中,逆变器相示例性地采用低压侧开关和高压侧开关来说明。由于这类逆变器通常具有续流二极管,因此在本发明的意义上同样可能即使在不启用高压侧开关的情况下也进行逆变器的dc/dc运行。这在igbt中尤其适用,当栅极充电时,(与mosfet相比)igbt沿反向(即二极管的流通方向)的导电率不会增加。这在安全技术方面具有很大的优点,因为通过这种方式例如在存在调节误差时电流不会从电池流入充电桩中。此外,不会发生对地短路。这种仅具有低压侧开关的dc-dc升压模式既能一方面对特定故障作出响应,另一方面还能应用于正常运行。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1