一种车辆自适应限速控制方法与流程

文档序号:19736669发布日期:2020-01-18 04:34阅读:647来源:国知局
一种车辆自适应限速控制方法与流程

本发明涉车辆控制领域,尤指一种车辆自适应限速控制方法。



背景技术:

当前世界在大力发展新能源和智能驾驶,最高车速限制的需求由此而来;目前车速限制算法是根据实际车速和最高车速进行pid闭环控制,此种控制算法虽然能够达到限制车速的功能,但由于算法本身的原因,参数比较难设置,车速超调和驾驶性的平衡一直没有很好的解决,导致有些车辆能控制好车速超调但驾驶性极差,有些车辆能够有很好的驾驶性,但车速超调却不能被限制,有危害系统的风险;同时由于当前算法参数仅能适用在某一车速段,不能达到全车速段的适用,导致当前算法不适用与未来的智能交通的大趋势;同时未来智能驾驶的需求会越来越多,当前算法的标定参数难以诊定,也不利于未来智能驾驶的发展。



技术实现要素:

为解决上述问题,本发明主要目的在于,提供一种车辆自适应限速控制方法,以能解决困扰新能源车辆限速控制参数标定难、参数鲁棒性差、功能和性能不好平衡的技术难题。

为达上述目的,本发明提供了一种车辆自适应限速控制方法,其包含步骤:

1)读取整车的实际驱动扭矩、车速信号和坡度信号,并根据所述的信号使用整车动态模型进行计算,算出车辆的整车阻力曲线;借此可保证本发明采用的算法可以适应任何车辆和任何路况;

2)根据所述整车阻力曲线和整车系统最大扭矩,计算每个车速下的最大加速度,以能保证后续算法算出的值不会超过系统最大允许范围;

3)通过当前车辆下的最大加速度和预设的最佳驾驶性的加速度进行最优选择,计算出目标加速度曲线,此步骤能保证整车的驾驶性,并且实际应用中,标定工程师可以通过改变最佳驾驶性的加速度预设曲线来保证整车驾驶性;

4)读取目标限速值,根据目标限速值在步骤3)中计算出的目标加速度曲线中选择当前车速下的目标加速度,此步骤简化了后续计算量,并能保证此算法的计算量不会超过芯片运算能力;

5)再根据目标加速度与当前实际加速度进行比较,算出控制用的目标加速度,该步骤能保证后续算法的扩展性;

6)通过控制用的目标加速度反推荐出目标控制扭矩,去限制实际输出扭矩以将控制目标值转化为控制量。该步骤中可使用牛顿第二运动定律f=m*a+f计算,其中f为计算出的阻力扭矩f=mg*atan(slope)+mg*atan(slope)*u+0.5*aircd*vehcrossarea,a为目标加速度。

其中,进一步的,在步骤6)中,还可包含一个冗余目标控制扭矩计算步骤,该步骤采用加速度闭环pid来计算目标控制扭矩,并将计算出的两个目标控制扭矩进行比较,得到最终输出的目标控制扭矩,以保证算法的可靠性。因此在以上算法出现问题的时候,还会有一套备份算法来保证算法的冗余性和鲁棒性。

其中,进一步的,可在标定工序中通过改变最佳驾驶性的加速度预设曲线来保证整车驾驶性。在所述步骤6)中是根据目标加速度,使用牛顿第二运动定律:f=m*a+f;

f为已经计算出的行驶阻力mg*atan(slope)+mg*atan(slope)*u+0.5*aircd*vehcrossarea*v2,

a为期望目标加速度,m为车辆重量,这样可以得到一个驱动力,再与步骤5)计算出的力进行比较,设定一个offset,如果步骤5)计算出的力+offset>步骤6)计算出的扭矩,冗余系统会自动起作用,使用步骤6)计算出来的力代替步骤5)计算出来的力。

所述加速度闭环pid计算,是根据当前车速和目标车速的差值,查表找出目标加速度,在根据目标加速度和实际加速度进行闭环的比例微分积分算法(pid)计算扭矩,然后再和当前扭矩进行比较,如果计算扭矩大于实际需求扭矩,选择计算扭矩,如果计算扭矩大于需求扭矩,选择需求扭矩,以保证整个过程控制。

所述计算方法如下:

1)根据速差,查出控制目标加速度;

2)根据目标加速度和实际加速度进行pid控制;

3)计算出来的扭矩和需求扭矩取小,并输出。

本发明有益效果在于,借助上述技术方案,车辆在车速控制的时候,能够模拟驾驶员提前预知整车状态,达到很好的驾驶效果,并且可保证驾驶员不会感觉到控制的介入,确保了限速功能实现的前提下,最大化的优化了整车的驾驶性;同时此算法保证了未来与智能驾驶的兼容性。

附图说明

图1本发明应用的的硬件系统框图。

图2本发明的流程方框示意图。

图3本发明的一个具体实施例的优化算法实车路试数据一截图。

图4本发明的一个具体实施例的优化算法实车路试数据二截图。

图5本发明的加速度闭环pid计算方法示意图。

其中:

1、2坡度传感器

31、32、32、34轮速传感器

4整车控制器。

具体实施方式

下面通过实施例,并结合附图,对本发明的技术方案做进一步具体的说明。

为解决困扰新能源车辆限速控制参数标定难、参数鲁棒性差、功能和性能不好平衡的技术难题,本发明提出的一种车辆自适应限速控制方法主要是基于如下思路:

1.读取整车的实际驱动扭矩、车速信号和坡度信号,再根据这些信号使用整车动态模型进行计算,算出车辆的阻力曲线;此步骤是为了保证算法可以适应任何车辆和任何路况;

2.根据整车阻力曲线和整车系统最大扭矩,去计算每个车速下的最大加速度;此步骤是为了保证后续算法算出的值不会超过系统最大允许范围;

3.通过当前车辆下的最大加速度和预设的最佳驾驶性的加速度进行最优选择,计算出目标加速度曲线;此步骤是保证整车的驾驶性,标定工程师可以通过改变最佳驾驶性的加速度预设曲线来保证整车驾驶性;

4.读取目标限速值,根据目标限速值去计算的目标加速度曲线中选择当前车速下的目标加速度;此步骤是为了简化后续计算量,保证此算法的计算量不会超过芯片运算能力;

5.再根据目标加速度与当前实际加速度进行比较,算出控制用的目标加速度;此步骤是为了保证后续算法的扩展性;

6.通过控制用的目标加速度反推荐出目标控制扭矩,去限制实际输出扭矩;此步骤是将控制目标值转化为控制量;

7.再进行加速度闭环pid计算,将此pid计算出的扭矩与以上计算扭矩进行比较,保证算法的可靠性;此步骤是保证在以上算法出现问题的时候,有一套备份算法来保证算法的冗余性和鲁棒性。

以下实施例用于说明本发明,但不用来限制本发明的范围。

本发明所涉及的控制方法在整车上激活的具体流程如下:

当实际车速接近目标限制的最高车速,此算法会被自动激活,并在100ms内完成所有计算,保证驾驶员不会感觉到控制的介入,确保了限速功能实现的前提下,最大化的优化了整车的驾驶性;同时此算法保证了未来与智能驾驶的兼容性。

先请参见图1,为本发明应用的整车硬件系统框图,本发明一种车辆自适应限速控制方法应用的整车系统,主要涉及到:整车控制器4、两个坡度传感器(1、2)及四个轮速传感器(31、32、33、34)。

并请参见图2,为本发明的流程方框示意图。本发明的一种车辆自适应限速控制方法具体步骤如下:

1、计算整车参数;

为了保证本发明的该方法可以适应任何车辆和任何路况,该算法首先读取整车的实际驱动扭矩、车速信号和坡度信号,即获得实际轮端扭矩、实际车速、实际坡度,并依据该些信号使用整车动态模型进行计算出该车辆的阻力曲线(输出滑行阻力曲线及计算出的车重),阻力曲线计算公式为f=

mg*atan(slope)+mg*atan(slope)*u+0.5*aircd*vehcrossarea*v2+m*a;其中m:质量,slope为坡,u为滚动阻力系数,aircd为风阻系数,vehcross为整车迎风面积,v为车速。其中车速信号及坡度信号可由整车控制器根据四个轮速传感器31、32、33、34及两个坡度传感器1、2检测的数值计算得出;

2、计算当前车辆状态的最大加速度;

为了保证后续算法算出的值不会超过系统最大允许范围,获得该整车系统的最大扭矩,并结合阻力曲线(即上述的输出滑行阻力曲线及计算的车重)计算每个车速下能获得的最大加速度,得出最大加速度曲线,根据上述公式可以计算出当前状态下每个车速下的最大阻力,并与系统最大扭矩比较,使用牛顿第二运动定律(f-f)=ma,即可计算每个车速下的最大加速度;

3、计算目标加速度曲线;

通过当前车辆下的最大加速度和预设的最佳驾驶性的加速度进行最优选择,计算出目标加速度曲线;此步骤可保证整车的驾驶性,生产作业中标定工程师可以通过改变最佳驾驶性的加速度预设曲线来保证整车驾驶性;

4、计算目标加速度;

此步骤先读取目标限速值,根据目标限速值根据上述步骤3中计算出的目标加速度曲线中选择当前车速下的目标加速度;

此步骤是为了简化后续计算量,保证此算法的计算量不会超过芯片运算能力;

5、计算差值加速度;

获取实际加速度,再根据上述目标加速度与当前实际加速度进行比较,算出控制用的目标加速度(差值加速度);

此步骤是为了保证后续算法的扩展性;

6、计算控制扭矩;

获取驾驶员请求扭矩,然后通过控制用的目标加速度反推荐出目标控制扭矩,目标控制扭矩=min[驾驶员请求扭矩,pid计算扭矩(实际加速度,目标加速度)];

在此具体实施中,还可包括一个用加速度闭环pid计算目标控制扭矩的步骤,并将此pid计算出的扭矩与以上的计算扭矩进行比较,得到最终输出的目标控制扭矩,从而保证算法的可靠性;此步骤是保证在以上算法出现问题的时候,有一套备份算法来保证算法的冗余性和鲁棒性;如图5所示,所述加速度闭环pid计算,是根据当前车速和目标车速的差值,查表找出目标加速度,在根据目标加速度和实际加速度进行闭环的比例微分积分算法(pid)计算扭矩,然后再和当前扭矩进行比较,如果计算扭矩大于实际需求扭矩,选择计算扭矩,如果计算扭矩大于需求扭矩,选择需求扭矩,以保证整个过程控制。该具体的计算方法如下:

1)根据速差,查出控制目标加速度;

2)根据目标加速度和实际加速度进行pid控制;

3)计算出来的扭矩和需求扭矩取小,并输出。

7、输出控制扭矩;

此步骤是将控制目标值转化为控制量,以输出的控制扭矩去限制实际输出扭矩。

其中,阻力曲线计算公式为

f=

mg*atan(slope)+mg*atan(slope)*u+0.5*aircd*vehcrossarea*v2+m*a;其中m:质量,slope为坡,u为滚动阻力系数,aircd为风阻系数,vehcross为整车迎风面积,v为车速;根据上述公式可以计算出当前状态下每个车速下的最大阻力,并与系统最大扭矩比较,使用牛顿第二运动定律(f-f)=ma,即可计算每个车速下的最大加速度。本发明通过当前车辆下的最大加速度和预设的最佳驾驶性的加速度进行最优选择,计算出目标加速度曲线;读取目标限速值,根据目标限速值在步骤中计算出的目标加速度曲线中选择当前车速下的目标加速度;再根据目标加速度与当前实际加速度进行比较,算出控制用的目标加速度;通过控制用的目标加速度反推荐出目标控制扭矩,去限制实际输出扭矩以将控制目标值转化为控制量。可在极限车速控制的时候,能够模拟驾驶员提前预知整车状态,达到很好的驾驶效果。

本发明的此算法在江铃汽车股份有限公司的混动车和纯电动车型上(cx743phev&bev,l500bev和n800bev)作了验证,请参见图3及图4,确认实现了所述的发明目的,使得车辆在极限车速控制的时候,能够模拟驾驶员提前预知整车状态,达到了很好的驾驶效果。

以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解,依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求范围当中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1