用于调节车辆横向动力学的方法和设备与流程

文档序号:23013486发布日期:2020-11-20 12:15阅读:186来源:国知局
用于调节车辆横向动力学的方法和设备与流程

本发明涉及一种根据权利要求1的前序部分所述的用于调节车辆横向动力学的方法以及根据权利要求9的前序部分所述的相应的设备。



背景技术:

在车辆中通常存在大量行驶动力学调节系统,所述行驶动力学调节系统分别能够独立于彼此地影响车辆的行驶特性。然而影响的这种独立性在协调和检验存在于车辆中的大量行驶动力学调节系统的情况下产生高的耗费。

自适应式底盘调节(也被称为动态底盘控制(dcc))可在越来越多的现代车辆中找到。与传统的底盘的决定性区别在于电子调节的减振器,借助所述减振器能够调节减振特性。

区别于传统的底盘,弹簧-减振器-协调的布局设计在自适应式底盘调节中需要较少的妥协。因为在不受调节的减振器中必须决定:底盘是布局设计得较舒适还是布局设计得有动感的。在自适应式调节中,情况是不一样的。在正常条件下,弹簧的功仅少量减振,而在需要时自动地变硬的阻尼负责更多行驶稳定性。自适应式底盘持久地反应于行车道以及行驶情况并且适配四个可调节的减振器的特性曲线。在此,所述系统“在正常行驶时”着眼于车身(aufbau-,有时称为上部结构)和车轮行程传感器的信号。基于所述信号,各车轮单独地每秒多达上千次地调整阻尼。此外,在加速过程、制动过程或转向过程中,针对性地使阻尼变硬,以便减少俯仰运动和摇摆运动。为此,减振器调节装置分析评价机电助力转向装置、马达、变速器、制动系统以及驾驶员辅助系统的信号。因此,自适应式底盘一方面带来更多舒适性,而该自适应式底盘特别是也提高行驶安全性。因为进入车身中的扰动越少,esp、即电子稳定程序必须介入的情况下就越少且越晚。

这种自适应式底盘调节在文件de102014214272a1中描述,该文件涉及用于确定所产生的用于行驶动力学调节的横摆力矩的设备和方法。在此,确定至少一个行驶动力学的理论参量,其中,根据所述至少一个行驶动力学的理论参量确定至少一个基准-横摆力矩,至少一个可用的附加横摆力矩和/或至少一个存在的附加横摆力矩。根据基准-横摆力矩和所述至少一个可用的和/或存在的附加横摆力矩确定所产生的横摆力矩。此外,该文件公开了用于行驶动力学调节的方法和相应的车辆。

文件de102007051226a1描述了一种用于机动车的减振器系统。该减振器系统的目的是,通过如下方式来缓解在带有舒适的、软的布局设计的行驶舒适性与带有有动感的、绷紧的协调的行驶动力学之间的目标冲突,即,可调节的减振器经由调节系统来调节布局设计的状态。与在市场上可购得的被调节的系统相反,在行驶舒适性与行驶安全性/行驶动力学之间的目标冲突通过特定地结合状态参量基本上被消除。

文件us8,880,293b2涉及一种用于调节车辆运动的设备,包括用于调节制动力的装置在内,该装置在转向过程期间产生制动力。此外,调节设备包括:大量产生力的装置,所述装置布置在车身与车辆车桥之间,以便在车辆的车身与每个车轮之间产生可调节的力;用于调节每个力产生装置的力的单元和用于由车辆转动到的状态计算目标-俯仰状态的单元。用于力调节的单元如此调节每个力产生装置的力,使得车辆的俯仰状态接近算得的目标-俯仰状态。



技术实现要素:

本发明基于如下任务:改进对用于产生期望的车辆横向动力学所需要的横摆力矩的查明。

所述任务通过带有权利要求1的特征的方法以及通过带有权利要求9的特征的相应设备来解决。本发明的优选的实施方式是从属权利要求的对象。

在根据本发明的用于产生横摆力矩以调节车辆的行驶动力学的方法中,其中,由通过预设的转向角而预设的理论横摆率确定车辆的理论横摆力矩,由此车辆能够在当前的车辆速度下经历(durchlaufen,有时称为经过)所预设的转向角,其中,将理论横摆力矩划分成通过转向产生的转向-横摆力矩、摇摆-横摆力矩和驱动-横摆力矩,将摇摆-横摆力矩划分成各个车轮的单独的摇摆-横摆力矩,所述摇摆-横摆力矩能够可变地调整。通过单独地操控各个车轮优化各车轮的能下沉的(absetzbar)横向力。

优选地,将已经存在的驱动-横摆力矩以及最大可能的摇摆-横摆力矩纳入到对理论横摆力矩的分配的查明中。以这种方式限制理论横摆力矩的分配。

进一步优选地,由理论横摆力矩在考虑到最大可能的摇摆-横摆力矩的情况下确定摇摆-横摆力矩,所述摇摆-横摆力矩在各车轮上进行调整。

进一步优选地,将能调整的所述摇摆-横摆力矩作为在车辆的每个车轮上能调整的单独的摇摆-横摆力矩的总和。通过单独调整能够优化可实现的横向力,从而给车辆呈现更好的弯道特性。

进一步优选地,通过对各车轮的减振器的操控来引起各个车轮的单独的摇摆-横摆力矩,其中,优选通过对各减振器的单独通电引起各个车轮的摇摆-横摆力矩。

优选地,通过对车辆的摇摆-特性的建模以及摇摆角的确定和所述摇摆角的导数,查明各减振器的减振力,由此通过操控各减振器将减振力可变地分配到各车轮上。

进一步优选地,估算,以何种速度使各车轮的减振器运动,从而能够由减振器速度查明减振器通电

根据本发明的用于产生横摆力矩以调节车辆的行驶动力学的设备,其中,设备设置和设计成用于执行在前文中阐述的方法,并且其中,所述车辆具有配备有可电操控的减振器的底盘,所述设备包括:

-用于由转向角确定理论浮动角和理论横摆率的装置,

-用于由理论浮动角和理论横摆率查明理论横摆力矩的装置,

-用于将理论横摆力矩划分成转向装置的转向-横摆力矩,摇摆调节装置的摇摆-横摆力矩和驱动调节装置的驱动-横摆力矩的装置,其中,摇摆调节装置设置成用于,将摇摆-横摆力矩划分成各个车轮的单独的摇摆-横摆力矩。

通过所述设备优化或提高车辆的能下沉到行车道上的横向力,这引起可靠的行驶特性。

进一步优选地,各个车轮的不同的摇摆-横摆力矩通过相应车轮的各个减振器的不同的减振器通电来引起。

附图说明

下面借助附图阐述本发明的优选的实施方式。其中:

图1以示意图示出机动车的横摆力矩调节,

图2示出在车轮支承力、侧偏角和横向力之间的关系,

图3示出针对被调节的减振器的典型特性曲线族,以及

图4示出用于查明在车轮支承力与横摆力矩之间的关系的线性模型系统。

具体实施方式

图1以示意图示出车辆、尤其是机动车的横摆力矩调节。借助于输入装置1(通常是方向盘)在驾驶员侧预设转向角lw。该转向角lw形成用于随后的用来确定车辆的理论横摆率sgr和理论浮动角ssw的装置2的输入参量,其中,这些理论参量的确定例如在使用要调节的车辆的非逆车辆模型、尤其是非逆单轨模型的情况下进行。用于确定理论横摆率sgr和理论浮动角ssw的其他输入参量是车辆的速度v以及可选地车辆车轮在行车道上的摩擦值μ。在此,速度v借助于速度传感器9确定,而摩擦值μ借助于车辆的稳定装置8确定。

由这样查明的理论参量:理论横摆率sgr和理论浮动角ssw在装置3中在考虑到车辆速度v的情况下查明车辆的期望的理论横摆力矩sgm。在此,理论横摆力矩sgm相应于车辆的如下横摆力矩,该横摆力矩总体上是需要的,以便使车辆能够在当前的车辆速度v的情况下经历期望的转向角lw。

理论横摆力矩sgm被供应给装置4,在该装置中,理论横摆力矩sgm被划分成车辆能够产生的多个单个的分量,从而在总和方面得到平衡的车辆动力学。因此,理论横摆力矩sgm在分配装置4中被划分成通过转向产生的转向-横摆力矩lgm、通过被调节的减振器产生的摇摆-横摆力矩mz,dg、以及通过驱动部产生的驱动-横摆力矩agm。为了查明理论横摆力矩sgm的分配,给分配装置4供应已经存在的驱动-横摆力矩vagm以及最大可能的摇摆-横摆力矩mz,dmax。

由分配装置4查明的转向-横摆力矩lgm被供应给车辆的转向装置5,所查明的摇摆-横摆力矩mz,dg被供应给车辆的摇摆调节装置6,并且所查明的驱动-横摆力矩agm被供应给车辆的驱动调节装置7。在此,驱动调节装置7查明已经存在的驱动力矩vagm并且将该驱动力矩在反馈环路中作为输入参量再次供应给分配装置4。

在摇摆调节装置6中分析摇摆-横摆力矩mz,dg并且被进一步划分给存在的被调节的减振器,其中,每个被调节减振器具有单独的减振器调节装置10,11,12和13。在此,在图1的示例中,从用于四轮车辆的四个被调节的减振器的四个减振器调节装置出发。如果在车辆处存在更少或更多的被调节的减振器,则相应地存在更少或更多的减振器调节装置。因此,在图1的示例中,摇摆-横摆力矩被划分成可经由第一减振器调整的摇摆-横摆力矩mz,d1,在第二减振器处能调整的摇摆-横摆力矩mz,d2、在第三减振器处能调整的摇摆-横摆力矩mz,d3以及在第四减振器处能调整的摇摆-横摆力矩mz,d4,如这之后参考图2更详细阐述的。

图2示出在左边向上绘制的轮胎横向力fα,i,水平向右绘制的侧偏角以及以五根曲线的形式示出的1000n、2000n、3000n、4000n和5000n的车轮负载之间的关系。在此,图2可如此解读,即,针对预设的侧偏角slw和预设的车轮负载rl能够在左边竖直轴线处读取生成的轮胎横向力fα,i。

如果例如一个车桥上的两个轮胎产生6000n的车轮负载,则由图2可知:当两个轮胎吸收3000n的车轮负载时,所显示轮胎横向力则是最大的。所有其他组合在总和方面显示较小的轮胎横向力,更确切地说独立于侧偏角slw。由此,能够例如在弯道行驶时弯道外部的轮胎产生5000n的车轮负载,而弯道内部的轮胎产生1000n的车轮负载。由图2现在能够读取:针对5000n的车轮负载的横向力和针对1000n的车轮负载的横向力的总和对于所有侧偏角slw而言都小于弯道外部的轮胎的3000n的横向力和弯道内部的轮胎的3000n的横向力的总和。

因此,通过适当地操控被调节的减振器可实现,分配各车桥的车轮负载差并且由此提高或减少各车桥的总横向力,这能够通过相应的减振器通电实现。

经由减振器调节装置6在图1中产生的总摇摆-横摆力矩mz,dg可如下计算:

mz,dg=δmz,d1+δmz,d2+δmz,d3+δmz,d4(1),

其中:

并且

带有如下标记:

mz,dg-借助于减振器调节装置获得的总摇摆-横摆力矩

mz,d1-左前车轮上的横摆力矩

mz,d2-右前车轮上的横摆力矩

mz,d3-左后车轮上的横摆力矩

mz,d4-右后车轮上的横摆力矩

fz,di-车轮i上(沿z方向)的竖直力

fαi-车轮i上的横向力

fλi-车轮i上的纵向力

δv-前车桥的转向角

δh-后车桥的转向角

b-轮距

lv-重心与前车桥的间距

lh-重心与后车桥的间距

以公式(1)至(5)能够计算出:在各个车轮上的何种力差必须通过可调节的减振器来调整,以便产生要施加的摇摆-横摆力矩mz,dg。通过对车辆运动的建模能够近似地估算,减振器以何种速度运动。在减振器速度、减振器力和减振器电流的给定的关系下(如这在随后的图3中示例性地阐述的),能够查明对于横摆力矩调整所需要的减振器电流。

图3示出针对被调节的减振器的典型示例。所示出的是,沿减振器i的竖直方向z的减振力fz,di(单位为牛)作为减振器速度vd(单位为m/s)关于不同减振器通电(其中,i=0至1.8a,每步0.3a)的函数。由图3所示能看出,被调节的减振器i的减振力fz,di被所调整的通电i影响并且能够以这种方式经由减振器通电调整车轮上的竖直力fz,di,由此能够影响和调整相应的车轮的横摆力矩。

图4以示意图借助线性系统示出在车轮减振力与横摆力矩之间的关系,在该线性系统中,形象且近似地示出车辆的摇摆特性。

在图4中未显式地示出的车辆车身并不是刚性地联结到底盘处。通过弹簧、减振器和稳定器,由在行驶时从道路经由轮胎导入到车辆中的激励对车辆进行激励而发生振动。如果仅仅应围绕车辆的沿纵向方向伸延的x轴线观察车辆的运动,那么车辆的摇摆特性能够通过简单的线性模型来描述。在此,对于该模型将前车桥和后车桥合并并且将沿x方向伸延的摇摆轴线合并在摇摆极(wankpol)中。此外,假设,横向加速在车身重心中进行作用。在弹簧、减振器和稳定器中出现的所有力通过该横向加速引起。对于摇摆动力学的建模,引入摇摆惯性矩jz、摇摆阻尼dw和摇摆刚度cw。

在图4中示出的是带有单车桥的底盘fw、单车桥底盘fw的左车轮和右车轮r1,r2和摇摆极w的模型,该单车桥的底盘将前车桥和后车桥合并,该摇摆极布置在行车道之上的高度hw中。沿y方向fy1,fy2的力和沿z方向fz1,fz2的力作用到车轮r1,r2上。在车身重心sp中作用着离心力fy,车身,这导致车辆车身以摇摆角相对于z轴线偏转。

在摇摆极w与车身重心sp之间的间距为zw,这被称为摇摆杠杆臂。在摇摆角的余弦约为1,即的前提下,离心力fy,车身产生以下摇摆力矩mx,车身:

mx,车身=fy,车身·zw

该摇摆力矩mx,车身在该模型中由在车身重心中局部化的摇摆惯性矩jz、摇摆阻尼dw和摇摆刚度cw作为摇摆角的函数如下地组成:

其中,摇摆力矩mx,车身的重力份额mx,g,即:

近似地包含在摇摆刚度cw中。

摇摆角能够通过不同的传感器测量。此外,减振力能够通过操控减振器阀可变地分配到各个车轮上。由此,车轮负载相应地改变。通过提高车轮负载,可传递的最大横向力虽然升高,但是该走向是递减的,如这在图2中所示出的。在一个车桥的两个车轮上的减振力的提高由此引起:弹入的车轮上的最大的横向力升高,并且然而在弹出的车轮上的最大横向力强烈下降。由此,总横向力变得较小。借助轴线与重心的间距得到所产生的横摆力矩。

附图标记列表

1转向角输入

2用于确定理论浮动角和理论横摆率的装置

3用于确定理论横摆力矩的装置

4用于分配理论横摆力矩的装置

5转向装置

6摇摆调节装置

7驱动调节装置

8稳定装置

9速度传感器

10减振器1的调节装置

11减振器2的调节装置

12减振器3的调节装置

13减振器4的调节装置

lw转向角

μ摩擦值

v速度

ssw理论浮动角

sgr理论横摆率

sgm理论横摆力矩

lgm转向-横摆力矩

agm驱动-横摆力矩

vagm存在的驱动-横摆力矩

mz,dmax最大的摇摆-横摆力矩

mz,dg用于所有减振器的摇摆-横摆力矩

mz,d1第一减振器上的能调整的摇摆-横摆力矩

mz,d2第二减振器上的能调整的摇摆-横摆力矩

mz,d3第三减振器上的能调整的摇摆-横摆力矩

mz,d4第四减振器上的能调整的摇摆-横摆力矩

fα,i轮胎横向力

slw侧偏角

rl车轮负载

fz,di减振力

vd减振器速度

i减振器电流

yy轴线

zz轴线

摇摆角

fy,车身离心力

w摇摆极

dw摇摆阻尼

cw摇摆刚度

jz摇摆惯性矩

sp车身重心

m车身在车身重心中的质量

zw摇摆杠杆臂

hw摇摆极在行车道之上的高度

fw底盘

r1车轮1

r2车轮2

fz1车轮1沿z方向的力

fz2车轮2沿z方向的力

fy1车轮1沿y方向的力

fy2车轮2沿y方向的力

mx,车身车辆车身围绕摇摆极w的摇摆力矩

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1