一种基于信息物理系统的主动前轮转向参数优化方法与流程

文档序号:19535518发布日期:2019-12-27 15:50阅读:254来源:国知局
一种基于信息物理系统的主动前轮转向参数优化方法与流程

本发明属于汽车转向系统技术领域,尤其涉及一种基于信息物理系统的主动前轮转向参数优化方法。



背景技术:

在汽车系统中,转向系统是汽车的关键部件之一,它不仅保证汽车能按驾驶员的意志进行转向行驶,还与汽车操纵稳定性密切相关。主动转向系统,不仅可以实现转向助力,而且能够在驾驶员输入的基础上对转向系统施加主动附加转角,从而实现变传动比和转向干预稳定性控制等功能。

为了获得更好的转向性能,通常会对转向系统的结构参数或控制参数进行优化。传统的优化方法通常将两个部分作为独立系统进行处理,忽略了两者的耦合关系。但由于汽车转向系统是一个复杂的耦合系统,汽车结构与控制器互相影响,如果忽略了两者的耦合关系,即使结构参数或控制器设计地足够好,汽车的性能也会受到限制,无法发挥系统的最大潜力。而采用集成优化方法进行优化则可以很好的解决这一问题。信息物理系统(cyberphysicsystem,简称cps)是最近新兴的概念,其为一个分散式网络系统,将物理世界和信息世界连接起来,具有多学科设计优化特征。作为一个复杂的cps系统,主动转向系统包含两个子系统,即物理结构和控制器。采用cps方法对主动转向系统进行优化,充分考虑两者之间的耦合关系,能够很好的改善主动转向系统的整体性能。

目前,针对主动前轮转向系统的研究主要集中于控制方面,例如中国发明专利申请号201910128292.x,专利名称为“一种控制参数可自动调节的电动车主动前轮转向控制方法”提出了一种控制参数可自动调节的电动车主动前轮转向控制方法,可根据环境自动调节转向控制器的控制参数,提高主动前轮转向系统的精度,降低交通事故的发生;中国发明专利申请号201610824993.3,专利名称为“一种用于线控转向汽车主动前轮转向控制系统的控制方法”将遗传算法优化后的自适应神经模糊推理模型应用于主动转向控制器,提高了汽车转向时的稳定性,保证驾驶员的安全性;中国发明专利申请号为201710758041.0,专利名称为“一种基于可拓控制理论的智能车辆主动转向控制方法”利用可拓控制理论,将矛盾问题转化为相容问题,扩大了控制范围,保证车辆主动转向时的快速响应和平稳转向。

由此可见,针对主动转向系统的研究主要集中在车辆稳定性控制以及控制器的设计方面,针对主动转向系统的优化的研究相对较少,并且在优化过程中若不考虑结构参数与控制参数的耦合,系统的性能无法达到最优,因此有必要考虑转向系统结构参数与控制参数的耦合关系,对转向系统进行协同优化,使转向系统整体性能达到最优。



技术实现要素:

针对于上述现有技术的不足,本发明的目的在于提供一种基于信息物理系统的主动前轮转向参数优化方法,以解决现有技术中未考虑结构参数与控制参数的耦合关系,汽车转向系统整体性能无法达到最优的问题;本发明的方法充分考虑转向系统物理结构与控制器之间的耦合关系,对结构参数和控制参数进行协同优化,以进一步提高主动转向系统的综合性能。

为达到上述目的,本发明采用的技术方案如下:

本发明的一种基于信息物理系统的主动前轮转向参数优化方法,包括以下步骤:

步骤1):建立主动前轮转向系统模型、整车二自由度模型和轮胎模型;

步骤2):结合上述模型,以转向灵敏度,转向路感为目标函数,建立上述各模型的优化模型;

步骤3):选取合适的结构参数与控制参数作为设计变量,设置约束条件;

步骤4):采用改进多目标遗传算法nsga-ii对主动前轮转向系统进行仿真优化。

优选地,所述步骤1)具体包括:

11)建立主动前轮转向系统模型、整车二自由度模型和轮胎模型,具体包括:

所述主动前轮转向系统模型包括:转向盘与转向轴模型、双行星齿轮系模型、转向电机模型及齿轮齿条模型,具体包括:

所述转向盘与转向轴模型为:

ts=kc(θsw-θs1)

式中,jc为转向盘的转动惯量;kc为转矩传感器扭杆刚度系数;bc为转向盘的阻尼系数;θsw为转向盘转角;θs1为输入太阳轮转角;td为驾驶员输入转矩;ts为转矩传感器输出转矩;fc为转向盘与转向轴的库仑摩擦力常数;

所述双行星齿轮系模型为:

式中,α为行星齿轮齿圈与太阳轮的齿数比;ωs1为输入太阳轮的角速度;ωs2为输出太阳轮的角速度;ωr2为下排行星齿轮齿圈的角速度;ts1为输入太阳轮的力矩;ts2为输出太阳轮的力矩;

所述转向电机模型为:

式中,tam为转向电机电磁转矩;jam为转向电机的转动惯量;bam为转向电机阻尼系数;tl为转向电机负载转矩;fam为转向电机转子处库仑摩擦力常数;θam为转向电机转角;gam为转向电机减速机构减速比;tr2为下排行星齿轮齿圈的力矩;

所述齿轮齿条模型为:

式中,mr为齿条质量;br为齿条阻尼系数;θs2为输出太阳轮转角;xr为齿条位移;rp为小齿轮半径;fr为齿条库仑摩擦力常数;tr为等效到转向柱上的轮胎回正力矩,dr为等效到转向柱上的路面随机干扰力矩;fp为转向柱上的库仑摩擦力常数;ta为助力电机负载转矩;

所述整车二自由度模型为:

式中,m为整车质量,v为车速,iz为汽车绕z轴的转动惯量,a为前轴到汽车质心的距离,b为后轴到汽车质心的距离,cf为前轮侧偏刚度系数,cr为后轮侧偏刚度系数,β为汽车质心侧偏角,r为横摆角速度,δf为前轮转角;

所述轮胎模型为魔术公式经验模型:

y(x)=dsin{carctan[bx-e(bx-arctan(bx))]}

式中,y(x)为侧偏力、回正力矩;x为轮胎侧偏角或滑移率;d为峰值因子;c为曲线形状因子;b为刚度因子;e为曲线曲率因子;

12)初始化各模型参数。

优选地,所述步骤2)具体包括:

21)以转向灵敏度,转向路感为目标函数,具体包括:

转向灵敏度具体量化公式:

式中,b0=cfcr(a+b)v,b1=cfamv2,a0=cfcr(a+b)2+(crb-cfa)mv2

a1=[cf(iz+a2m)+cr(iz+b2m)]v,a2=izmv2

转向路感具体量化公式:

式中,tr为轮胎回正力矩,ts为转矩传感器输出力矩,d为轮胎拖距,α为行星齿轮齿圈与太阳轮的齿数比,αf为前轮侧偏角,g为齿轮齿条转向器传动比,gam为转向电机减速机构减速比,tl为转向电机负载转矩;

系统的目标函数为:

f(x)=f(x1)-f(x2)

式中,f(x1)为转向灵敏度,f(x2)为转向路感;

22)分析主动前轮转向系统主要结构参数与控制参数对转向灵敏度、转向路感的影响;

23)根据步骤22)的分析结果,选择影响较大的结构参数和控制参数,将两者同时作为设计变量以构成信息物理系统,所选参数具体包括:转矩传感器刚度系数kc,行星齿轮齿圈和太阳轮齿数比α,控制参数kp和ki;

24)以侧向加速度为约束条件,建立优化模型。

优选地,所述步骤3)具体包括:

31)将计算所得的目标函数值输出;

32)建立步骤23)中所选择的设计变量,以计算所得的目标函数值为输入。

优选地,所述步骤4)具体包括:

41)设置设计变量取值范围;

42)设置约束条件取值范围,具体包括:

43)采用改进多目标遗传算法nsga-ii对主动前轮转向系统进行协同优化。

优选地,所述步骤43)中的改进多目标遗传算法nsga-ii,具体步骤如下:

431)随机生成规模为n的初始父代种群pt(kc,α,kp,ki),设置代数gen=1,根据设计变量初始值对种群进行初始化;

432)对父代种群pt进行非支配排序和拥挤度计算,得到非支配层级低的非支配集z以及非支配层级高的非支配集z’;

433)分别将非支配集z和非支配集z’进行选择交叉变异,并将子代合并产生子代种群qt;

434)将种群pt和种群qt合并,进行非支配排序和拥挤度计算,产生下一代种群pt+1;

435)判断gen是否等于设置的最大代数,若等于,则算法结束退出优化,生成pareto最优解集;否则gen=gen+1,执行步骤2。

本发明的有益效果:

本发明考虑了主动前轮转向系统物理结构与控制器之间的耦合关系,将结构参数与控制参数同时作为设计变量,采用改进的多目标遗传算法nsga-ii对转向系统进行协同优化,使系统整体性能达到最优。

本发明对多目标遗传算法nsga-ii进行改进,父代种群通过进行非支配排序和拥挤度计算,得到较优的子代种群,提高了算法的收敛速度。

附图说明

图1为主动前轮转向系统结构图;

图2为本发明基于信息物理系统的主动前轮转向参数优化方法流程图;

图3为改进的多目标遗传算法nsga-ii流程图。

具体实施方式

为了便于本领域技术人员的理解,下面结合实施例与附图对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。

参照图1所示,本发明的一种基于信息物理系统的主动前轮转向参数优化方法,其中,主动前轮转向系统包括:转向盘与转向轴、双行星齿轮系、转向电机、助力电机及齿轮齿条机构。转向盘通过转向轴和双行星齿轮系与齿轮齿条机构连接;转向电机通过双行星齿轮系下排行星齿轮齿圈给系统提供附加转角;助力电机通过在转向轴上施加力矩实现转向助力功能。

上述各部件的数学模型分别为:

转向盘与转向轴模型为:

ts=kc(θsw,-θs1)

式中,jc为转向盘的转动惯量;kc为转矩传感器扭杆刚度系数;bc为转向盘的阻尼系数;θsw为转向盘转角;θs1为输入太阳轮转角;td为驾驶员输入转矩;ts为转矩传感器输出转矩;fc为转向盘与转向轴的库仑摩擦力常数;

双行星齿轮系模型为:

式中,α为行星齿轮齿圈与太阳轮的齿数比;ωs1为输入太阳轮的角速度;ωs2为输出太阳轮的角速度;ωr2为下排行星齿轮齿圈的角速度;ts1为输入太阳轮的力矩;ts2为输出太阳轮的力矩;

转向电机模型为:

式中,tam为转向电机电磁转矩;jam为转向电机的转动惯量;bam为转向电机阻尼系数;tl为转向电机负载转矩;fam为转向电机转子处库仑摩擦力常数;θam为转向电机转角;gam为转向电机减速机构减速比;tr2为下排行星齿轮齿圈的力矩;

所述齿轮齿条模型为:

式中,mr为齿条质量;br为齿条阻尼系数;θs2为输出太阳轮转角;xr为齿条位移;rp为小齿轮半径;fr为齿条库仑摩擦力常数;tr为等效到转向柱上的轮胎回正力矩,dr为等效到转向柱上的路面随机干扰力矩;fp为转向柱上的库仑摩擦力常数;ta为助力电机负载转矩。

本发明的方法具体包括步骤如下:

步骤1:在matlab/simulink中建立主动前轮转向系统模型、整车二自由度模型和轮胎模型;

所述整车二自由度模型为:

式中,m为整车质量,v为车速,iz为汽车绕z轴的转动惯量,a为前轴到汽车质心的距离,b为后轴到汽车质心的距离,cf为前轮侧偏刚度系数,cr为后轮侧偏刚度系数,β为汽车质心侧偏角,r为横摆角速度,δf为前轮转角;

所述轮胎模型为魔术公式经验模型:

y(x)=dsin{carctan[bx-e(bx-arctan(bx))]}

式中,y(x)为侧偏力、回正力矩;x为轮胎侧偏角或滑移率;d为峰值因子;c为曲线形状因子;b为刚度因子;e为曲线曲率因子;

初始化模型参数,将仿真结果导入matlab工作空间。

步骤2:分析主动前轮转向系统主要结构参数与控制参数对转向灵敏度、转向路感的影响;

根据上述分析结果,选择影响较大的结构参数和控制参数,将两者同时作为设计变量以构成信息物理系统,所选参数具体包括:转矩传感器刚度系数kc,行星齿轮齿圈和太阳轮齿数比α,控制参数kp和ki;

步骤3:将matlab计算所得的目标函数值输出到isight软件中;

在isight软件中建立步骤23)中所选择的设计变量输出到matlab中,以matlab计算所得的目标函数值为输入。

步骤4:设置设计变量取值范围;

设置约束条件取值范围,具体包括:

采用改进多目标遗传算法nsga-ii对主动前轮转向系统进行协同优化。

其中所述步骤4中的改进多目标遗传算法nsga-ii,具体步骤如下:

41、随机生成规模为n的初始父代种群pt(kc,α,kp,ki),设置代数gen=1,根据设计变量初始值对种群进行初始化;

42、对父代种群pt进行非支配排序和拥挤度计算,得到非支配层级低的非支配集z以及非支配层级高的非支配集z’;

43、分别将非支配集z和非支配集z’进行选择交叉变异,并将子代合并产生子代种群qt;

44、将种群pt和种群qt合并,进行非支配排序和拥挤度计算,产生下一代种群pt+1;

45、判断gen是否等于设置的最大代数,若等于,则算法结束退出优化,生成pareto最优解集;否则gen=gen+1,执行步骤2。

本发明具体应用途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1