一种固定翼无人机降落控制方法

文档序号:10562655阅读:1762来源:国知局
一种固定翼无人机降落控制方法
【专利摘要】本发明公开了一种固定翼无人机降落控制方法,包括:在下滑过程中,控制无人机上的螺旋桨反转产生反推力,并通过调整舵面参数控制无人机以第一下滑角度减速下降;在无人机滑行速度达到第一速度,且通过机载定位装置测得无人机距离地面为第一高度时,控制舵面使无人机进行180度翻转,调整机体的重心位置;控制无人机以第二下滑角度减速下降;在无人机滑行速度达到第二速度,且通过机载定位装置测得无人机距离地面为第二高度时,以第三下滑角度将无人机拉平,并控制螺旋桨停止工作;控制无人机经过平飘、接地和着陆滑行过程后降落至地面。实现无人机的快速降落,降低无人机着陆控制的复杂度,并进一步保护无人机的搭载设备。
【专利说明】
一种固定翼无人机降落控制方法
技术领域
[0001] 本发明涉及航空飞行器设计技术领域,尤其涉及一种固定翼无人机降落控制方 法。
【背景技术】
[0002] 无人机一般分为固定翼与旋转翼两种类型,常规的固定翼无人机虽然具有速度 快、航程远的优点,但是起飞着陆有场地要求,同时无法进行空中定点悬浮;而旋翼无人机 可垂直起降,对起飞场地没有要求,并可在空中悬停来执行任务。
[0003] 其中,现有的小型无尾式固定翼无人机着陆过程一般分为五个阶段:下滑,拉平, 平飘,接地和着陆滑行。目前,现有技术主要通过推低油门等手段逐渐减速并降低高度,降 落曲线皆接近一条斜线,其缺点是降落过程较长;降落阶段无人机难以平稳降落;易对安装 于机身底部的设备如云台,相机等造成碰撞伤害。
[0004] 由于现有的小型无尾式电动固定翼无人机巡航速度一般为20m/s左右,降落过程 中即使降低油门,其要使无人机减速至〇m/s所需的时间较长,且无人机难以平稳降落;而螺 旋桨反转的推力效能也无正转的推力大,仅依靠螺旋桨反转将使得无人机推力不足;即使 再配合襟翼控制减速、增加阻力、调整下降的角度,但需要控制无人机在一个比较缓慢的速 度下,一边向前飞行,一边下降,还要避免失速,期间还要伴随风向风速进行调整,因此无人 机着陆控制过程非常复杂,现有的这些无人机着陆控制手段还需优化。

【发明内容】

[0005] 本发明所要解决的技术问题是,提供一种固定翼无人机降落控制方法,实现无人 机的快速降落,降低无人机着陆控制的复杂度,并进一步保护无人机的搭载设备。
[0006] 为解决以上技术问题,本发明实施例提供一种固定翼无人机降落控制方法,包括:
[0007] 在下滑过程中,控制无人机上的螺旋桨反转产生反推力,并通过调整舵面参数控 制所述无人机以第一下滑角度减速下降;
[0008] 在所述无人机滑行速度达到第一速度,且通过机载定位装置测得所述无人机距离 地面为第一高度时,控制舵面使所述无人机进行180度翻转,调整机体的重心位置;
[0009] 控制所述无人机以第二下滑角度减速下降;所述第二下滑角度大于所述第一下滑 角度;
[0010]在所述无人机滑行速度达到第二速度,且通过机载定位装置测得所述无人机距离 地面为第二高度时,以第三下滑角度将所述无人机拉平,并控制所述螺旋桨停止工作;所述 第二速度小于所述第一速度;所述第二高度小于第一高度,所述第三下滑角度小于所述第 一下滑角度;
[0011] 控制所述无人机经过平飘、接地和着陆滑行过程后降落至地面。
[0012] 在一种可实现的方式中,所述控制舵面使所述无人机进行180度翻转,调整机体的 重心位置,包括:输入无人机的预设滚转角,将所述预设滚转角输入至PID系统中产生第一 输出控制信号;检测所述第一输出控制信号是否为有效信号;并在所述第一输出控制信号 为有效信号时,将所述第一输出控制信号输入到舵机,由舵机控制舵面的转动,从而改变无 人机的航向和控制无人机的滚转。
[0013] 优选地,当所述第一输出控制信号不超出滚转角的速率限幅和舵面限幅时,所述 第一输出控制信号为有效信号;反之,所述第一输出控制信号为无效信号。
[0014] 进一步地,所述控制舵面使所述无人机进行180度翻转,调整机体的重心位置,还 包括:通过陀螺仪实时监测所述无人机的实际滚转角度和实际滚转角速度信号,对所述预 设滚转角进行调节,以减小所述无人机的滚转误差。
[0015] 再进一步地,所述控制舵面使所述无人机进行180度翻转,调整机体的重心位置, 还包括:通过将所述无人机进行180度翻转,将机体的重心位置从机体的下部位置调整为机 体的上部位置,并将无人机的上单翼气动布局相应调整为下单翼气动布局。
[0016] 优选地,所述的固定翼无人机降落控制方法,还包括:
[0017] 根据所述无人机的各个下滑角度,实时调整无人机的俯仰角,并将所述俯仰角输 入至PID系统中产生第二输出控制信号;检测所述第二输出控制信号是否为有效信号;将所 述第二输出控制信号输入到舵机,通过所述舵机控制舵面的转动,改变无人机的升力大小, 以形成无人机抬头或低头的姿态。
[0018] 其中,所述第二输出控制信号不超出俯仰角的速率限幅和舵面限幅时,所述第二 输出控制信号为有效信号;反之,所述第二输出控制信号为无效信号。
[0019] 进一步地,根据所述无人机的各个下滑角度,实时调整无人机的俯仰角,还包括: 通过陀螺仪实时监测所述无人机的实际俯仰角度和实际俯仰角速度信号,对各个下滑角度 进行调节,以减小所述无人机抬头或低头的摆动误差。
[0020] 本发明实施例提供的固定翼无人机降落控制方法,在无人机下滑降落过程中,通 过螺旋桨反转产生反推力,控制舵面使无人机以一定的斜率或下滑角度减速下降,在无人 机下滑至距离地面一定高度时,控制舵面使无人机翻转180度,将无人机的上单翼气动布局 改变为下单翼布局;因上单翼布局的无人机,重心在机体下方,机体较为稳定;而下单翼布 局的无人机,重心在机体上方,机体灵活,机动性强;因气动布局的改变,气流流经机体上下 表面的流速与动压分布改变(机身上表面的流速较下表面的流速快,机身上表面的压强较 下表面的压强小)等相应改变,由动压差产生的升力与阻力也随之改变。以上整个过程的综 合作用是增加了无人机的扰流阻力和减小了升力;因无人机受的阻力变大,从而速度下降 更快,减少了降落滑行距离,并能起到进一步保护搭载设备的作用。
【附图说明】
[0021] 图1是本发明提供的一种固定翼无人机降落控制方法的一个实施例的过程示意 图。
[0022] 图2是本发明提供的无人机地面坐标系与各个角度的关系示意图。
[0023] 图3是本发明提供的调整无人机滚转角或俯仰角的一种实现方式的过程示意图。
【具体实施方式】
[0024]下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完 整地描述。
[0025] 参见图1,是本发明提供的一种固定翼无人机降落控制方法的一个实施例的过程 示意图。
[0026] 具体实施时,本实施例提供的固定翼无人机降落控制方法,具体包括以下过程:
[0027] 步骤SI:在下滑过程中,控制无人机上的螺旋桨反转产生反推力,并通过调整舵面 参数控制所述无人机以第一下滑角度91减速下降;
[0028] 步骤S2 :在所述无人机滑行速度达到第一速度^,且通过机载定位装置测得所述 无人机距离地面为第一高度出时,控制舵面使所述无人机进行180度翻转,调整机体的重心 位置;
[0029] 步骤S3:控制所述无人机以第二下滑角度θ2减速下降;所述第二下滑角度θ2大于所 述第一下滑角度θ 1;
[0030] 步骤S4:在所述无人机滑行速度达到第二速度^,且通过机载定位装置测得所述 无人机距离地面为第二高度出时,以第三下滑角度θ 3将所述无人机拉平,并控制所述螺旋桨 停止工作;所述第二速度V2小于所述第一速度V 1;所述第二高度H2小于第一高度H1,所述第 三下滑角度θ3小于所述第一下滑角度Q 1;
[0031] 步骤S5:控制所述无人机经过平飘、接地和着陆滑行过程后降落至地面。
[0032] 参看图2,是本发明提供的无人机地面坐标系与各个角度的关系示意图。在图2中, 0为俯仰角,Φ为偏航角,Φ为滚转角。
[0033] 具体地,在无人机下滑过程中,螺旋桨反转产生反推力,可以通过舵机控制舵面使 无人机以斜率或下滑角度S1(优选10°~15°)减速下降;在下滑一段距离后至无人机下降到 距离地面Hi = 75米(可通过机载GPS实时测定)时,控制空速下降至Vi = 10~15米/秒,开始控 制舵面(滚转角Φ)使无人机进行180°翻转,在此过程中螺旋桨继续反转,无人机继续保持 比较大的下滑角度θ 2(优选15°~20°);完成此过程时,无人机空速可下降Sv2= 10米/秒,距 地高度H2约为10~15米;此后以较小的下滑角度θ3(优选5°~10°)进行无人机拉平,螺旋桨 可停止工作;然后控制无人机平飘,接地与滑行,最终降落至地面。
[0034] 舵机是一种位置(角度)伺服的驱动器,适用于需要角度不断变化并可以保持的控 制系统;在本实施例中,由于舵机是控制舵面转动的驱动装置,舵面的限幅可以通过调整舵 机内部参数(例如调整舵机脉冲的高电平时间为1.0ms可使舵机转动45°),并配合合理的安 装进行实现。
[0035] 参看图3,是本发明提供的调整无人机滚转角或俯仰角的一种实现方式的过程示 意图。
[0036] 其中,在本实施例的步骤S2中,所述控制舵面使所述无人机进行180度翻转,调整 机体的重心位置,具体包括:
[0037]步骤S21 :输入无人机的预设滚转角Φ 〇,将所述预设滚转角Φ 〇输入至PID (Proportional Integral Derivative,比例-积分-微分控制器)系统中产生第一输出控制 信号ul;
[0038]步骤S22:检测所述第一输出控制信号U1是否为有效信号;具体地,当所述第一输 出控制信号ul不超出滚转角Φ的速率限幅和舵面限幅时,所述第一输出控制信号m为有效 信号;反之,所述第一输出控制信号m为无效信号。
[0039] 步骤S23:并在所述第一输出控制信号m为有效信号时,将所述第一输出控制信号 m输入到舵机,由舵机控制舵面的转动,从而改变无人机的航向和控制无人机的滚转。
[0040] 具体实施时,本实施例还包括对滚转角以及滚转角速度的反馈调制的过程,所述 控制舵面使所述无人机进行180度翻转,调整机体的重心位置,还包括:
[0041] 步骤S24:通过陀螺仪实时监测所述无人机的实际滚转角度和实际滚转角速度信 号,对所述预设滚转角进行调节,以减小所述无人机的滚转误差。
[0042] 优选地,所述控制舵面使所述无人机进行180度翻转,调整机体的重心位置,具体 为:通过将所述无人机进行180度翻转,将机体的重心位置从机体的下部位置调整为机体的 上部位置,并将无人机的上单翼气动布局相应调整为下单翼气动布局。
[0043] 在降落过程中,由于气动布局的改变,气流流经机体上下表面的流速与动压等相 应发生变化;因上下表面的动压分布改变(机身上表面的流速较下表面快,上表面的压强较 下表面的压强小),由动压差产生的升力与阻力也随之改变,这个过程综合作用是为无人机 增加了扰流阻力,减小了升力;因无人机受的阻力变大,从而速度下降更快。此外,因上单翼 气动布局的无人机的重心位于机体的下部位置,机体较稳定;当无人机调整为下单翼气动 布局,重心在机体的上部位置,机体更加灵活,机动性强。
[0044] 与图3中调整无人机滚转角的方式类似,本发明实施例还可以进一步调整无人机 的俯仰角,以实现对无人机的转弯,航向以及滚转等控制。
[0045] 具体地,所述的固定翼无人机降落控制方法,还包括:
[0046] 在所述步骤S21中,进一步地,根据所述无人机的各个下滑角度(0^02,03),实时调 整无人机的俯仰角,并将所述俯仰角输入至PID系统中产生第二输出控制信号u2;
[0047] 在所述步骤S22中,进一步地,检测所述第二输出控制信号u2是否为有效信号;具 体地,所述第二输出控制信号u2不超出俯仰角的速率限幅和舵面限幅时,所述第二输出控 制信号u2为有效信号;反之,所述第二输出控制信号u2为无效信号。
[0048] 在所述步骤S23中,进一步地,将所述第二输出控制信号u2输入到舵机,通过所述 舵机控制舵面的转动,改变无人机的升力大小,以形成无人机抬头或低头的姿态。
[0049] 此外,本实施例还包括对俯仰角和俯仰角速度的反馈调制的过程。具体地,根据所 述无人机的各个下滑角度,实时调整无人机的俯仰角,还包括:
[0050] 在所述步骤S24中,进一步地,通过陀螺仪实时监测所述无人机的实际俯仰角度和 实际俯仰角速度信号,对各个下滑角度进行调节,以减小所述无人机抬头或低头的摆动误 差。
[0051] 将测出的滚转角或俯仰角信号反馈到进行PID运算之前,对比当前的实际滚转角/ 俯仰角与期望的滚转角/俯仰角,进行运算得出需要变化或调节的滚转角/俯仰角度值,再 进行PID运算,减少误差。同样地,实际的滚转角速度/俯仰角速度也需反馈到舵机伺服器, 与滚转角速率限幅/俯仰角速率限幅一起进行运算得出舵面的转动速率,再输入到舵机中 对无人机进行控制。
[0052]滚转角控制原理与俯仰角控制原理基本相同,两者主要区别在于:与滚转角相对 应的姿态参数为无人机的转弯,航向,及对无人机进行滚转控制;而与俯仰角相对应的姿态 参数为无人机的升力,抬头/低头的趋势。
[0053]在PID运算过程中,由无人机的动力学方程(总外力矩=总惯性力矩,姿态的变化 率,角速度分量与无人机的旋转运动的动力学方程联系在一起)及运动学方程,可以通过以 下多个微分方程计算出用于控制无人机姿态的相应参数,即PID参数,包括以下微分运算: [0054] 1)在计算无人机在地面坐标系中的线速度时,可以通过对无人机的各个方向的位 移P进行对时间的微分运算获得:
[0056] 其中,上式(1)中的下标参数g表示地面坐标系;Vxg,Vyg,Vzg为地面坐标系三个方向 的线速度,P xg,Pyg,Pzg为无人机在地面坐标系三个方向上的位移。
[0057] 2)通过对无人机的本体坐标系b各个方向的线速度进行微分运算,可以获得以下 关系式:
[0059]其中,上式(2)中的下标参数b表示无人机的本体坐标系;Vxb,Vyb,V zb为无人机本体 坐标系三个方向的线速度,《xb,Wyb,COzb为无人机在本体坐标系三个方向上的角速度;Fxb, Fyb,Fzb为无人机本体坐标系三个方向的力,m为无人机的质量。
[0060] 3)对无人机的在本体坐标系各个方向的角度进行微分运算:
[0062] 其中,上式(3)中的下标参数b表示无人机的本体坐标系;coxb,coyb,cozb为无人机 在本体坐标系三个方向上的角速度;Θ为无人机的俯仰角,φ为无人机的偏航角,φ为无人机 的滚转角。可以通过式子(3)计算出无人机相应的俯仰角或滚转角等角度/方向参数。
[0063] 4)计算出无人机的在本体坐标系各个方向的角速度:
[0064]
[0065] 其中,上式(4)中的下标参数b表示无人机的本体坐标系;coxb,coyb,cozb为无人机 在本体坐标系三个方向上的角速度;I为转动惯量,M为力矩;Ρε为无人机的电机功率。
[0066] 在本实施例中,由期望的爬升斜率、滚转方向及速度,根据以上四组运动(微分)方 程,可计算出所对应的俯仰角度、滚转角度。
[0067] 在无人机的控制系统中,把预设的或期望的滚转角/俯仰角度输入PID系统,根据 以上四组微分方程其可转化成对应的输出控制信号,再考虑滚转角/俯仰角的变化速率的 限制(由舵机性能决定)和舵面的转动幅度限制(输出控制信号不能超出俯仰角的速率限幅 和舵面限幅),就可以把输出控制信号u输入到舵机,由舵机控制舵面的转动从而使无人机 升力、航向等参数改变,实现无人机的180度翻转。具体实施时,进一步通过陀螺仪测出实际 的俯仰角及其对应的俯仰角速度,以及,实际的滚转角及其对应的滚转角速度,将实际监测 获得的角度以及角速度反馈至PID中进行调节,以减小误差。
[0068] 本发明实施例提供的固定翼无人机降落控制方法,在无人机下滑降落过程中,通 过螺旋桨反转产生反推力,控制舵面使无人机以一定的斜率或下滑角度减速下降,在无人 机下滑至距离地面一定高度时,控制舵面使无人机翻转180度,将无人机的上单翼气动布局 改变为下单翼布局;因上单翼布局的无人机,重心在机体下方,机体较为稳定;而下单翼布 局的无人机,重心在机体上方,机体灵活,机动性强;因气动布局的改变,气流流经机体上下 表面的流速与动压分布改变等相应改变,由动压差产生的升力与阻力也随之改变。以上整 个过程的综合作用是增加了无人机的扰流阻力和减小了升力;因无人机受的阻力变大,从 而速度下降更快,减少了降落滑行距离,并能起到进一步保护搭载设备的作用。
[0069] 以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员 来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为 本发明的保护范围。
【主权项】
1. 一种固定翼无人机降落控制方法,其特征在于,包括: 在下滑过程中,控制无人机上的螺旋桨反转产生反推力,并通过调整舵面参数控制所 述无人机以第一下滑角度减速下降; 在所述无人机滑行速度达到第一速度,且通过机载定位装置测得所述无人机距离地面 为第一高度时,控制舵面使所述无人机进行180度翻转,调整机体的重心位置; 控制所述无人机以第二下滑角度减速下降;所述第二下滑角度大于所述第一下滑角 度; 在所述无人机滑行速度达到第二速度,且通过机载定位装置测得所述无人机距离地面 为第二高度时,以第三下滑角度将所述无人机拉平,并控制所述螺旋桨停止工作;所述第二 速度小于所述第一速度;所述第二高度小于第一高度,所述第三下滑角度小于所述第一下 滑角度; 控制所述无人机经过平飘、接地和着陆滑行过程后降落至地面。2. 如权利要求1所述的固定翼无人机降落控制方法,其特征在于,所述控制舵面使所述 无人机进行180度翻转,调整机体的重心位置,包括: 输入无人机的预设滚转角,将所述预设滚转角输入至PID系统中产生第一输出控制信 号; 检测所述第一输出控制信号是否为有效信号; 并在所述第一输出控制信号为有效信号时,将所述第一输出控制信号输入到舵机,由 舵机控制舵面的转动,从而改变无人机的航向和控制无人机的滚转。3. 如权利要求2所述的固定翼无人机降落控制方法,其特征在于,当所述第一输出控制 信号不超出滚转角的速率限幅和舵面限幅时,所述第一输出控制信号为有效信号;反之,所 述第一输出控制信号为无效信号。4. 如权利要求2所述的固定翼无人机降落控制方法,其特征在于,所述控制舵面使所述 无人机进行180度翻转,调整机体的重心位置,还包括: 通过陀螺仪实时监测所述无人机的实际滚转角度和实际滚转角速度信号,对所述预设 滚转角进行调节,以减小所述无人机的滚转误差。5. 如权利要求2所述的固定翼无人机降落控制方法,其特征在于,所述控制舵面使所述 无人机进行180度翻转,调整机体的重心位置,还包括: 通过将所述无人机进行180度翻转,将机体的重心位置从机体的下部位置调整为机体 的上部位置,并将无人机的上单翼气动布局相应调整为下单翼气动布局。6. 如权利要求1所述的固定翼无人机降落控制方法,其特征在于,还包括: 根据所述无人机的各个下滑角度,实时调整无人机的俯仰角,并将所述俯仰角输入至 PID系统中产生第二输出控制信号; 检测所述第二输出控制信号是否为有效信号; 将所述第二输出控制信号输入到舵机,通过所述舵机控制舵面的转动,改变无人机的 升力大小,以形成无人机抬头或低头的姿态。7. 如权利要求6所述的固定翼无人机降落控制方法,其特征在于,所述第二输出控制信 号不超出俯仰角的速率限幅和舵面限幅时,所述第二输出控制信号为有效信号;反之,所述 第二输出控制信号为无效信号。8.如权利要求6所述的固定翼无人机降落控制方法,其特征在于,根据所述无人机的各 个下滑角度,实时调整无人机的俯仰角,还包括: 通过陀螺仪实时监测所述无人机的实际俯仰角度和实际俯仰角速度信号,对各个下滑 角度进行调节,以减小所述无人机抬头或低头的摆动误差。
【文档编号】G05D1/10GK105923147SQ201610399702
【公开日】2016年9月7日
【申请日】2016年6月7日
【发明人】李宛隆, 柯宗泽, 吴宽, 赵丽丽, 黄泽栋, 陈业宏, 林晓鑫, 曾祥辉, 翁文辉, 欧阳可诚, 江俊奇
【申请人】广东泰高新技术发展有限公司, 广东泰一高新技术发展有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1