伸长性能改进的可伸长层合物及其制造方法

文档序号:4417606阅读:224来源:国知局
专利名称:伸长性能改进的可伸长层合物及其制造方法
技术领域
本发明涉及伸长性能改进的可伸长层合物及其制造方法。改进的伸长性能是通过沿横向机械地拉伸可伸长非织造纤网和弹性薄膜的层合物达到的。
背景技术
弹性和非弹性材料的复合材料是通过将弹性材料粘合到非弹性材料上,同时允许整个复合材料拉伸或伸长的条件下制成的。通常,此类复合材料被用于服装材料、衬垫、尿布、成人失禁产品、女性卫生产品等。一种此类复合材料或层合物包括可伸长非织造材料粘合在弹性体片材上。
然而,此类层合物使得被包括在弹性体片材中的弹性树脂得不到充分利用。一般而言,滞后与弹性呈相反的关系。换句话说,如果一种材料具有较高滞值后,其弹性就比较小,而如果该材料具有较低滞后值,它将具有较大弹性。由此种层合物选用的典型树脂和化合物制成的薄膜的滞后值介于约25%~约50%,采用100%循环试验测定。相比之下,同样由这些薄膜制成的层合物的滞后值通常介于约50%~约75%,采用100%循环试验测定。这可能是由于可伸长非织造材料与弹性体片材之间的相互作用所致,而这又依赖于层合物的各层之间的连结程度。
一般而言,可伸长非织造材料与弹性体片材之间,就粘合数目和/或粘合强度而论,连结得越牢固,层合物的弹性性能越差。在理想情况下,可伸长非织造材料与弹性体片材之间的连结应足以将层合物的各层维系在一起而又不对层合物的弹性性能造成过度的影响。
当可伸长非织造纤网被层合到弹性体片材上时,在两个片材之间通常形成至少两种类型粘合主要粘合和次要粘合。主要粘合是有意识造成的,比较结实并起到维持层合物的内聚力的作用,以便当层合物被拉伸或伸长时各层不致彼此分离。另一方面,次要粘合比较弱并且在第一次伸长/松弛循环期间会在很大程度上遭到破坏。由于这些次要粘合的形成,层合物的弹性变小,较难拉伸,特别是初次拉伸该层合物时。一般而言,据信,层合物的初次拉伸导致可伸长非织造材料的次要粘合中的丝被拉断和/或与弹性体片材脱离。这些粘合的拉断和/或脱离所要求的能量,一般而言,是不可回收的。不可回收能量导致能耗或滞后的增加。
另外,未拉伸的弹性体片材通常在第一次伸长/回缩周期期间具有较差的伸长性能,因为构成片材的分子相对地不均一或在片材内无规地取向。使分子取向所要求的能量,像使次要粘合脱离所要求的能量,通常是不可回收的并且也会导致滞后的增加。
在大多数情况下,这些层合物不经预先拉伸地被包括到消费产品中。于是,当消费者使用包括此种层合物的产品时,他们必须施加较大的力使层合物扩展或伸长,才能达到恰当的适配和舒适。又由于层合物此前未曾经过拉伸,它们可能拉伸得不均一,尤其当施加的力不均匀时。这导致穿戴者穿起来不舒服,产品的贴身性不良,而且在使用期间层合物受到不良的后拉伸。
鉴于上述种种情况,目前需要或期盼一种可伸长层合物,它能充分利用弹性薄膜组分的伸长性能。还需要或期盼一种可伸长层合物,消费者可以轻易地和均匀地拉伸它以便给包括可伸长层合物的消费产品提供较好的适配和较舒适的穿着效果。
本发明的特征和优点是提供一种可伸长层合物,它可用于消费产品以提供较好适配和舒适。本发明的特征和优点还在于提供一种制造具有改良伸长性能的可伸长层合物的方法。
发明概述本发明涉及一种具有改良伸长性能如较小永久变形和滞后的可伸长层合物。还公开制造该可伸长层合物的方法。
在一种实施方案中,可伸长层合物包括层合在弹性体片材上的可伸长非织造纤网,其中在层合以后,可伸长非织造纤网和弹性体片材沿横向机械地拉伸至少约50%。可伸长层合物的滞后值,在第一100%伸长/回缩循环期间测定,比可比未拉伸可伸长层合物低至少约15%。在另一个方面,可伸长层合物的永久变形,在第一100%伸长/回缩循环期间测定,低于可比未拉伸可伸长层合物。在另一个方面,可伸长层合物的伸长/回缩比低于可比未拉伸可伸长层合物。
一种制造可伸长层合物的方法包括将可伸长非织造纤网层合到弹性体片材上形成一种层合物,并沿横向机械地拉伸该层合物至少约50%。获得的可伸长层合物的滞后值、永久变形和伸长/回缩比低于未沿横向机械拉伸的可比层合物。
附图简述本发明这些以及其它目的和特性将从下面配合附图的详细描述中得到更好的理解。


图1是可伸长层合物的平面视图。
图2a和2b是层合物的截面视图。
图3是采用沟槽辊沿横向机械地牵伸层合物来制造可伸长层合物的方法的示意图。
图3a和3b是图3所示方法中采用的沟槽辊的放大视图。
图4是采用拉幅机沿横向机械地牵伸层合物来制造可伸长层合物的方法的示意图。
图4a是图4所示方法中采用的拉幅机的俯视图。
定义术语“可伸长”是指材料可沿至少一个方向拉伸至少50%(至其原来未拉伸长度的至少150%),适宜地至少100%(至其原来未拉伸长度的至少200%)而不破坏。例如,初始未拉伸长度3英寸(7.6cm)的可伸长材料可沿至少一个方向拉伸到至少4.5英寸(11.4cm)的拉伸长度而不破坏。该术语包括弹性材料和伸长但不显著回缩的材料,例如,颈缩的非织造材料和固有可伸长非织造材料像粘合梳理纤网。
术语“弹性体的”或“弹性的”是指材料可沿至少一个方向拉伸至少50%(至其原来未拉伸长度的150%)而不破坏,并且它,在拉伸、不均衡力解除以后将在约1min内回复其伸长的至少30%。
术语“双轴可伸长”是指材料可沿两个互相垂直的方向(例如,可沿纵向和横向,或者沿纵向、从前到后和侧向、从一侧到一侧)拉伸至少约50%。该术语包括双轴可伸长层合物,例如,在授予Morman的美国专利5,114,781和5,116,662中公开的那些,在此收作参考。
术语“非弹性的”既指不能拉伸50%或更高的材料也指虽能拉伸那么多但不能回缩30%以上的材料。非弹性材料也包括不伸长的材料,例如,当受到拉伸力时撕破的材料。
术语“纵向”对于非织造纤网、薄膜或层合物来说,是指它被生产出来的方向。术语“横向”对于非织造纤网、薄膜或层合物来说,是指垂直于纵向的方向。沿横向测定的尺寸被称作“宽度”尺寸,而沿纵向测定的尺寸被称作“长度”尺寸。
术语“循环试验”或“100%循环试验”是指一种测定可伸长层合物的弹性性能的方法。有关循环试验的进一步的细节公开在下面的题为“确定滞后、永久变形和伸长/回缩比的试验”一节。
术语“滞后”或“滞后值”是指采用下面公开的循环试验所确定的一种材料的弹性性能。滞后用伸长的材料一旦回缩后所回收的能量的百分率表示。
术语“永久变形”是指采用下面公开的循环试验确定的一种材料的弹性性能。永久变形用材料从最大伸长点回缩到刚一测定到回缩力等于或小于10g一点的回缩距离除以最大伸长长度的百分率来表示。
术语“伸长/回缩比”或“E/R比”是指采用下面公开的循环试验确定的一种材料的弹性性能。E/R比用伸长力除以回缩力的比值表示。
术语“聚合物”包括但不限于均聚物;共聚物,如嵌段、接枝、无规及交替共聚物、三元共聚物等;以及上述的共混物及改性物。而且,除非另行具体限定,术语“聚合物”应涵盖该材料所有可能的分子几何构型。这些构型包括但不限于,全同立构、间同立构及无规立构的对称构型。
这里所使用的术语“单部位催化的”是指利用金属茂催化的聚合反应和/或可限形状-催化的聚合反应生产的聚烯烃。此种催化剂报道于“金属茂催化剂开创了聚合物合成的新纪元”,Ann M.Thayer,《化学工程新闻》1995-09-11,p.15。
这里所使用的术语“片材”是指大致扁平的结构,可由非织造材料或纤网、机织结构、斯克林布(稀松无纺布)、薄膜或泡沫体构成。片材可包括弹性体材料。
术语“非织造布或纤网”是指其结构系由单根纤维或丝交叉铺置构成的纤网,但它们不是像针织物中那样按照规则或可辨认方式排列的。非织造布或纤网一向采用多种方法成形,如熔喷法、纺粘法、气流铺置法、共成形法以及粘合-梳理纤网法。非织造布的基重通常以每平方码材料的盎司数(osy)或每平方米的克数(gsm)表示;使用的纤维直径通常表示为微米数。(注要从osy数值换算为gsm值,可用33.91乘上osy的数值)。
术语“微纤维”是指平均纤维旦数为约0.005~50的纤维。纤维旦数被规定为每9000米纤维的克数。对于圆形断面的纤维来说,旦数可根据以微米表示的纤维直径取平方,乘上以克每立方厘米(g/cc)为单位的密度,再乘上0.00707计算出来。相同聚合物制成的纤维,旦数越低,表明纤维越细;旦数越高,表明纤维越粗或越重。例如,已知聚丙烯纤维直径为15μm,要换算为旦数,可取平方,乘上0.89g/cc,再乘上0.00707。于是,15μm的聚丙烯纤维的旦数为约1.42,计算过程是(152×0.89×0.00707=1.415)。在美国以外,较常用的度量单位是“特(tex)”,其定义是每千米纤维的克数。特数可按旦数/9来计算。
这里所使用的术语“纤维间粘合”是指通过单根非织造纤维之间的热粘合或缠结而产生粘合网络结构的粘合。纤维缠结是熔喷方法所固有的但可以通过诸如水刺或针刺产生和加强。在大多数纺粘纤维的成形方法中,采用一种或多种热粘合步骤。替代地和/或附加地,可用粘合剂来加强所要求的粘合并维持纤网的结构内聚性。例如,可采用粉末状粘合剂和化学溶剂粘合。
术语“纺粘纤维”是指一类小直径纤维,其成形方法包括将熔融热塑性材料从纺丝板的多个纤细的圆形或其他形状的纺丝孔中挤出为丝束,随后,挤出丝束的直径,借助例如以下文献中的方法迅速拉细授予Appel等人的美国专利4,340,563及授予Dorschner等人的美国专利3,692,618、授予Matsuki等人的美国专利3,802,817、授予Kinney的美国专利3,338,992及3,341,394、授予Hartmann的美国专利3,502,763、授予Petersen的美国专利3,502,538、授予Dobo等人的美国专利3,542,615,在此均全文收作参考。纺粘纤维经骤冷,当沉积到收集表面上时通常是不发粘的。纺粘纤维通常为连续状且平均旦数通常大于约0.3,更具体地,介于约0.6~10之间。
术语“熔喷纤维”是指按如下方法成形的纤维将熔融热塑性材料从多个纤细,通常为圆形的纺丝孔中以熔融丝束形式挤出到逐渐汇聚的高速加热气流(例如空气流)中,气流将熔融热塑性材料丝束拉细,直径变小,可能小到微纤维的直径范围。然后,熔融纤维被高速气流夹带着,最后沉积在收集表面上,形成由散乱分布的熔喷纤维组成的纤网。此类方法,例如公开在授予Butin等人的美国专利3,849,241中。熔喷纤维可以是微纤维,可以是连续的,通常小于约1.0旦,且当沉积到收集表面上时通常自粘合。熔喷粗纤维,超过60旦者,也可生产出来。
“粘合梳理纤网”是指一种由短纤维制成的纤网,在制造中,将短纤维送过精梳机或梳理机装置,该装置将短纤维分开并沿着加工方向排齐,从而形成大致沿加工方向取向的纤维组成的非织造纤网。此种纤维可成包地购进,并放在开松机/掺混机或清棉机上将纤维分开,然后再送入梳理装置。纤网一旦形成,随后用几种已知粘合方法当中的1种或多种将其粘合。此类粘合方法之一是粉末粘合,其中粉末状粘合剂被分布到整个纤网中,然后进行活化,一般利用热空气对纤网和粘合剂加热的办法实现。另一种适宜的粘合方法是花纹粘合,其中用加热的压花机辊或超声粘合设备将纤维粘合在一起,粘合一般仅限于局域粘合花纹内,虽然希望的话,纤网也可沿其整个表面进行粘合。另一种合适并熟知的粘合方法,特别是当采用双组分短纤维时,是穿透空气粘合。
这里所使用的术语“固有可伸长非织造材料”指的是无需另外的加工如颈缩或起绉,便可沿至少一个方向轻易地拉伸至少50%的非织造材料。
术语“颈缩”或“颈缩拉伸”彼此通用,指的是,织物、非织造纤网或层合物在通过沿长度方向拉伸或增加织物长度进行拉伸,致使宽度或其横向尺寸减少的条件下被拉长。该受控拉伸可在低温、室温或较高温度进行,并限制在沿被拉伸方向的总体尺寸的增加最多是将织物、非织造纤网或层合物拉断所需要的伸长范围,大多数情况下达到约1.2~1.6倍。当松弛时,织物、非织造纤网或层合物不完全返回到其原来尺寸。颈缩过程,就典型而言包括将片材从供布卷上退绕,并让其穿过以规定线速度驱动的制动夹辊组。卷取辊或辊隙,由于是以高于制动夹辊的线速度运转的,因而将片材拉伸并在片材中产生令其抻长并颈缩所需的张力。
术语“可颈缩材料”或“可颈缩层”是指任何材料或层,只要可颈缩,例如非织造布、机织或针织材料,或包含它们之一的层合物。本文所使用的术语“颈缩材料”是指任何已沿至少一个尺寸(例如,长度方向)拉伸过,从而导致横向尺寸(例如,宽度)减少,而当拉伸力解除后,材料可被拉回到其原来宽度的材料。颈缩材料一般具有比未颈缩材料高的单位面积基重。当颈缩材料被拉回到其原来宽度时,它应具有与未颈缩材料大致相等的基重。这不同于薄膜层的拉伸/取向,其间薄膜变薄并且基重减少。优选用于本发明的非织造纤网由非弹性聚合物制成。
这里所使用的术语“可逆颈缩材料”是指一种颈缩的材料,曾在其颈缩状态对其进行处理以赋予其记忆,当施加力将该材料伸长至其颈缩前的尺寸时,在该外力解除后该颈缩并处理过的部分通常将回复到其颈缩的尺寸。一种处理形式是加热。大致地说,可逆颈缩的材料的伸长基本上被限制在其颈缩前的尺寸。因此,除非材料是弹性的,超过其颈缩前尺寸过多的伸长将导致材料的破坏。可逆颈缩材料可包括一个以上的层,例如,多层纺粘纤网、多层熔喷纤网、多层粘合梳理纤网或它们的任何其它合适的组合或混合物,正如美国专利4,965,122,授予Morman,所描述的,在此收作参考。
这里所使用的术语“颈缩百分率”是指这样确定的比值测定可颈缩材料的颈缩前尺寸(宽度)和颈缩(后)尺寸(宽度)之间的差值,然后除以可颈缩材料颈缩前尺寸。
这里所使用的术语“弹性体片材”和“弹性体纤网”(译注以下纤网与片材通用)是指通过挤出、流延或其它技术上公知的方法成形的弹性体薄膜,弹性体非织造布,例如,熔喷弹性体纤网如公开在美国专利4,663,220,授予Wisneski等人,在此将其公开内容收作参考,弹性体泡沫塑料,弹性体斯克林纤网以及弹性体丝束纤网。
“薄膜”是指采用薄膜挤出方法,例如,流延薄膜或吹塑薄膜挤出方法制造的热塑性薄膜。该术语可包括通过将一种聚合物与填料混合,由该混合物成形薄膜并拉伸该薄膜而赋予了微孔性的薄膜。
术语“透气性”是指,采用水蒸气透过试验程序,具有至少约300g/m2.24h的水蒸气透过速率(“WVTR”)的水蒸气可透材料。水蒸气透过试验公开在授予McCormack等人的美国专利5,955,187中,在此将一致的部分收作参考。
术语“共挤出”或“共挤出的”是指这样的薄膜,它包括2或更多个热塑性材料层,它们是同时挤出而形成单一、一体的薄膜片材,不需要进一步粘附或层压方法将各个层粘合在一起。
这里所使用的术语“可伸长层合物”是指由弹性体片材在至少两个部位连结到可伸长材料上组成的材料(例如,单面可伸长层合物)。弹性体片材可以断断续续的点或者全面连结到可伸长材料上。连结是在弹性体片材与可伸长材料处于重叠构型的条件下完成的。可伸长层合物可包括2个以上的层。例如,弹性体片材可在其两面都贴上可伸长材料,从而制成具有可伸长材料/弹性体片材/可伸长材料(例如,双面可伸长层合物)结构的三层可伸长层合物。额外的弹性或弹性体片材、颈缩材料层和/或固有可伸长材料如粘合梳理纤网,也可加入。弹性体片材与可伸长材料的其它组合也可使用,例如,像在同一受让人的美国专利5,114,781和5,116,662,授予Morman,和5,336,545,授予Morman等人,中所指出的,在此收作参考。
术语“可比未拉伸可伸长层合物”是指,与本发明可伸长层合物相比,包括采用相同方法成形的一种或多种相同可伸长非织造材料和一个或多个相同弹性体片材,但未经沿横向进行至少大致同样程度机械拉伸的可伸长层合物。
术语“服装”包括裤样吸收性服装和医用和工业防护服。术语“裤样吸收性服装”包括但不限于尿布、训练裤、泳装、吸收性内裤、婴儿揩布、成人失禁产品和女性卫生产品。
术语“医用防护服”包括但不限于手术服、罩衫、围裙、面罩和布帘。术语“工业防护服”包括但不限于防护制服和工作服。
这里所使用的术语“拉幅机”是指被用来将材料拉伸至规定宽度的机器或设备。典型的机器包括一对在水平轨道上的环状链。材料的边缘被销子或夹子牢靠地保持在两条链子上,二链一边前进一边发散展宽从而将材料调节到要求的宽度。
这里使用的术语“包含”使权利要求成为开放的,从而包括除了已经举出的材料或工艺步骤之外的材料或工艺步骤。
这些术语在本说明的其余部分中将以额外的言词来规定。
优选实施方案描述本发明提供一种伸长性能改进的可伸长层合物。该改进的伸长性能是在不改变制造层合物通常使用的典型原料的情况下达到的。可伸长非织造纤网与弹性体片材的层合物沿横向机械拉伸至少约50%,适宜地至少约65%,理想地至少约75%,而在一种实施方案中至少约100%。获得的可伸长层合物的滞后值和永久变形低于未沿横向机械拉伸的可比层合物的滞后值和永久变形。获得的层合物的伸长/回缩比也低于可比未牵伸层合物。还提供一种制造该可伸长层合物的方法。
一般而言,该可伸长层合物的滞后值,在第一100%伸长/回缩循环期间测定,比可比未牵伸可伸长层合物低至少约15%,理想地低至少约20%,而在一种实施方案中低至少约25%。适宜地,可伸长层合物的永久变形,在第一100%伸长/回缩循环期间测定,比可比未牵伸可伸长层合物低至少约10%,更适宜地低至少约20%,而在一种实施方案中低至少约30%。另外,可伸长层合物的伸长/回缩比(E/R比)应比可比未牵伸可伸长层合物低至少约15%,理想地低至少约20%,而在一种实施方案中低至少约25%。此减少的滞后值、永久变形和E/R比应为相对地永久的。所谓“相对地永久”我们指的是,沿横向拉伸后7日测定的可伸长层合物应具有滞后值,在第一100%伸长/回缩循环期间测定,比可比未牵伸可伸长层合物低至少约15%,理想地低至少约20%;永久变形,在第一100%伸长/回缩循环期间测定,比可比未牵伸可伸长层合物低至少约10%,适宜地低至少约20%;以及E/R比,比可比未牵伸可伸长层合物低至少约15%,适宜地低至少约20%。另外,沿横向拉伸后30日测定的可伸长层合物应具有滞后值,在第一100%伸长/回缩循环期间测定,比可比未牵伸可伸长层合物低至少约15%,理想地低至少约20%;永久变形,在第一100%伸长/回缩循环期间测定,比可比未牵伸可伸长层合物低至少约10%,适宜地低至少约20%;以及E/R比,比可比未牵伸可伸长层合物低至少约15%,适宜地低至少约20%。该可伸长层合物适合用于各种各样消费产品,包括但不限于,吸收性服装、尿布、训练裤、泳装、成人失禁产品、女性卫生产品和医用或工业防护服。
如图1所示,可伸长层合物10包括可伸长非织造纤网12,层合到弹性体片材14上。可伸长层合物10沿横向16可伸长,这是由于可伸长非织造纤网12的影响使然。当横向伸长力解除后,由于弹性体片材14的影响,该层合物10将基本返回到其制造的构型。
任选地,可伸长层合物10可包括非织造材料和/或弹性体材料的附加层。例如,可伸长层合物可包括第一和第二可伸长非织造纤网,层合在弹性体片材的任何一面上。替代地,可伸长层合物10可包括第一和第二弹性体片材,彼此层合和/或层合在可伸长非织造纤网上。
一般而言,在层合加工期间,在可伸长非织造纤网12与弹性体片材14之间形成两种类型粘合。参见图2a和2b,层合物50包括将可伸长非织造纤网12附着到弹性体片材14上的主要粘合20和次要粘合22。
在一个方面,参见图2a,主要粘合20可涉及横跨可伸长非织造纤网12与弹性体片材14之间的界面平面24的粘合,其中两种材料的一个个部分变得彼此缠结和/或互相包裹,例如,像在点粘合层合技术期间所发生的那样。结果,主要粘合20在层合物50的伸长或延伸期间反抗破裂从而赋予层合物50内聚力。于是,可伸长非织造纤网12在伸长或延伸期间不容易与弹性体片材14分离。
在另一个方面,参见图2b,主要粘合20可涉及沿着界面24的粘合,其中粘合点的粘合力度或强度较大,正如像在热压光机层合技术期间发生的那样。结果,主要粘合20在层合物50的伸长或延伸期间抵抗破裂从而赋予层合物50内聚力。于是,可伸长非织造纤网12在伸长或延伸期间不容易与弹性体片材14分离。
可伸长层合物10的最佳弹性性能是在弹性体片材14与可伸长非织造纤网12彼此完全独立地伸长(例如,当弹性体片材14与可伸长非织造纤网12之间没有物理附着时)时达到的。然而,某种程度的物料附着显然是形成层合物所要求的。足够的附着乃故意形成(主要粘合)的,旨在保证层合物具有足够内聚力,但是常常也出现某些不需要的附着(次要粘合)。这些次要粘合,是可接受层合物的成形所不需要的,给层合物弹性性能带来负面影响。
通常在界面平面24上形成的次要粘合22一般不涉及可伸长非织造纤网12与弹性体片材14的显著缠结或包裹。另外,此种次要粘合的粘合强度或力度通常比较低。因此,次要粘合22通常比主要粘合20弱。然而,据信,次要粘合22有害于层合物50的弹性性能。次要粘合22虽然并不结实到足以赋予层合物明显内聚力的程度,却使层合物变得僵硬和缺乏弹性。一般而言,此种层合物的滞后值,在第一100%伸长/回缩循环期间测定,大于约45%,通常介于约50%和约75%之间。另外,此种层合物的永久变形,在第一100%伸长/回缩循环期间测定,通常等于或大于9%。结果当层合物50被用于消费产品中时,当层合物50沿横向首次拉伸时,必须使用较大的力来达到最大限度的伸长和恰当的适配。另外,较高的永久变形可导致产品的松垂和适配不良。
适宜地,可伸长非织造纤网12可以是固有可伸长非织造材料,例如,像在授予Pike等人的美国专利5,418,045中公开的卷曲双组分纺粘材料,在此将其收入本文作为参考,或者是取向的粘合梳理纤网。
其它合适的可伸缩非织造材料包括双轴可伸长非织造材料,例如,颈缩拉伸/起绉的纺粘材料。该纵向和横向可伸长非织造材料可通过沿纵向拉伸纤维的非织造纤网以造成沿横向的颈缩(和伸缩性)来提供。替代地,非织造材料可以是一种沿横向断续粘合的纤维的非常疏松的集合,以致材料能够沿横向拉伸。同样该获得了横向伸缩性的材料可沿纵向进行卷曲或起绉处理,以造成纵向伸缩性。
可伸长非织造材料12也可以是颈缩的非织造材料,例如,颈缩纺粘纤网、颈缩熔喷纤网或颈缩粘合梳理纤网。适宜地,颈缩非织造材料可具有约20%~约75%的颈缩百分率。理想地是,颈缩非织造纤网可具有约30%~约70%的颈缩百分率。
如果颈缩非织造材料是熔喷纤维的纤网,则它可包括熔喷微纤维。该颈缩非织造材料可由任何可通过张力产生颈缩和一旦施加使颈缩的材料伸长的力就伸长到其颈缩前尺寸,的材料制成。某些聚合物,例如,聚烯烃、聚酯和聚酰胺可在适宜条件下加热处理以赋予其此种记忆。范例聚烯烃包括聚乙烯、聚丙烯、聚丁烯、乙烯共聚物、丙烯共聚物和丁烯共聚物当中的一种或多种。据发现有用的聚丙烯包括,例如,由Himont公司(Wilmington,特拉华)以商品名PF-304销售的聚丙烯,由Exxon-Mobil化学公司(Baytown,德克萨斯)以注册商标ESCORENE PD-3445销售的聚丙烯,和由壳牌化学公司(Houston,德克萨斯)以商品名DX 5A09销售的聚丙烯。聚乙烯也可使用,包括由陶氏化学公司(Midland,密歇根)的ASPUN 6811A和2553线型低密度聚乙烯,以及各种各样高密度聚乙烯。这些材料的化学特性可从各自的制造商那里获得。
在本发明的一种实施方案中,可伸长非织造纤网12可以是多层材料,具有,例如至少一层纺粘纤网,重叠在至少一层熔喷纤网、粘合梳理纤网或其它适当材料上。例如,可伸长非织造纤网12可以是多层材料,具有基重介于约0.2~约8盎司每平方码(osy)(约6.8~约271.3g/m2(gsm))的第一层纺粘聚烯烃、一层基重介于约0.1~约4osy(约3.4~约113.4gsm)的熔喷聚烯烃,和基重介于约0.2~8osy(约6.8~约271.3gsm)的第二层纺粘聚烯烃。
替代地,可伸长非织造纤网12可以是单一材料层,例如,基重介于约0.2~约10osy(约6.8~约339.1gsm)的纺粘纤网,或者基重介于约0.2~约8osy(约6.8~约271.3gsm)的熔喷纤网。
可伸长非织造纤网12也可包括由2或更多种不同纤维的混合物或纤维与颗粒的混合物构成的复合材料。此种混合物可通过将纤维和/或颗粒加入到其中夹带着熔喷纤维的气流中来制造,熔喷纤维被气流夹带着从而发生熔喷纤维与其它材料(例如,木浆、短纤维或颗粒,例如,超吸收剂材料)之间的紧密缠结混合,随即该纤维被收集在收集装置上形成由散乱分散的熔喷纤维和其它材料组成的内聚性纤网,例如,在授予Anderson等人的美国专利4,100,324中公开的那样,在此收作参考。
可伸长非织造纤网12的纤维应采用上面有关纤维间粘合的“定义”中所描述的粘合方法中的一种或多种借助纤维间粘合来连结。
弹性体片材14可由任何可制成片材形式的材料制成。例如,弹性体片材14可以是弹性体非织造纤网、弹性体泡沫塑料、弹性体斯克林纤网、或弹性体丝束纤网。弹性体非织造纤网可通过适当树脂或含有它的共混物经熔喷制成。弹性体非织造纤网的具体例子描述在授予Wisneski等人的美国专利4,663,220中,在此将其收作参考。
替代地,弹性体片材14可以是弹性体薄膜,由苯乙烯共聚物制成,例如,选自苯乙烯-丁二烯-苯乙烯、苯乙烯-异戊二烯-苯乙烯、苯乙烯-乙烯/丁烯-苯乙烯、苯乙烯-乙烯/丙烯-苯乙烯的聚合物及其组合。此种苯乙烯共聚物通常是高度弹性的并且基本上控制了共挤出弹性体薄膜的总体弹性。适合用于本发明的苯乙烯共聚物可由KratonPolymers(休斯敦,德克萨斯)以注册商标KRATON购得。一种此类共聚物可以是,例如,KRATON G-1657。含有KRATON共聚物的合适的弹性体共混物包括,例如,KRATON G-2755和KRATON G-2760。
可采用的其它范例材料包括聚氨酯弹性体材料,例如,由Noveon公司(克里夫兰,俄亥俄)以注册商标ESTANE供应的那些,聚酰胺弹性体材料,例如,由Atofina化学公司(费城,宾夕法尼亚)以注册商标PEBAX供应的那些,以及聚酯弹性体材料,例如,由杜邦公司(Wilmington,特拉华)以注册商标HYTREL供应的那些。由聚酯弹性材料制造弹性体片材的方法公开在,例如,授予Morman等人的美国专利4,741,949中,在此收作参考。
弹性体薄膜可包括单部位催化共聚物,例如,按照金属茂方法制造的“金属茂”聚合物。这里使用的术语“单部位催化”包括通过至少乙烯以金属茂或可限形状催化剂,即一种有机金属络合物,作为催化剂进行聚合而生产的那些聚合物材料。例如,常见的金属茂是二茂铁,即一种2个环戊二烯基(Cp)配体之间夹一个金属构成的络合物。金属茂方法催化剂包括双(正丁基环戊二烯基)二氯化钛、双(正丁基环戊二烯基)二氯化锆、双(环戊二烯基)氯化钪、双(茚基)二氯化锆、双(甲基环戊二烯基)二氯化钛、双(甲基环戊二烯基)二氯化锆、二茂钴、环戊二烯基三氯化钛、二茂铁、二氯化二茂铪、异丙基(环戊二烯基-1-芴基)二氯化锆、二氯化二茂钼、二茂镍、二氯化二茂铌、二茂钌、二氯化二茂钛、氢氯化二茂锆、二氯化二茂锆等。此类化合物的更完全的清单公开在授予Rosen等人并转让给陶氏化学公司(Midland,密歇根)的美国专利5,374,696中。此类化合物还在授予Stevens等人,也转让给陶氏化学公司的美国专利5,064,802中。
理想的是,单部位催化乙烯-α-烯烃共聚物的密度介于约0.860~约0.900g/cm3,选自乙烯与1-丁烯的共聚物、乙烯与1-己烯的共聚物、乙烯与1-辛烯的共聚物及其组合。此类单部位催化乙烯-α-烯烃共聚物可由Exxon-Mobil化学公司(Baytown,德克萨斯)以注册商标EXXPOL的以聚丙烯为基础的聚合物,和注册商标EXACT的以聚乙烯为基础的聚合物购得。杜邦-陶氏弹性体公司(Wilmington,特拉华)以注册商标ENGAGE销售此类聚合物。单部位催化乙烯-α-烯烃共聚物也由陶氏化学公司(Midland,密歇根)以注册商标AFFINITY供应。适合本发明使用的单部位催化乙烯-α-烯烃共聚物包括,例如,ENGAGE EG8200和AFFINITY XUS58380.01L。
仅包括聚丙烯或者包括它与其它弹性体聚合物或弹性较小材料的组合的弹性体聚合物也适合用于成形弹性体薄膜。例如,弹性体薄膜可由弹性体聚丙烯均聚物、弹性体聚丙烯共聚物,或其组合来成形。
聚烯烃可单独用来成形可伸长薄膜或者可与弹性体聚合物掺混以改进薄膜组合物的加工性。该聚烯烃可以是,当处于适当高温和高压条件时,能单独或以共混物形式挤出的。有用的聚烯烃材料包括,例如,聚乙烯、聚丙烯和聚丁烯,包括乙烯共聚物、丙烯共聚物和丁烯共聚物。特别有用的聚乙烯可从U.S.I.化学公司以注册商标PETROTHENE NA601购得。可使用2或更多种聚烯烃。弹性体聚合物与聚烯烃的可挤出共混物公开在,例如,授予Wisneski等人的美国专利4,663,220中,在此收作参考。
弹性体薄膜也可以是多层材料,就是说,它可包括2或更多个内聚性纤网或片材。另外,弹性体片材14可以是多层材料,其中一个或多个层包含弹性与可伸长纤维或颗粒的混合物。后一种类型弹性纤网的例子公开在美国专利4,209,563中,授予Sisson,在此收作参考,其中弹性体和可伸长纤维彼此混合形成由无规分散的纤维组成的单一内聚性纤网。
本发明使用的范例弹性体薄膜包括(聚/聚(乙烯丁烯)/聚苯乙烯)嵌段共聚物、金属茂衍生的聚合物和聚烯烃的共混物。例如,弹性体薄膜可由约15%~约75%金属茂衍生的聚烯烃,约10%~由60%(聚苯乙烯/聚(乙烯丁烯)/聚苯乙烯)嵌段共聚物和0~约15%低密度聚乙烯的共混物制成。
在另一个方面,弹性体片材14可以是弹性体泡沫塑料。一种适合的弹性体泡沫塑料是弹性体聚氨酯泡沫塑料。
弹性体片材14可包括充填的弹性体薄膜。充填的弹性体薄膜可通过一种或多种聚烯烃和/或弹性体树脂与颗粒填料的掺混制成。填料颗粒可包括任何适合的有机或无机材料。一般而言,填料颗粒的平均颗粒直径介于约0.1~约8.0μm,理想地约0.5~约5.0μm,更理想约0.8~约2.0μm。合适的无机填料颗粒包括但不限于,碳酸钙、不可溶胀粘土、二氧化硅、氧化铝、硫酸钡、碳酸钠、滑石粉、硫酸镁、二氧化钛、沸石、硫酸铝、硅藻土、碳酸镁、碳酸钡、高岭土、云母、碳、氧化钙、氧化镁、氢氧化铝。合适的有机填料颗粒包括聚合物颗粒或珠。碳酸钙是目前所要求的填料颗粒。充填的弹性体片材14可拉伸-变薄从而导致围绕填料颗粒形成空隙,从而使薄膜可透气。
弹性体片材14可采用大量传统公知方法中任何一种成形,包括但不限于,扁平模头挤出、吹塑薄膜(管状)法、流延、共挤出等。适宜地,弹性体片材14的基重可介于约5~约100g/m2之间,理想地约25~约60g/m2。
不拟受其限制但据信,弹性体片材14中的分子主要沿纵向取向,因此弹性体片材沿纵向具有最佳弹性性能。本发明的该一次、横向机械拉伸则使一些分子沿横向取向,从而改善了弹性体片材在随后伸长中的横向弹性性能。理论认为,在可伸长非织造纤网12与弹性体片材14的层合期间沿横向的机械牵伸有助于拉断弹性体树脂内的微观畴,致使可伸长层合物10在随后的伸长/回缩循环中具有改进的伸长性能。
图3示意地画出制造包括可伸长非织造纤网12和弹性体片材14的本发明可伸长层合物10的方法。在该方法中,可伸长非织造纤网12和弹性体片材14的层合物50沿横向机械地拉伸至少约50%,适宜地至少约65%,理想地至少约75%,有利地至少约100%。优选的机械牵伸应保证沿层合物施加均匀的力和维持一致的时间。据信,沿横向机械牵伸层合物50生产出一种具有改进的和更加一致的伸长性能的可伸长层合物,例如,具有较低滞后和永久变形,特别是在随后的伸长/松弛循环中。
参见图3,一种制造可伸长层合物10的方法包括提供一种在供布辊28上的非织造纤网材料。非织造纤网材料26穿过第一辊隙30,该辊隙包括夹辊32和34,以第一表面速度旋转;并通过第二辊隙36,包括夹辊38和40,以第二表面速度旋转,它比第一表面速度高,借此形成可伸长非织造纤网12。非织造纤网材料26在第一辊隙30与第二辊隙36之间沿纵向18的颈缩是利用夹辊的不同表面速度实现的。适宜地,获得的颈缩非织造纤网12的颈缩百分率介于约20~约75%,理想地约30~约70%。
替代地,在供布辊28上的非织造纤网材料26可以是一种预先颈缩过的非织造材料或者固有可伸长非织造材料,它们可直接与弹性体片材14层合,而不需要任何预先在线加工。
弹性体片材14从供布辊42上退绕。弹性体片材14和可伸长非织造纤网12被送过第三辊隙44,包括夹辊46和48,结果形成层合物50。
替代地,如图4所示,弹性体片材14可以是一种通过在临层合到可伸长非织造纤网12上去之前的挤出加工制成的弹性体薄膜。熔融弹性体52从模口54挤出形成挤出的弹性体片材14。挤出的弹性体片材14直接沉积到可伸长非织造纤网12上,这两层在第三辊隙44中层合在一起。挤出的弹性体片材14可在薄膜离开模口54以后约0.1~约1.0s内,适宜地在约0.25~约0.5s内,理想地在约0.3~约0.45s内接触可伸长非织造纤网材料12。弹性体片材14可在约180℃~约300℃,适宜地在约200℃~约250℃的温度挤出。在第三辊隙44中施加轻微压力以便使弹性体片材14(处于相对地未张紧状态)热粘合到张紧的颈缩非织造纤网12上。夹辊46和48可以,也可以不带花纹,不必加热,并且可以带冷却(例如,到约10℃~30℃的温度)以便骤冷贴合到可伸长非织造纤网12上的弹性体片材14。
层合物50由于其可伸长非织造纤网12的可伸长性故可沿横向16拉伸。在松弛后,层合物50可基本上返回到其原来的制造构型,具体取决于其弹性体片材14的回缩力和弹性体回缩性如何而定。一般而言,层合物50的滞后值可大于约45%,典型值大于约50%。层合物50的滞后值可高达约75%,具体取决于层合期间次要粘合形成的程度和构成薄膜的一种或多种弹性体树脂内存在的微观畴的数目而定。一般而言,层合物50可具有9%或更高的永久变形。
可伸长非织造纤网12可采用各种各样的方法层合到弹性体片材14上,包括但不限于粘合剂粘合、热粘合、点粘合、超声波焊接及其组合。例如,夹辊46和48可加热到约93℃~约135℃的温度,致使可伸长非织造纤网12热粘合到弹性体片材14上。
参见图3,层合物50被送过第四辊隙56,包括沟槽辊58和60,致使层合物50沿横向16被机械拉伸(逐级地),而生产出具有改进伸长性能的可伸长层合物10。如图3a所示,沟槽辊58和60包括大量凸棱62,它们规定了大量遍布槽辊58和60沿横向16的沟槽64。一般而言,沟槽64应沿着垂直于材料的伸长方向取向。换句话说,沟槽64应沿纵向取向以便使层合物50沿横向伸缩。参见图3b,在第四辊隙56中,沟槽辊58的凸棱62与沟槽辊60的沟槽64互相啮合,同时沟槽辊58的沟槽64与沟槽辊60的凸棱62互相啮合,致使层合物50沿横向16被机械地拉伸。适宜地,层合物50沿横向16机械地拉伸至少约50%,理想地至少约65%,更理想地至少约75%,最理想地约100%。随着机械拉伸过的层合物50离开第四辊隙56,它被允许朝着基本上其颈缩前的尺寸松弛从而形成本发明的可伸长层合物10。可伸长层合物10可卷绕到卷取辊(未画出)以便以后在离线加工中使用,或者可送往用于结合到消费产品中去的在线加工。
替代地,如图4a所示,层合物50可送过拉幅机66,以便使层合物50沿横向16机械地拉伸至少约50%,理想地至少约65%,更理想地至少约75%,最理想地约100%。参见图4b,拉幅机66包括一对逐渐扩展的带或链68。层合物50的横边70被一系列夹子72固定在逐渐扩展的带68上,夹子将层合物50边缘固定不动。随着层合物50被拉过拉幅机66,逐渐扩展的皮带68沿横向16机械地拉伸层合物50所要求的程度,理想地至少约50%。随着机械拉伸过的层合物离开拉幅机66,横边70被松开,于是层合物便可松弛回复到其拉伸前的尺寸,从而形成本发明可伸长层合物10。其它技术上公知的措施也可用来沿横向机械地拉伸层合物50至少约50%。
实施例按如下所述制备包括可伸长非织造纤网层和弹性薄膜的层合物。
实施例1可伸长层合物通过将0.75-osy(约25.4gsm)纺粘纤网层合到35gsm弹性体片材的任何一面上而制成。该纺粘纤网由Kimberly-Clark公司生产,曾接受颈缩处理以提供约56%的颈缩百分率。弹性体片材是由Kraton Polymers(休斯敦,德克萨斯)获得的MD-6659薄膜。
层合物沿横向被机械地拉伸约100%,从而制成本发明的可伸长层合物。该可伸长层合物接受循环试验来测定拉伸后当即以及1、7和19日后的伸长/回缩比、滞后值和永久变形。未拉伸对照层合物也进行试验。结果载于表1。
表1

E/R比、滞后值和永久变形的减少百分数可按如下计算%减少=[(未拉伸的-拉伸的)/(未拉伸的)]×100例如,E/R比在第一天的减少将可计算如下[(3.26-2.36)/3.26]×100=27.3%。
实施例2可伸长层合物通过将0.5-osy(约17gsm)纺粘纤网层合到42gsm弹性体片材的任何一面上而制成。该纺粘纤网由Kimberly-Clark公司生产,曾接受颈缩处理从约126英寸(320cm)的宽度颈缩到约45英寸(约114.3cm)的宽度从而提供约64%的颈缩百分率。弹性体片材是由Kraton Polymers(休斯敦,德克萨斯)获得的KRATON G-2755薄膜。
层合物沿横向被机械地拉伸约100%,从而制成本发明的可伸长层合物。该可伸长层合物接受循环试验来测定拉伸后当即以及7、19和26日后的伸长/回缩比、滞后值和永久变形。未拉伸对照层合物也进行试验。结果载于表2。
表2

确定滞后、永久变形和伸长/回缩比的试验该循环试验是一种方法,采用恒速伸长拉伸试验机,例如,由Sintech公司(Cary,北卡)销售的Sintech 2,型号3397-139,来测定可伸长层合物的弹性性能。具体地说,可伸长层合物的样品被切成4.5×3英寸尺寸,该4.5英寸为横向。该3英寸长的样品被夹在2个气动夹具之间,使得标距长度(夹具间距)是2英寸,拉伸方向沿着横向。拉伸速度是20英寸每分钟。试验是在2个伸长/回缩循环期间完成的。样品首先被拉伸至100%的伸长(4英寸夹具间距)并立即返回到(回缩到)起始标距长度。随后,重复该伸长-回缩循环。最后,样品拉伸至发生破裂的伸长,此刻才停止试验。力和伸长由恰当布置的载荷传感器和其它传感器测定。数据由电脑程序记录并分析。
滞后是这样计算的从第一循环伸长期间为拉伸材料所供给的能量中减去第一循环回缩期间回收的能量,得到的数量除以在第一循环伸长期间为拉伸材料所供给的能量,得到的数量乘上100。供给的能量和回收的能量由电脑确定,并用应力应变曲线下面的面积来衡量。
永久变形的确定是测定回缩循环期间当力刚刚到达10g或更小时样品时所处的伸长。永久变形百分数被定义为样品所达到的最大伸长长度减去在上面10g回缩测定过程中确定的长度,除以最大伸长长度,所得数量再乘上100。
可伸长层合物的伸长/回缩比(E/R比)用第一循环伸长(拉伸)期间在30%伸长处的载荷(力),和第二循环回缩模式期间在30%伸长处的载荷来表征。E/R比测定结果被表示为回缩力除以伸长力之比乘上100。
虽然在上面的说明中已经结合本发明优选实施方案对本发明做了描述,并且为说明的目的给出了许多细节,但本领域技术人员清楚,本发明允许做出进一步的实施方案并且这里所描述的某些细节可做出许多改变,仍不偏离本发明的基本原则。
权利要求
1.一种可伸长层合物,其包含可伸长非织造纤网;和弹性体片材,其中可伸长非织造纤网和弹性体片材在层合后经过了沿横向机械地拉伸从而提供一种可伸长层合物,其滞后值,在第一100%伸长/回缩循环期间测定,比可比未拉伸可伸长层合物低至少约15%。
2.权利要求1的可伸长层合物,其中可伸长层合物的滞后值比可比未拉伸可伸长层合物低至少约20%。
3.权利要求1的可伸长层合物,其中可伸长层合物的7日滞后值比可比未拉伸可伸长层合物低至少约15%。
4.权利要求1的可伸长层合物,其中可伸长层合物的30日滞后值比可比未拉伸可伸长层合物低至少约15%。
5.权利要求1的可伸长层合物,其中可伸长层合物的永久变形低于可比未拉伸层合物。
6.权利要求1的可伸长层合物,其中可伸长层合物的永久变形比可比未拉伸可伸长层合物低至少约10%。
7.权利要求1的可伸长层合物,其中可伸长层合物的永久变形比可比未拉伸可伸长层合物低至少约20%。
8.权利要求1的可伸长层合物,其中可伸长层合物的永久变形比可比未拉伸可伸长层合物低至少约30%。
9.权利要求1的可伸长层合物,其中可伸长层合物的伸长/回缩比低于可比未拉伸可伸长层合物。
10.权利要求1的可伸长层合物,其中可伸长层合物的伸长/回缩比比可比未拉伸可伸长层合物低至少约15%。
11.权利要求1的可伸长层合物,其中可伸长层合物的伸长/回缩比比可比未拉伸可伸长层合物低至少约20%。
12.权利要求1的可伸长层合物,其中可伸长层合物的伸长/回缩比比可比未拉伸可伸长层合物低至少约25%。
13.权利要求1的可伸长层合物,其中可伸长层合物的7日伸长/回缩比比可比未拉伸可伸长层合物低至少约15%。
14.权利要求1的可伸长层合物,其中可伸长层合物的30日伸长/回缩比比可比未拉伸可伸长层合物低至少约20%。
15.权利要求1的可伸长层合物,其中可伸长非织造纤网包含可逆颈缩的非织造纤网。
16.权利要求1的可伸长层合物,其中弹性体薄膜包含选自苯乙烯-丁二烯-苯乙烯、苯乙烯-异戊二烯-苯乙烯、苯乙烯-乙烯/丁烯-苯乙烯、苯乙烯-乙烯/丙烯-苯乙烯及其组合的苯乙烯共聚物。
17.权利要求1的可伸长层合物,其中弹性体薄膜包含密度为约0.860~约0.900g/cm3的单部位催化的乙烯-α-烯烃共聚物。
18.权利要求1的可伸长层合物,其中弹性体薄膜包含透气性弹性体薄膜。
19.一种可伸长层合物,包含可伸长非织造纤网;和弹性体片材,其中可伸长非织造纤网和弹性体片材在层合后经过了沿横向机械地拉伸从而提供一种可伸长层合物,其永久变形,在第一100%伸长/回缩循环期间测定,比可比未拉伸可伸长层合物低至少约10%。
20.权利要求19的可伸长层合物,其中可伸长层合物的永久变形比可比未拉伸可伸长层合物低至少约20%。
21.权利要求19的可伸长层合物,其中可伸长层合物的永久变形比可比未拉伸可伸长层合物低至少约30%。
22.权利要求19的可伸长层合物,其中可伸长层合物的7日永久变形比可比未拉伸可伸长层合物低至少约10%。
23.权利要求19的可伸长层合物,其中可伸长层合物的30日永久变形比可比未拉伸可伸长层合物低至少约10%。
24.权利要求19的可伸长层合物,其中可伸长层合物的滞后值低于可比未拉伸可伸长层合物。
25.权利要求19的可伸长层合物,其中可伸长层合物的伸长/回缩比低于可比未拉伸可伸长层合物。
26.权利要求19的可伸长层合物,其中可伸长层合物的伸长/回缩比比可比未拉伸可伸长层合物低至少约20%。
27.权利要求19的可伸长层合物,其中可伸长层合物的7日伸长/回缩比比可比未拉伸可伸长层合物低至少约15%。
28.权利要求19的可伸长层合物,其中可伸长层合物的30日伸长/回缩比比可比未拉伸可伸长层合物低至少约15%。
29.权利要求19的可伸长层合物,其中可伸长非织造纤网包含可逆颈缩的非织造纤网。
30.权利要求19的可伸长层合物,其中弹性体薄膜包含选自苯乙烯-丁二烯-苯乙烯、苯乙烯-异戊二烯-苯乙烯、苯乙烯-乙烯/丁烯-苯乙烯、苯乙烯-乙烯/丙烯-苯乙烯及其组合的苯乙烯共聚物。
31.权利要求19的可伸长层合物,其中弹性体薄膜包含密度为约0.860~约0.900g/cm3的单部位催化的乙烯-α-烯烃共聚物。
32.权利要求19的可伸长层合物,其中弹性体薄膜包含透气性弹性薄膜。
33.一种制造可伸长层合物的方法,包括下列步骤将至少一层可伸长非织造纤网层合到弹性体片材上形成层合物;以及沿横向机械地拉伸该层合物至少约50%。
34.权利要求33的方法,其中层合物沿横向机械地拉伸至少约65%。
35.权利要求33的方法,其中层合物沿横向机械地拉伸至少约75%。
36.权利要求33的方法,其中层合物沿横向机械地拉伸约100%。
37.权利要求33的方法,其中采用拉幅机沿横向机械地拉伸层合物。
38.权利要求33的方法,其中采用一对沟槽辊沿横向机械地拉伸层合物。
39.权利要求33的方法,其中可伸长层合物的滞后值比可比未拉伸可伸长层合物低至少约15%。
40.权利要求33的方法,其中可伸长层合物的30日滞后值比可比未拉伸可伸长层合物低至少约15%。
41.权利要求33的方法,其中可伸长层合物的永久变形比可比未拉伸可伸长层合物低至少约10%。
42.权利要求33的方法,其中可伸长层合物的永久变形比可比未拉伸可伸长层合物低至少约20%。
43.权利要求33的方法,其中可伸长层合物的永久变形比可比未拉伸可伸长层合物低至少约30%。
44.权利要求33的方法,其中可伸长层合物的7日永久变形比可比未拉伸可伸长层合物低至少约10%。
45.权利要求33的方法,其中可伸长层合物的30日永久变形比可比未拉伸可伸长层合物低至少约10%。
46.权利要求33的方法,其中可伸长层合物的伸长/回缩比比可比未拉伸可伸长层合物低至少约20%。
47.权利要求33的方法,其中可伸长层合物的7日伸长/回缩比比可比未拉伸可伸长层合物低至少约15%。
48.权利要求33的方法,其中可伸长层合物的30日伸长/回缩比比可比未拉伸可伸长层合物低至少约15%。
49.权利要求33的方法,其中弹性体片材包含填充的弹性体片材。
50.权利要求49的方法,其中可伸长层合物为可透气的。
全文摘要
公开一种具有改进的永久变形和滞后的可伸长层压材料。该可伸长层压材料包括层压在弹性体片材上的可伸长非织造纤网,在层压后经过了沿横向机械拉伸。用于制造该可伸层压材料的方法包括将可伸长非织造纤网层压到弹性体片材上形成层压材料,以及沿横向机械地拉伸该层压材料至少约50%。
文档编号B29C55/06GK1713985SQ03825553
公开日2005年12月28日 申请日期2003年9月26日 优先权日2002年12月20日
发明者M·T·莫尔曼, S·-P·L·科尼尔, G·T·苏杜思, R·J·帕尔默, D·M·马特拉, P·S·波特尼斯 申请人:金伯利-克拉克环球有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1