涂隔层的聚酯的制造设备与方法

文档序号:4466285阅读:142来源:国知局
专利名称:涂隔层的聚酯的制造设备与方法
技术领域
本发明涉及制造涂隔层聚酯,特别是涂隔层聚对苯二甲酸乙二醇酯(PET)以及由其所制产品的制造方法与设备。涂隔层PET最好取具有至少一层隔层料和由其吹制模塑成的瓶子的预型形式。
背景技术
在饮料包装中用塑料容器取代玻璃或金属容器已日益普遍。塑料包装的优点包括与玻璃的相比较轻和能减少破损,同时还可能降低成本。当今用于制造饮料容器最普遍的塑料是PET。纯PET已为FDA(美国食品药物管理局)批准可用于与食品原料接触。PET制的容器是透明、薄壁与轻量的。能经受由于加压内盛物(如充气饮料)作用到容器壁上的力而保持形状。PET树脂也较便宜和易于加工。
尽管具有上述优点和获得广泛应用,但把PET用作薄壁饮料容器时却存在严重走下坡的趋势,这是由于它能为气体如二氧化碳和氧透过。这类问题当瓶子小时尤关重要。在小型瓶中,表面积对容积比大,这样会让内含的气体有大的表面来扩散通过瓶壁。PET瓶的渗透性由于二氧化碳的渗出导致软饮料成为“跑了气的”饮料,同时由于氧气的渗入而破坏了饮料的风味。基于这样一些问题,PET瓶并不适应于工业部门所需的各方面用途,而对于许多现有的应用,PET瓶包装的液体的保存期比预期的短。
Slat等的美国专利No.5464106描述了通过吹制模塑成具有隔层的预型来形成瓶子。所公开的隔层材料是聚萘二甲酸乙二醇酯、萨冉树脂、乙烯-乙烯醇共聚物或丙烯腈共聚物。在Slat的技术中,隔层材料与形成此预型内壁的材料是共挤塑成管形的。此管件切成与预型长度相当的许多段,然后置入模具内,于管件上注射此预型的外层而形成完工的预型。此预型然后可吹制模塑成瓶子。这种方法的缺点是所公开的隔层材料中的绝大多数不能良好地粘附于PET上,而且工艺过程也相当烦琐。
具有良好隔层特性的一族材料是Jabarin的美国专利No.4578295中公开的那些材料,包括对酞酸与异酞酸同乙二醇以及至少一个二醇的共聚物。这种材料已由三井石化工业工公司(日本)以B-010牌号销售。这族材料与聚萘二甲酸乙二醇酯是可混溶的,形成了可由之形成隔层容器的80~90%PET与10~20%共聚多酯的混合物。由这类混合物制成的容器比单独采用PET时对于CO2的渗透有约高出20~40%的气体阻挡能力。尽管已有人声称这种聚酯能粘附到PET上不会分层,但所公开的最佳预型式容器则是由这些材料的混合物制成。
另一组材料是聚胺-聚环氧化合物,已被提出用作气体隔层涂层。如Nugent,Tr.等的美国专利No.5489485所述,这类材料可以用在聚丙烯或经过表面处理的PET上的隔层涂层。这类材料一般是溶剂或水基热固性成份,通常喷涂到容器上,然后热固化成完工的阻隔涂层或隔层涂层。由于其热固性,此种材料用作预型涂层是无益的,因为涂层一旦固化,它就不再能通过加热软化,因而不能吹制模塑成形,这是同在涂布后可在任何时候软化的热塑性材料不同的。
另一种阻隔涂层是Farha在美国专利No.5472753中公开的,依靠应用共聚聚酯来实现PET与此阻隔材料的粘合。Farha描述了两种叠层件,一种三层的和一种两层的。在三层叠层件中,将无定形的热塑性共聚聚酯置于苯氧基型热塑塑料阻隔层与PET层之间,用作结合内外层的连接层。在两层叠层件中,苯氧基型热塑塑料首先混合以无定形热塑性共聚聚酯,然后将此混合物涂布到PET上形成隔层。这些叠层件是通过挤压或注射模制制成,其中允许任一层可在其他材料层冷却前注射。
Collette等的PCT申请No.PCT/US 95/170ll公布于1996,7,4,其中描述了冷却多层预型的方法。所公开的设备包括有许多面的转塔,每个面载有一列芯子。这些芯子插入对应的模腔内。将多股熔体流一起引入,共同注射入各模腔内以在各个芯子上形成多层预型。在注射成预型后,从模腔中除去芯子并转动转塔,给模腔提供新的一组芯子。刚刚注射成的预型保留于芯子上冷却同时在另一列芯子上则形成预型。Collette的申请的缺点包括由其注射形成的预型是不一致的并具有无法预期的分层结果。这样,阻隔材料在此种预型上的分布是不可断定的,因而将形成阻隔性质不可靠的预型。
由于PET容器可以只用一次注射PET由注射模塑制成,制造较易而生产周期短。因而PET容器是廉价的。即使是已知的阻隔材料能够结合到PET上形成具有可靠阻隔性质的畅销容器,也迄未设计出在可匹敌的周期与成本内制造这种容器的方法与设备。生产周期特别重要,因为短的周期能使制造厂更有效地利用其固定设备。例如,短的周期能够以较大数量和较低费用来生产PET容器。
于是需要有设备与方法来制造这样的涂隔层PET预型和容器,它们是经济的、外观美丽的、易于制造且具有仍未实现的良好的阻隔性质与物理性质。

发明内容
本发明涉及制造PET产品的方法与设备,此种PET产品的表面上涂有一或多个薄层具有良好气体阻隔特性的热塑性材料。本发明的产品最好取预型与容器形式。
在本发明的一个方面提供了涂隔层的预型,它具有聚酯层和由阻隔材料组成的阻隔层,其中此聚酯层在端盖中要比在壁部中薄而阻隔层则在端盖中比在壁部中较厚。
在本发明的另一方面提供了用以制造涂隔层聚酯产品的方法,通过第一门将熔融聚酯注入第一半模和芯子半模所限定的空间内,此在由循环流体冷却此第一半模和芯子半模,第一半模与外聚酯表面接触而芯子半模与内聚酯表面接触。随后,让熔融聚酯继续与这两个半模接触,直至在内外聚酯表面上形成了包围熔融聚酯芯的表皮层。此时从聚酯产品上除下此第一半模,外聚酯表面上的皮层由于从熔融聚酯芯的热传输软化而内聚酯表面由于继续与芯子半模接触而冷却。然后将仍在芯子半模上的聚酯产品置入第二半模内,其中由循环流体冷却第二半模。在涂层步骤中,包括有阻隔材料的阻隔层通过第二门注入熔融阻隔材料到第二半模和外聚酯表面限定的空间内而布设到外聚酯表面上。至此从涂隔层产品上除下第二半模再从芯子半模上除下涂隔层产品。用于上述工艺过程中的阻隔材料最好包括共聚聚酯阻隔材料、苯氧基型热塑塑料、聚酰胺、聚萘二甲酸乙二醇酯、聚萘二甲酸乙二醇酯共聚物、聚萘二甲酸乙二醇酯/聚对苯二甲酸乙二醇酯混合物,以及它们的组合物。
在本发明的又一方面提供了制造涂层预型的方法,此方法首先是闭合上包括固定半模和可动半模的模具,其中此固定半模包括至少一个预型模塑腔和至少一个涂层腔,而可动半模则包括一可旋转板,上面安装着其数目等于预型模塑腔与预型涂层腔个数之和的芯轴。其余的工序包括注射第一原料至一芯轴与一预型模塑腔限定的空间内形成具有内、外表面的预型;打开模具;转动可旋转板;闭合模具;将第二原料注入预型外表面与预型涂层腔限定的空间内形成有涂层的预型;打开模具;取去已涂层的预型。
根据一具有本发明特征的最佳实施例,提供了用于注射模制多层预型的设备。此设备包括分别与第一和第二熔体源通连的第一与第二模腔。提供有一转台且将其分成多个工位或段,每个工位或段上设有至少一个模芯。此转台适合将各工位转到第一位置,在此位置上,工位上的模芯与第一模腔相互作用形成第一预型层;然后转到第二位置,在此位置上,此模芯与第二模腔相互作用形成第二预型层。最后,再将此转台用来将上述工位转至至少一个冷却位置。在此位置上将模制好的预型保持于模芯上冷却。
根据具有本发明特征的另一最佳实施例提供了用于注射模塑多层预型的模具设备。此模塑设备具有可用来配合到模芯周围的第一模具体而于它们之间确定第一层模腔,同时具有第一门区并且同第一熔体源通连;还具有可用来配合到布设于模芯上的第一预型层周围的第二模具体而于其间确定第二层模腔,同时具有第二门区并且同第二熔体源通连。这两个门区至少有一个之中设有耐蚀耐热铜合金插件。
根据具有本发明特征的再一最佳实施例提供了用于注射模塑多层预型的模具设备。此模具设备具有可配合到模具芯周围的第一模具体而于它们之间确定出第一层模腔。第一模具体与第一熔体源通连且具有与第一层模腔底端邻接的第一门区。此第一层模腔具有底端与主体。模腔在底端的厚度小于模腔主体的厚度。此模具设备还具有第二模具体,适合配合到布设于模芯上第一预型层周围,以在它们之间确定出第二层模腔。此第二模具体与第二熔体源通连并且有第二门区。
根据具有本发明特征的又另一实施例提供了用于注射模塑多层预型的模具。此模具有芯轴以及第一与第二模腔。芯轴是空心轴,壁厚基本均一。空心芯轴内的中心处设有冷却剂供应管将冷却剂直接供应于芯轴的底端。第一模腔具有用于注射熔融塑料的门。模腔的门区具有传热特性高于模腔大部分的材料的插件。
根据具有本发明特征的再又一最佳实施例提供了用于改进注射模具性能的方法。此方法包括在模腔壁部形成孔口。孔口的尺寸适合使熔融塑料实质上不会进入此孔口。形成有连接此孔口至空气压力源的通道。此方法还包括在此孔口与空气压力源之间设置阀。
根据具有本发明特征复又一再佳实施例提供了用于注射模塑和冷却多层预型的方法。此方法包括下述工序提供设于转台之上且具有内部冷却系统的模芯,转动转台使模芯与第一模腔对准,使模芯与第一模腔配合,注射熔体以形成第一预型层。第一预型层保持于模腔内直至该层表面上形成皮层,但该层内部则仍旧基本上是熔融态。然后从第一模腔中取出模芯而将已模制的预型层保持于模芯上,同时转动转台使模芯与第二模腔对准。使模芯与第二模腔配合同时注入熔体以在第一预型层的上边形成第二预型层。从第二模腔中取出模芯而让已模塑成的预型保持于此模芯上,再转动转台使模芯与预型处在冷却位置,于此期间使预型在模芯上冷却。最后从模芯上取下预型件。
根据本发明的一个方面提供了一种叠层件,它包括直接粘附在至少一层阻隔材料上的聚对苯二甲酸乙二醇酯。此聚对苯二甲酸乙二醇酯具有的间苯二甲酸含量至少约2%(重量)。所用的阻隔材料包括共聚聚酯阻隔材料、苯氧基型热塑塑料、聚酰胺、聚萘二甲酸乙二醇酯、聚萘二甲酸乙二醇酯共聚物、聚萘二甲酸乙二醇酯/聚对苯二甲酸乙二醇酯共混物,以及它们的组合。在最佳实施例中,此叠层件是以预型与容器形式提供的。
根据本发明的又一个方面提供了包括至少两层的预型,其中的第一层在端盖处比在壁部处较薄而第二层则在端盖处比在壁部处较厚。此第一层包括的聚萘二甲酸乙二醇酯具有的间苯二甲酸(IPA)含量至少约2%(重量)而第二层则包括阻隔材料。所用的阻隔材料包括共聚聚酯阻隔材料、苯氧基型热塑塑料、聚酰胺、聚萘二甲酸乙二醇酯、聚萘二甲酸乙二醇酯共聚物、聚萘二甲酸乙二醇酯/聚对苯二甲酸乙醇酯混合物,以及它们的组合。
为了概述本发明和所获得的优于先有技术的优点,上面业已描述了本发明的若干目的与优点。自然应知依据本发明任一特殊实施例是未必能实现所有这类目的与优点的。这样,例如内行的人当可认识到,本发明可以按照取得或最优化这里指出的一个或一组优点的方法来实施或实行,而不必要实现这里可能指出或提及的其他的目的与优点。
所有这些实施例都应属于这里所公开的本发明的范围之内。内行的人根据下面参考附图所详细描述的实施例当会立即理解上述的和其他的实施例,但本发明是不受这里公开的任何特殊的最佳实施例的限制。


图1示明用作本发明实施例的起始材料的未涂层预型。
图2是依据本发明一实施例涂隔层型的最佳未涂层预型的剖面图。
图3是本发明涂隔层预型的一最佳实施例的剖面图。
图4是本发明涂隔层预型另一最佳实施例的剖面图。
图4A是例如由LIM超注射法所制预型壁部剖面的放大图。并非依据本发明一实施例所制的图4这种类型的所有预型都将具有这种类型的层结构。
图5是本发明一实施例的涂隔层预型另一实施形式的剖面图。
图6是可以用于制造本发明一实施例的最佳涂隔层容器的一种吹制模制设备模腔中的最佳预型的剖面图。
图7是本发明涂隔层容器一最佳实施例。
图8是具有本发明特征的涂隔层容器一最佳实施例的剖面图。
图9是可用于制造本发明最佳涂隔层预型的一种注射模具的剖面图。
图10与11是制造涂隔层预型的模制机的两个半模。
图12与13是制造48个两层预型的模制机的两个半模。
图14是透视图,示意地表明了以芯轴部分地位于模腔中时的模具。
图15是在转动之前将芯轴完全从模腔中抽出的模具的透视图。
图16是预型的三层实施例。
图17是用以制造本发明的预型的设备最佳实施形式的前视图。
图18是图17中之设备沿线18-18所取横面图。
图19是图表,说明图17中的设备在生产周期中工位的相对位置。
图20是用以制造本发明的预型的设备另一最佳实施形式的前视图。
图21是图20的设备中工位与致动器的近视图。
图22是用以制造本发明的预型的设备又一再佳实施例的前视图。
图23是图22中的设备于闭合位置的前视图。
图24是图表,表明图22的设备中工位的相对位置。
图25是片件注射模制(LIM)系统的示意图。
图26是可以用于制造本发明预型的一种注射模的剖面图。
图27是图26中模具沿线27-27的横剖图。
图28是图26中由圆周28圈定的区域的剖面近视图。
具体实施例方式
A.本发明的一般说明本发明涉及制造具有一或多层有良好气体阻隔特性的热塑塑料组成之涂层的塑料产品的方法与设备。正如这里所期望的,涂隔层产品的一种实施形式是饮料瓶。另一方面,本发明的涂隔层产品的实施例则可以取用于存储液体食品的罐、桶、盘或瓶等形式。但为简便起见,这些实施例在此主要结合饮料瓶以及可由其用吹制模塑法制瓶的预型来描述。
再有,本发明在此是具体相对于PET来说明,但它可以适用于这种聚酯型的许多其他热塑塑料。这种其他热塑塑料包括聚2,6-萘二甲酸乙二醇酯(PEN)、PETG、聚1,2-二羟苯甲酸丁二醇酯以及对苯二甲酸乙二醇酯与间苯二甲酸乙二醇酯的共聚物。
在特别最佳的实施例中,将“高IPA的PET”用作涂隔层料的聚酯。按照这里所用,“高IPA的PET”一词是指在制造形成共聚物时对PET添加了IPA,其中IPA含量按重量计≥2%,更好是2~10%,尤为更好是3~8%,而最好约4~5%。此最佳范围根据现行的FDA规定,在接触食品或饮料时不允许PET原材料具有的IPA含量≥5%。若是与这种规定无关,则IPA含量最好为5~10%,这里所用的“PET”包括“高IPA的PET”。
高IPA的PET(按重量,IPA超过约2%)是颇理想的,因为本发明人出乎意料地发现将高IPA的PET用于制造涂隔层的预型与容器时,与包含不带IPA或带低IPA的叠层件相比,能提供更佳的夹层粘合结果。还发现这种夹层粘合力随IPA含量的增加而提高。将较高含量的IPA加入PET时,与PET均聚物相比或与具有低含量IPA的PET相比会降低高IPA的PET材料的结晶率。结晶率的降低会使所生产的PET层(由高IPA的PET制造)与由类似方法制成涂隔层的预型而采用低IPA的PET或均聚物PET所能得到的结晶度相比要低。高IPA的PET的较低结晶度对于降低PET表面即PET与阻隔材料的界面处的结晶度是重要的。较低的结晶度可使这些层之间粘合得较好,还能在预型的吹塑模制中提供较透明的容器。
这种预型与容器最好在其外表面上或容器壁内涂有阻隔层,与前述Slat的生产多层式预型中这些层易于分离的技术相比,在本发明的实施例中,热塑性阻隔材料是直接而牢靠地粘附于PET表面上而不易分离。在这些层之间的粘合没有借助任何其他材料如粘合剂或连接层。已涂层的预型最好采用未涂层的PET预型所用的类似方法与条件通过拉伸吹制模塑来形成瓶子。这样制得的容器是结实的、抗蠕变的,美观并具有良好的隔气性质。
采用了一或多层阻隔材料来实现本发明。这里的词“阻隔材料”、“阻隔树脂”等在用于形成产品时指的是最好具有类似于PET的关键物理性质、能良好地粘附到PET上、对于氧和CO2有比PET低的渗透率的材料。
一旦选定了合适的阻隔材料就需要有采用这种阻隔材料来经济地制造容器的设备与方法。重要的一种方法与设备涉及采用注射模塑机结合上包括芯轴或模芯与模腔的模具。在将熔融聚酯注入其中时,在模具的芯轴与第一模腔之间模塑成预型的第一层。在芯轴从模腔中取出、移走和插入到第二模腔中时,此第一层保留于芯轴上。然后将第二层材料,最好是阻隔层或包括阻隔材料的一层注射到已有第一预型层上。再将芯轴及其上所附预型从第二模腔中取下,用机械手从芯轴上取下预型。在机械手冷却此模制好的预型的同时,可将此芯轴用于另一模塑周期。
在另一实施例中,此设备保持着从第二模腔中撤出的在芯轴上的预型,但将芯轴变换到旁边的位置用以冷却此新的预型。这时,设备的其他芯轴相互与模腔作用而形成预型层。在此预型充分冷却后,用机械手或其他装置从芯轴上取下,而芯轴则可再用于开始此过程。本方法与设备允许在芯轴上冷却预型而不显著地延长生产周期。
大量的具有所要求的对气体如氧与二氧化碳只有低渗透率的阻隔材料可用于本发明的实施例,这种阻挡材料的选择部分取决于下述的应用方式。用于阻隔涂层中较理想的阻隔材料分成两个主要类别(1)对酞酸、异酞酸和与PET相比具有良好阻隔性质的至少一个二醇的共聚物,例如Jabarin的美国专利No.4578295中所描述的,可按牌号B-010(三井石油化工公司,日本)从市场上购到;(2)羟基官能的聚酰胺醚如美国专利No.5089588与No.5143998中所述的,聚羟基酰胺醚如美国专利No.5134218中所述的,聚醚如美国专利No.5115075与No.5218075中所述的,羟基官能的聚醚如美国专利No.5164472中所述的,羟基官能的聚醚磺酰胺如美国专利No.5149768中所述的,聚羟基醚酯如美国专利No.5171820中所述的,羟基苯氧基醚聚合物如美国专利No.5814373中所述的,以及聚羟胺基醚(“PHAE”)如美国专利No.5275853中所述。上面(1)中所述阻隔材料在此称作“共聚聚酯阻隔材料”。以上(2)中各专利所述化合物则总合称作“苯氧基型热塑性材料”。本段中提及的所有专利作为整体综合于此说明书中供参考。
首选的共聚聚酯阻隔材料是FDA批准的。FDA批准的这类材料可用于与供人们消费用的饮料等接触的容器中。据本发明人所知,至本申请公开之日尚没有一种苯氧基型的热塑性塑料获得FDA认可。因此,这类材料最好用于多层容器中不与其中可供食用的内盛物直接接触地方。
在实施本发明的形成涂隔层预型与瓶子的最佳方法中,对初始的预型涂以至少另一层下述阻隔材料聚酯类如PET、使用后或回收的PET(集中回收的PET)和/或其他相当的热塑塑料。涂层可包括单一材料、多种材料的混合或混合物(均匀的或不均匀的)、两或多种材料混杂的结构或由至少两种材料组成的许多微层(薄)层。在一种实施例中,此初始的预型包括许多例如可由薄层注射模塑工艺制备的许多微层。初始的预型包括聚酯,但更好是使这种预型包括FDA批准可用于与食品接触的纯净材料。
本发明的实施例的预型与容器可以有多种实施形式如涂有一层阻隔材料的纯净PET、涂有阻隔材料与回收的PET两种微层交替组成之层的纯净PET、涂有阻隔层再以回收的PET涂层的纯净PET、纯净PET的微层与涂有一层回收的PET的阻隔材料,或是涂有回收的PET后再涂以阻隔材料的纯净PET。在任何情形下,至少有一层必须包括至少一种阻隔材料。
如上所述,本发明所用的最佳阻隔材料是共聚聚酯阻隔材料与苯氧基型热塑塑料。也可采用具有类似性质的其他阻隔材料来取代上述阻隔材料。例如阻隔材料可以取其他热塑塑料聚合物形式,如丙烯酸树脂,包括聚丙烯腈聚合物、丙烯腈-苯乙烯共聚物、聚酰胺、聚萘二甲酸乙二醇酯(PEN)、PEN共聚物与PET/PEN共混物。依据本发明最佳实施例的最佳阻隔材料所具有的氧和二氧化碳的渗透率低于PET的1/3。例如在Jabarin的上述专利所公开的共聚聚酯阻隔材料所具有的氧渗透率约为11ccmil/100in2day而二氧化碳渗透率约为2ccmil/100in2day。对于某些PHAE,氧的渗透率低于1ccmil/100in2day而二氧化碳渗透率为3.9ccmil/100in2day。相应的PET的CO2渗透率不论PET是回收的或是纯净形式,都约为12-20ccmil/100in2day。
本发明的实施例的方法为继后吹制模塑成瓶的预型之上提供了涂层。这种方法最有利于将涂层布设到瓶子本身上。预型的尺寸较由其吹制模塑成的容器小组形状较规则,使得能较易地制得均匀与规则的涂层。此外,可以由有相似尺寸与形状的预型来制造不同形状与尺寸的瓶子与容器,于是可以用同一种设备与工艺来生产可形成不同种类容器的预型。预型在模制之后可以迅即进行吹制模塑或可以存储起供以后吹制模塑之用。要是在吹制模塑之前储存预型,预型的较小尺寸能节省存储空间。
尽管最好是由涂层的预型来形成容器而不是对容器本身涂层,但一般并不采用由涂层的预型来生产容器的方法,这是由于从涂层的或多层的预型来制造容器时会带来许多困难。在由涂层的预型来生产容器时,会产生例如分层、开裂或涂层开裂、涂层厚度不均、涂层间断或有空隙等缺陷。但这些困难可以通过采用适当的阻隔材料和让各层之间能良好粘合的方式进行涂层来克服。
为此,本发明的一个方面是去选择适当的阻隔材料,当采用了适当的阻隔材料后,涂层就能直接粘附到预型件时而不会发生任何有影响的分层,并且随着此预型吹制模塑成瓶和之后,此涂层都会继续粘附。采用合适的阻隔材料也有助于减少如前所述的由吹制模塑容器造成的影响外观与结构的缺陷。
应知虽然这里绝大多数制造涂层预型的论述、附图以及例子都是处理两层式的预型,但这方面的论述并非用来将本发明局限于两层式产品。本发明的两层式阻隔层容器与预型可适于多种应用,还由于材料与处理工艺的经济可以降低成本。但在某些环境下和某些应用中可能需要由多于两层组成的预型。应用三层或多层时允许加入例如回收的PET等材料,这一般要比纯净的PET便宜或也是最理想的阻隔材料。这样,应该认为,作为本发明的一部分在此所公开的所有用于生产本发明涂隔层预型的方法和所有其他用于制造这种预型的适当方法都是可以采用的。或者单独使用或者结合使用来生产包括两层或多层式的涂隔层的预型和容器。
B.附图的详述参看图1,其中示明了首选的未涂层预型的。这种预型最好由FDA批准的原材料如纯净的PET制成,可以取众多形状与尺寸中的任一种。图1中所示的预型将形成16oz.碳酸酯饮料瓶要求阻隔氧与二氧化碳的充气饮料瓶,但内行的人应知,取决于成品所需的构型、特征与用途,可以采用其他的预型构型。此未涂层的预型30可以由本项技术中周知的注射模塑法或这里所公开的任何方法制造。
参看图2,其中示明了图1中首选的未涂层预型30的剖面。未涂层的预型30有颈部32与体部34。颈部32始于口部36至预型30之内而延伸到且包括支承环38。颈部32的另一特征是存在螺纹40,它用于使瓶盖紧固到由预型30生产出的瓶上。体部34是细长的圆筒形结构,从颈部32向下延伸到达倒圆的终端套42。预型厚度44取决于预型30的总长以及成品容器的壁厚与总体尺寸。
参看图3,其中公开了具有本发明特征的一种涂隔层预型50的剖面图。涂隔层预型50具有与图1和2中未涂层预型30相同的颈部32和体部34。阻隔涂层52围绕体部34的整个表面设置,终止于支承环38的底部。图3中所示实施例的阻隔涂层52并不延伸到颈部32,也不存在于最好由FDA批准的材料如PET所制预型的内表面54上。阻隔涂层52可以包括一种材料或包括至少两种材料的若干微层。预型的整体厚度56等于初始预型厚度加阻隔层的厚度58,且取决于成品容器的整体尺寸和所需涂层厚度。作为例子,预型底部的壁可以厚3.2mm,颈口壁的剖面尺寸约3mm而阻隔材料涂布的厚度约0.3mm。
参看图4,其中以剖面示明了涂层预型60的最佳实施例。此涂层预型60与图3中涂层预型50的主要差别是端套42区域中这两层的相对厚度。在涂层预型50中,阻隔层52在预型的整个体部中一般比初始预型的薄。但在涂层的预型60中,阻隔涂层52在端套42处附近以62标明的部分则比其在壁部66的以64标明的部分较厚,相反,在端套42的区域中,内聚酯层的厚度于壁部66的标号68处则比标号70处较厚。这样设计的预型特别适用于将阻隔涂层涂布于如下所述的超模塑工艺中的初始预型上来制造涂层预型时,这时的优点包括可缩短模塑周期。这些优点将于以后更详细地讨论。阻隔涂层52可以是均匀的或可以由许多微层组成。
图4A是此预型的壁部段放大,示明了预型在LIM超注射实施例中各层的构造。LIM工艺将于以后详述。层72是预型的内层而层74是预型的外层。外层74包括在采用LIM系统时将制造的许多微层材料。并非图4中的所有预型都是这种类型。
参看图5,其中以剖面图示明了涂层预型76的另一实施例。此涂层预型76与图3和4中涂层预型50和60的主要差别分别在于阻隔涂层52是设在颈部32与体部34中。
这里的涂隔层预型与容器可以具有相对厚度为多种多样的许多层。从这里所公开的内容考虑,给定的层以及整个预型件或容器的厚度,不论是在给定的点上或是整个容器上,都能选择成符合涂层工艺或容器的最终使用目的。此外,正如上面相对于图3中阻隔涂层所讨论的,此处所公开的预型与容器中的阻隔涂层可以包括单一材料或包括两或多种材料的若干微层。
在涂隔层的预型例如图3中所示的,在由例如下面详述的方法与设备制成后,对其进行拉伸吹制模塑处理。参看图6,在此处理中,将涂隔层预型50置于具有与所需容器形状相对应的模腔的模具80之中。然后加热此涂隔层的预型50,通过拉伸和通过使空气强制注入此预型内部来填满模具80中的模腔让此预型扩展,形成涂隔层的容器82。这种吹制模塑作业通常限于颈部32的预型的体部34,此颈部32包括螺纹、防伪环以及保持同于预型中原有构型的支承环。
参看图7,其中公开了依据本发明的涂隔层容器82的实施例,例如可以由图3中涂隔层预型50通过吹制模塑成的那种。容器82具有颈部32与体部34,它们对应于图3中涂隔层预型50的颈部与体部。颈部32的另一特征是存在螺纹40得以将瓶盖紧固到容器上。
从剖面观察此涂隔层容器82时可以看到如图8所示的结构。阻隔涂层84覆盖着容器82的整个体部34之外,恰好中止于支承环38之下。由FDA批准的材料最好是PET制的容器其内表面86保持不加涂层,因而只是内表面86与饮料或食品接触。在用作充气饮料容器的最佳实施例中,阻隔涂层的厚度87更好是0.020~0.060″而最好是0.030~0.040″;PET层的厚度88更好是0.080~0.160″而最好是0.100~0.140″;涂隔层容器82的整体壁厚90更好是0.140~0.180″而最好是0.150~0.170″。最好是在平均结果上使容器82的整体壁厚90能由在内的PET层得出其厚度的绝大部分。
图9示明利用超模塑的方法中所用模具的首先类型。此模具包括两个半模、一个半模腔92和一个半模芯94。半模腔92包括的一个腔部中置有未涂层的预型。此预型保持在对预型上部加压的半模芯94和在其上座定着支承环38的半模腔92的凸缘96之间。此预型的颈部32于是便为其体部封固。在此预型之内是芯轴98。当预型就位于模具内时,此预型的体部便完全为空隙100包围。这样定位的预型在随后的注射过程中起到内部模芯的作用,在此注射过程中,超模塑的材料的熔体通过门102进入空隙100内形成涂层。此熔体与未涂层的预型一起由此模具的两个半模中通道104与106内循环的流体冷却,而这两个通道104与106内的循环最好完全独立。
图10与11示意地表明了用以制造本发明的涂层预型的设备首选类型的一部分。此设备是注射模制系统,设计用来制造一或多个未涂层预型,继后通过超注射上阻隔材料对此新制的预型涂层。图10与11示明此设备的处于模塑设备中相对位置的该模具部分的两个半模。图10中的定位销110配合到此模具的另一半的相应销座112中。
图11所示的半模有几对模腔,各个模腔与图9所示的模腔类似。这些模腔有两种第一注射预型模塑腔114和第二注射预型涂层腔120。这两种腔在个数上相等;且最好布置成使一种中的所有腔为定位销座112二等分分开的注射单元124的同一侧。这样,每个预型模塑腔114便同一预型涂层腔分开180°。
图10所示的半模有几个芯轴98,每个模腔(114与120)各一个。当图10与11所示的这两个半模放到一起时,芯轴98便配合到相应的腔中,用作预型模塑腔114的预型内部的模具同时用作预型涂层腔120中未涂层预型的定心装置。芯轴98安装于转台130上,此转台绕其中心旋转180°,使得与预型模塑腔114对准的芯轴98在转动台将与预型涂层腔120对准,反之亦然。
应知图10与11的附图仅仅是用于例示目的。例如这些附图描述的设备具有三个模塑腔114和三个涂层腔120(一种3/3模腔的机器)。但这种机器可以具有任何个数的模腔,只需存在有相同等个数的模塑腔与涂层腔即可,例如12/12、24/24、48/48等。这些模塑腔可以按任何适当方式排列,这可以由内行的人确定。上述的或其他的细微变化都应视作为本发明的一部分。
图12与13所示的两个半模表明了相对于图10与11所讨论的48/48腔设备的模具。
参看图14,其中示明了用于超模塑(注射-超注射)工艺的这种模具的透视图,其中的芯轴98是部分地位于模塑腔114与涂层腔120内。箭头表明了可动半模142的运动,在模具闭合上时,芯轴98处于此可动半模142之上。
图15是用于超模塑工艺的这种模具的透视图,其中芯轴98已从腔140与120中完全撤出。箭头表明转台130转过180°使芯轴98从一个腔转到下一个腔。在固定半模144上,预型模塑腔114的冷却与预型涂层腔120的冷却相分开。这两者又与可动半模中芯轴98的冷却分开。
参看图16,其中示明了最佳的三层预型132。此涂层预型的实施例最好通过将两层涂层134与136布设到预型30之上如图1所示的情形。
图17示意地表明了另一种可用于超模塑工艺的最佳设备150。在设备150之上设有第一与第二注射器152、154将熔体流提供给第一与第二模腔156、158。图18示明图17实施例的转台160部分。此转台160设有其上标以A至D的四个工位或段,每个工位上各有相应的芯轴98a~d,它们两两大致分开90°。由致动器162例如液压缸提升转台160,以使芯轴98从两个工位同时插入第一与第二模腔156、158,而在其它工位上的芯轴98则仍然脱离开模腔。在转台160降低使得芯轴98从腔中撤出后,此转台再转过90°。这样,刚从第一腔156移出的芯轴98便位于拟插入第二模腔158的位置,而刚从第二模腔158移出的芯轴则脱离开模腔。各个工段通过一列顺序90°的转动循环地通过第一与第二腔156、158。图19表明了在生产周期的各工序中这些工段相互相对的位置关系。
图20与21表明了本发明的设备170的另一实施例,它在许多方面与图19和18所示的类似,但在这一实施例中不是让整个台160由液压缸升举而是由致动器172分别地控制转台160的各工位使其独立地与相应的模腔结合和脱开。这样的布置方式提高了设备170的灵活性。例如图20表明芯轴98可以在第一腔156中的芯轴撤出后仍保持在第二腔158中。这样能使模腔间的保持时间独立地优化。
再来参看图22~23,其中概示了可用来超模塑多层预型件的另一优选的设备250。在此实施例中,转台260在其四侧分别形成有工位AA、BB、CC、DD。与以前实施例相同,在各个工位上设有模具芯轴98或芯子。第一与第二模腔256、258与分别供应PET和阻隔材料熔体流的对应的第一与第二注射机252、254通连。第一模腔256与第一注射机252通连并保持固定;第二注射机254垂直地位于上方而且也仍然固定。转台260内可沿轨道268作水平运动的基座264支承。第二模腔258由致动器268连接到转台260上,也随转台260作水平运动。致动器268牵引第二模腔288与设在转台268上的芯轴98B相配合以闭合此模具。在第二模腔258与相应的芯轴结合后,转台260再作水平移动使芯轴与第一模腔256配合。在这两个横腔与芯轴配合之后,此时模具完全闭合,如图23所示,同时第二注射机254也位于与第二模腔258通连处得以给后者提供阻隔材料的熔体流。
完成注射后,模具打开。为了打开模具,可使转台260首先作水平移动以让芯轴与第一腔256脱开,然后提升第二模具以脱离与转台260的结合。转台260然后旋转90°,重复闭合模具和注射材料。在模望周期的休止时间,设在未与模腔配合的芯轴98之上的注射上的预型便在此相关的芯轴上冷却。图24示明了在生产周期的各个工序间所述各工位相互相对的位置关系。
参看图25,其中概示了可以用来按下面进一步详述的薄层注射模塑(LIM)工艺,来生产包括许多微层或薄层的熔体流的设备。
再来参看图26,其中示明了模具芯轴298和相关的模腔300的最佳实施例。在模腔300的表面304正下方形成了螺旋形式的冷却管302。在门308附近限定出模腔300的一个门区306,在此门区306处的模腔中设有由具有极高传热导性的材料制成的插件310。这样,已注射成的预型的门区/底端314可以特别迅速地冷却。
芯轴298是空心的,具有大致均厚的壁部320。鼓泡器冷却装置330设在此空心的芯轴298内且包括位于芯轴298中央的芯管332,此芯管将急冷的冷却剂C直接输送到芯轴298的底端322。冷却剂C于芯轴内从底端322上流,经输出管线334排出。此芯管由在其与芯轴壁320之间延伸的加强肋336保持就位。
再来参看图27与28,图中示明,于模腔300部件间的接头342处形成有空气引入系统340。沿着模腔300于周缘上形成一凹口344。凹口344充分地小,使得在注入熔体时基本上不会有熔融塑料进入。空气管线350将此凹口344连接至空气压力源,有阀控制对凹口344的空气供应。在熔体注入过程,此阀关闭。当注射结束,此阀打开,将加压空气A供给凹口344以解除注射成的预型与腔壁304之间可能形成的真空。
下面将更详细地讨论用于制造涂层预型的首选方法与设备。由于这种方法与设备特别适用于形成包括某些从优选定的材料的涂隔层瓶,故在说明应用这些优选的材料首先方法与设备之前讨论这些材料的物理性质、鉴别、制备与改进。
C.最佳阻隔材料的物理特性本发明的最佳阻隔材料最好具有这样一些物理特性,能使本发明的涂隔层瓶与制品在类似或优于未涂层PET的相应方式下经受住加工的应力与物理应力,此外还能使生产出的制品具有悦目的外观和极优的阻隔性质。
所谓粘合是把两个表面联结或粘合到一起。真实的界面粘合是在微观级别上发生的现象,它所根据的是分子的相互作用且取决于化学键合、分子级别下的范德瓦尔斯力以及其他分子间的引力。
当制品是通过吹制模塑预型而制成时,阻隔层与PET层之间的良好粘合特别重要。如果这些料层粘合得好,它们在受到吹制模塑处理以及当它们以容器形式存在而受到应力的作用时,会成为一个整体工作。当粘合不良,经过一段时间或是在压实容器的物理应力作用下或是在发货中致容器挤压时,都会导致分层。分层不仅从商品观点上考虑不能接受,还表明容器缺乏结构的整体性。此外,良好的粘合意味着这些层在容器于模塑过程展开时将保持紧密接触并将作为一个整体移动。当两种材料以这种方式作用时,就很少有可能使涂层中出现空隙,这样就能允许涂布较薄的涂层。所述阻隔材料最好能充分地粘附到PET上以使阻隔层在22℃时也不易从PET层拉开。
这样,部分地是由于阻隔层直接粘附到PET上,本发明便不同于Farha在美国专利No.5472753中所公开的,在该专利中既未公开也未暗示过苯氧基型热塑塑料能够或应该直接粘附到PET上,而不必与共聚聚酯混合或采用共聚聚酯为连接层或者共聚聚酯本身可以用作阻隔材料。
玻璃转变温度(Tg)定义为非结晶聚合物在从软橡胶态变换为硬弹性聚合物玻璃态时的温度。一种材料在其Tg之上的一个温度范围将软化到足以使其在外力或压力作用下时易于流动,但又不会软化到使其粘度低到令其更像液体而不像柔软的固体。在Tg之上的这一温度范围乃是用于吹制模塑预过程中的最佳温度,因为此时的材料软到足以在吹入预型内的空气的力的作用下流动而与模具配合,但又不会软化到致其破裂或在结构中产生不均匀。于是,当一些材料具有相似的玻璃转变温度时,它们也就会有相似的最佳吹制温度范围,能允许这些材料在一起加工而不会牺牲任一种材料的性能。
在由预型生产瓶子的吹制模塑工艺中,如所周知是将预型加热到略高于其材料的Tg的温度,以在有空气强制进入此预型内部时能流动而填满其所放置在的模具内,要是没有充分地加热此预型而且采用了低于Tg的温度,则预型的材料就会硬到不能适当地流动,并且有可能断裂或开裂或是不能扩展开充填模具。相反,要是把此预型加热到过高于Tg的温度,则预型的材料就可能软至不能保持其形状而不能合适地加工。
要是阻隔涂层料具有类似于PET的Tg,它也就会有类似PET的吹制温度范围。因此,要是PET预型涂以这种阻隔材料,就可以选择吹制温度让两种材料在它们最佳的吹制温度范围内加工。若是此阻挡涂层所具有的Tg不与PET的类似,就不能或是难以选择适合两种材料的吹制温度。当阻隔涂层材料具有与PET类似的Tg时,涂层的预型就能在吹制模塑中似乎由一种材料制成,可均匀地扩展开而形成外观悦目的容器,而在涂布有阻隔材料处则有一致的厚度和均匀的涂层。
取决于PET先前的处理情形,PET的玻璃转变温度发生于75~85℃的范围。本发明实施例的优选阻隔材料的Tg宜为55~140℃,最好是90~110℃。
在吹制模塑过程中对阻隔预型的性能有影响的另一因素是材料的状态。本发明最佳实施例的首选阻隔材料是无定形的而不是结晶的。这是由于无定形态的材料要比结晶态材料较易用吹制模塑法形成瓶子与容器。PET能以结晶的和无定形的两种形式存在。但在本发明的实施例中最好是使PET的结晶度最小而有最大限度的无定形态,以形成这样一种半结晶态。它连同其他条件有助于层间粘合和吹制模塑过程。由PET熔体形成的PET制品在注射模塑中,能够通过快到足以抑制结晶过程将PET冻结于基本上是无定形态的高速下来冷却熔体而引向半结晶形式。此外,应用较早前所述的“高IPA的PET”由于它能在比均聚物PET更低的速率下结晶而更易抑制结晶过程。
特性硬度与熔体指数是与聚合物分子量有关的两个性质。这两个性质表征了材料在各种工艺条件如注射模塑与吹制模塑工艺条件下的行为。
用于本发明的制品与方法的阻隔材料具有的特性粘度宜为0.70~0.90dl/g、更好为0.74~0.87dl/g而最好为0.84~0.85dl/g;熔体指数宜为5~30、更好为7~12而最好为10。
本发明的实施例的阻隔材料最好具有与PET类似的抗拉强度和蠕变阻力。这些物理性质的类似就能使阻隔涂层不只是起到气体阻挡层的作用。物理性质与PET类似的阻隔涂层能起到容器的结构部件的作用,允许由此阻隔材料来取代容器中的PET而不牺牲容器的性能。取代PET允许所形成的涂隔层容器具有类似于未涂层相应容器的物理性能,而不会显著改变重量或尺寸。也能通过减少了每个容器由于PET所影响的成本来支付由于增设阻隔材料所添加的费用。
PET与阻隔涂层材料之间抗拉强度的相似能帮助容器具有结构的整体性。这在有部分PET为阻隔材料取代时就特别重要。具有本发明的特点的涂隔层瓶与容器能够与未涂层容器相同地经受住某些物理力的作用,例如允许对涂隔层容器按处理未涂层PET容器的惯用方式发货与输送。要是涂隔层的PET的抗拉强度显著地低于PET的,则有部分PET为阻隔材料取代的容器将可能难以经受未涂层容器所能经受的力。
PET与阻隔涂层料之间蠕变阻力的相似有助于让容器保持其形状。蠕变阻力涉及到材料响应施加的力抵抗其自身变形的能力。例如贮存充气液体的瓶子需要能抵抗溶解的气体的压力外推和保持其原有形状。要是容器中阻隔涂层料对蠕变的阻力显著地低于PET的时,则制得的容器很可能经过一段时间后会变形,缩短这种产品的存放寿命。
对于光学透明性成为重要因素的应用,首选的阻隔材料应具有与PET相似的折射率,当这两者的折射率近似时,预型以及或更为重要的是由预型吹制成的容器是光学透明的,因而外观上令人悦目,适用于常常希望瓶子为透明的饮料容器。但当这两种材料的折射率显著不同而相接触地放到一起时,组合的结果将导致视觉畸变,而取决于其折射率相差的程度还可能成为模糊或不透明的。
PET的可见光折射率取其于其物理结构而约为1.40~1.75。在制作成预型时,此折射率宜为约1.55~1.75而最好是约1.55~1.65。在将此预型制成瓶时,成品的壁则可具有双轴取向模的特征,这是因为它在吹制模塑作业中受到圆周应力与轴向应力两者的影响。吹塑模制的PET的折射率一般约为1.40~1.75,常常约为1.55~1.75,这要取决于吹制模塑作业中涉及的拉伸比,对于约6∶1的较低的拉伸比,折射率接近上述范围的下限,而对于约10∶1的高拉伸比,此折射率接近上述范围的上限。应知这里谈到的拉伸比是由于圆周拉伸比与轴向拉伸比所造成且包括了这两种拉伸比的产物。例如在吹制模塑作业中,最终的预型沿轴向加大了2.5倍而沿径向加大了3.5倍,而此拉伸比应约为8.75(2.5×3.5)。
用符号ni代表PET的折射率,no表示阻隔材料的折射率,折射率ni与no之比宜为0.8~1.3,更好是1.0~1.2而最好是1.0~1.1。内行的人可知,当比值ni/no=1,因折射率产生的畸变会最小,这是由于这两种折射率一致。但是,随着这一比值逐渐偏离于1,畸变也逐渐加大。
D.最优阻隔涂层材料及其制备用于本发明的产品与方法中的最优阻隔涂层材料包括苯氧基型热塑塑料;对酞酸、异酞酸与至少一个具有与PET相匹配的良好阻隔性质的二醇的共聚聚酯(共聚聚酯阻隔材料);聚酰胺;PEN(聚萘二甲酸乙二醇酯);PEN共聚物;PEN/PET混合物,以及以上各种化合物的组合物。用作本发明的阻隔材料的苯氧基型热塑塑料最好是下述类型之一(1)羟基官能聚酰胺醚中具有由下述任何一个化学式Ia、Ib或Ic所表示的重复单元的
(2)聚羟基酰胺醚中具有由下述化学式IIa、IIb、IIc任何一个独立表示的重复单元的 (3)酰胺与羟甲基官能化聚醚中具有由化学式III表示的重复单元的 (4)羟基官能聚醚中具有由化学式IV表示的重复单元的 (5)羟基官能聚醚磺酰胺中具有由以下化学式Va或Vb所表示的重复单元的
(6)聚羟基醚酯中具有由以下化学式VI表示的重复单元的 (7)羟苯氧基醚聚合物中具有由以下化学式VII表示的重复单元的 以及(8)聚羟氨基醚中具有由以下化学式VIII表示的重复单元的
其中各个Ar都表示一个二价的芳族部分、取代的二价芳香族部分或杂芳香族部分,或是不同的二价芳香族部分、取代的芳香族部分或杂芳香族部分的组合;各个R是氢或是单价羟基部分;各个Ar1是二价芳香族部分或是载有酰胺或羟甲基的二价芳香族部分;各个Ar2与Ar相同或不相同,分别是二价的芳香族部分、取代的芳香族部分或杂芳香族部分,或不同的二价芳香族部分、取代的芳香族部分或杂芳香族部分的组合;各R1是以羟基烯为主的部分,如二价芳香族部分、取代的二价芳香族部分、二价异芳香族部分、二价烯烃部分、二价取代的烯烃部分或二价异烯烃部分或这种部分的组合;各R2是单价羟基部分;A是胺部分或不同胺部分的组合;X是胺、亚芳基二羟、亚芳基二磺酰胺基或亚芳基二羧基部分,或是这些部分的组合;而Ar3是由以下任一化学式所表示的“阳基环” 其中的Y是零、共价键或连接基,而其中适当的连接基包括例如氧原子、硫原子、羧基原子、磺酰基,或是亚甲基或类似的键;n是整数,从约10至约1000,x是0.01到1.0,y是0~0.5。
词“主要是烃基烯”是指主要是烃的二价基,但它必要时可包含少量的杂原子部分如氧、硫、酰胺基、砜基、亚砜基,等等。
由化学式I表示的羟基官能聚酰胺醚最好是使N,N′-双(羟基苯胺)链烷或芳烃与二环氧甘油醚接触制备,以美国专利No.5089588与No.5143998中所述。
由化学式II所表示的聚羟基酰胺醚是通过使双(羟基苯胺)链烷或芳烃或是两个或多个这些化合物的组合,如N,N′-双(3-羟苯基)己二酰二胺或N,N′-双(3-羟苯基)戊二酰胺,与表卤醇接触而制备,如美国专利No.5134218中所述。
由化学式III所表示的酰胺与羟甲基官能化的聚醚例如可按下述方式制备使二环氧甘油醚类例如双酚A的二环氧甘油醚同具有侧胺基、N-取代胺基和/或羟烷基部分如2,2-双(4-羟苯基)乙酰胺和3,5-二羟基苯酰胺的二羟酚进行反应。这些聚醚及其制备工艺已描述于美国专利No.5115075与5218075中。
由化学式IV所表示的羟基官能聚醚例如可以按美国专利No.5164472所述的工艺制备使二环氧甘油醚或二环氧甘油醚类的组合与二羟酚或与二羟酚类的组合物反应。或者可以根据Rein kin,Barnabeo与Hale在《Journal of Applied Polymer Science》,V07,p 2135(1963)所述的工艺,使二羟基酚或二羟基酚类的组合与表卤醇反应来制得这种羟基官能的聚醚。
由化学式V所表示的羟基官能聚醚磺酰胺例如可按美国专利No.5149768中所述,通过使N,N′-二烃基或N,N′-二芳基二磺酰胺与二环氧甘油醚聚合来制备。
由化学式VI所表示的聚羟基醚酯,是通过使脂族的或芳族的二酸类如对苯二甲酸二环氧丙脂或二羟酚的二氧化丙烯醚,与脂族或芳族的二酸类如己二酸或异酞酸反应来制备。这些聚酯已于美国专利No.5171820中描述到。
由化学式VII所表示的羟苯基醚聚合物例如可按下述方式制备使至少一种苯二核单体在足以使此二亲核单体的亲核部分与环氧部分反应形成包含侧羟基部分与醚、亚胺基、氨基、磺酰胺基或酯键合的聚合物主链单体的条件下,与万向双酚的至少一种二氧化丙烯醚如9,9-双(4-羟苯基)芴、酚酞,或是酚酞酰亚胺啶或是取代的万向双酚,如取代的双(羟苯基)芴、取代的酚酞或取代的酚肽酰亚胺啶相接触。这些羟苯基醚聚合物已描述于美国专利No.5184373中。
由化学式VIII所表示的聚羟氨基醚(“PHAE”或聚醚胺),是使二羟酚的一或多种二氧化丙烯醚,在足以使胺的部分与环氧部分反应形成具有胺键合、醚键合与侧羟基部分的聚合物主链的条件下,与具有两个胺氢的胺接触而制备成。这些化合物已描述于美国专利No.5275853中。
化学式I~VIII的苯氧基型热塑塑料可以购自Dow ChemicalCompany(Midland,Michigan U.S.A)。
可从Phenoxy Assocites,Inc.购得的这种苯氧基型热塑塑料适用于本发明。上述这些羟苯基醚聚合物是二羟多环酚如双酚A与表卤醇的浓缩反应产物并具有由化学式IV表示的重复单元,其中Ar是异亚丙基二亚苯基部分。制备这些聚合物的工艺已在美国专利No.3305528中描述过,现就其整体内容综合于此供参考。
最佳的苯氧基型热塑塑料是由化学式VIII所表示的聚羟氢基醚(“PHAE”),例子之一是Dow Chemical Company以XU 19040.00L牌号所出售的。
最佳的共聚聚酯阻隔材料的例子及其制备工艺描述于Jabarin的美国专利No.4578295中。这些材料一般是通过加热选自异酞酸、对酞酸以及它们的具有1,3双(2-羟基乙氧基)苯的C1至C4烷基酯中的至少一种反应剂与乙二醇的混合物来制备。必要时,上述混合物还可以包括一或多种酯形成的二羟基烃和/或双(4-β-羟基乙氧基苯基)砜。特别理想的共聚聚酯材料可以按B-010、B-030和这一族的其他牌号购自三井石油化工有限公司(日本)。
最佳聚酰胺阻隔材料的例子包括三菱气体化合物公司(日本)。其他的最佳聚酰胺阻隔材料是这样一些聚酰胺,它们按重量计最好是含有1~10%的聚酯,而尤为最好是含有1~2%的聚酯,这里的聚酯则最好是PET,而尤为最好是高IPA的PET。这些材料是通过将聚酯添加到聚酰胺缩聚反应混合物制备成。这里所用的词“聚酰胺”将包括含PET或其他聚酯的那些聚酰胺。
另一些最佳阻隔材料则包括聚萘二甲酸乙二醇酯(PEN)、PEN共聚聚酯以及PET/PEN混合物。PEN材料可以购自Shell ChemicalCompany。
E.聚酯的制备聚酯及其制备方法(包括用于它们形成中的特殊单体、它们的比例、聚合温度、催化剂与其他条件)是本项工艺中周知的,在此予以提及以供本发明参考。出于解释而非限制目的,请特别参看《Encyclopedia of Polymer Science and Engineering》,1988revision,John Wiley & Sons,p1~62,Vol.12。
通常聚酯是通过二或聚羧酸与二或多元醇起反应而得出的。适用的二或聚羧酸包括聚羧酸类与这种酸的酯和和酐以及它们的混合物。有代表性的羧酸包括钛酸、异酞酸、己二酸、壬二酸、对酞酸、草酸、丙二酸、琥珀酸、戊二酸以及癸二酸,等等。二羧酸是首选的。对酞酸是最普遍采用的并且能最佳地用于制备聚酯膜。α,β-不饱和二和聚羧酸(包括这种酸的酯或酐以及它们的混合物)可以用来部分取代饱和的羧酸。有代表性的α,β-不饱和二和聚羧酸包括马来酸、富马酸、阿康酸、衣康酸、中康酸、柠康酸与-氯马来酸,等等。
用来制备聚酸的典型的二和多元醇是那些具有至少两个羟基的醇,虽然也可采用少量的具有较或较少羟基的醇。二元醇最为理想。通常用于制备聚酯的二元醇包括二甘醇;双丙甘醇;乙二醇;1,2-丙二醇;1,4-丁二醇;1,4-戊二醇;1,5-己二醇;1,4-环己醇;等等,而以1,2-丙二醇最为理想。也可以采用醇类的混合物。聚酯的二或多元醇组份相对于酸通常是化学计量的或稍有过量。过量的二或多元醇很少超过约20~25%摩尔,通常是约2~约10%摩尔。
聚酯一般是将二或多元醇与二或聚羧酸组份的混合物以其合适的摩尔比,于高温下加热制成,加热的温度一般约100~250℃,加热时间一般为5~15小时。还最好采用例如叔丁基邻苯二酚之类的阻聚剂。
PET这种首选的聚酯通常是由对酞酸与乙二醇缩合制成,可以购自Dow Chemical Company(Midland,Michigan)与Allied Signal Inc.(Baton Rough,CA)以及其他公司。
所用的PET最好是将它制成共聚物的过程中添加异酞酸(IPA)。所添加的IPA按重量计宜为2~10%、更好是3~8%而最好是4-5%。上述最佳范围根据的是当前的FDA法规,现行不允许IPA含量超过5%的PET材料与食品或饮料接触。高IPA的PET(按重量计含有超过约2%的IPA的PET)可以按以前所述的方式制备,或可以购自众多不同的制造厂,例如具有4.8%IPA的PET可以购自SKF(意大利),而10%IPA的PET可以购自INCA(Dow,欧洲)。
此外,若是把聚酰胺选用作阻隔材料,则再好采用含聚酰胺的聚酯。这种含聚酰胺的聚酯是通过将聚酰胺加到聚酯缩聚混合物内而形成。聚酯中的聚酰胺量按重量计宜为1~10%而更好是1~2%。所用的聚酯最好是PET,而尤其最好的是高IPA的PET。
F.改进阻隔树脂阻隔性质的材料前面公开的阻隔材料可以结合其他能改进阻隔性质的材料来使用。一般地说,气体扩散通过材料的原因之一是在材料中存在分子级的间隙或孔洞能让气体分子通过。材料中存在的分子间作用力例如氢键键合力则可以使基体中的链间发生内聚力,封闭这类孔隙而阻止气体扩散。通过添加另外的分子和物质,它们能够利用这种分子间的作用力并在基质中的聚合物链之间起到桥连作用,同样有可能提高良好阻隔材料的隔气能力,也有助于封闭基质中的孔隙和减少气体扩散。
二醇间苯二酚(间二羟基苯)的衍生物在制造PHAE、PET、共聚聚酯阻隔材料及其他阻隔材料中与其他单体反应时,一般会使形成的材料的阻隔性质优于未含这种间苯二酚衍生物的材料的。例如间苯二酚二环氧甘油醚可以用于PHAE中,而羟乙基醚间苯二酚则可用于PET以及其他聚酯与共聚聚酯阻隔材料。
阻隔材料有效性的一种度量标准是它对物料存储寿命的影响。充气软饮料在32oz无阻隔层瓶中的存储寿命约为12~16周。存储寿命是按原有的CO2量在瓶中已降至85%以下时的时间来确定的。用下面描述的注射超注射法除以PHAE的瓶子业已发现其存储寿命大于只用PET时2~3倍。但要是采用加有间苯二酚二环氧甘油醚的PHAE,则此种存储寿命可以比只有PET时增加到4~5倍。
提高材料阻隔本领的另一种方法是去添加某种物质“堵塞”聚合物基质中的孔隙,从而阻止气体通过基质。在此称作为“毫微粒”或“毫微粒料”的这样一种物质是一些极细微的料粒,它们通过给氧或二氧化碳迁移形成更迂回盘旋的路径而增强了材料的阻隔性质。最佳的一种毫微粒料是可以购自Southern Clay Products的微粒型粘土基的产物。
G.涂隔层产品的制备在选定了合适的阻隔涂层材料后,必须按照可增强两种材料间粘合力的方式来制作涂层预型。一般地说,阻隔涂层料与PET间的粘合力随PET表面温度的增加而增加。因此最好在加热的预型上预形成涂层,不过这种优选出的阻隔材料在室温下会粘附到PET之上。
存在有多种方法用来生产本发明的涂层的PET预型。首选的方法包括浸涂、喷涂、火焰喷射流化床浸渍以及静电粉末喷涂。另一种最佳方法是薄层注射模塑将于下面详细讨论。上述各种方法已在本申请人的共同未决美国申请系列No.09/147971中介绍和描述到,该申请是1998,10,19提交的,题名为“涂隔层聚酯”,它的整个内容已综合于此供参考。
生产涂层PET预型的一种特别理想的方法在此一般称作为超模塑法而有时称之为注射超注射(“IOI”)法。这一名词指的是这样一种方法,它应用注射模塑将一或多层阻隔材料注射到既有的最好本身也是由注射模塑形成的预型上。
这里的词“超注射”与“超模塑”是用来描述这样的涂层工艺,由其将一层材料,最好包括阻隔材料注射到既有的预型之上。在一种特别最佳的实施例中,这种超模塑过程是在底层的预型迄未完全冷却时进行。超注射可以用来而设一或多层另外的材料例如阻隔材料、回收的PET或其他材料到涂层或未涂层的材料上。
超模塑法是在注射模塑法中采用类似于形成未涂层预型本身时所用设备进行的。用于超模塑法的理想模具与其中所设的未涂层预型示明于图8中。这种模具包括两个半模、半模腔92与半模芯94,在图9中示明的是它在超注射之前的闭合位置。半模腔92包括一个腔部,其中设有未涂层的预型。预型的支承环38座定于凸缘96上且由半模芯94保持就位,此半模芯94对支承环38施加压力,使预型的颈部与体部封固。半模腔92中有一批管道或通道104来载运流体。通道中的流体最好于这样的路径中循环,沿此路径让流体进入半模腔92的入口,通过通道104经出口自半模腔92流出,经深冷器或其他冷却装置,然后返回入口。此循环的流体用来冷却模具,从而使注入此模具内的塑料熔体冷却以形成涂层的预型。
模具的半模芯94包括一芯轴98。芯轴98有时称作芯子,从模具的半模芯94突出,占据预型的中央空腔。芯轴98除帮助将预型于模具中定中外还冷却其内部。这种冷却是使流体循环地通过模具的半模心94中的通道106,最重要的是通过芯轴98本身的整个长度来实现。半模芯94的通道106以类似于半模腔92中通道104的方式工作,即它们也形成了让冷却流体流过的在半模具内的路径的一部分。
在预型位于模腔内时,此预型的体部便处于模腔的中央并完全为空隙100包围。这样定位的预型在以后的注射过程中起到内部模芯的作用。进行超模塑处理的材料的熔体,最好包括阻隔材料,此时便由注射器经过门102引入到模腔内,围绕着预型,最好至少是围绕预型的体部34流动。经过超注射之后,超模塑的材料层其尺寸与形状便近似于空间空隙100的。
为了进行此超模塑处理,最好将拟涂层的预型加热到其Tg以上的温度。在PET情形,这种温度最好是100~200℃,而尤为最好是180~225℃。要是对于PET采用了≥其约120℃的结晶温度的温度时。当在此预型中冷却PET时应该慎重处理。冷却应充分到使预型中的PET结晶化最小,以使PET处于理想的半结晶态。或者,所用的这种初始预型可以是刚刚注射模塑完还尚未完全冷却的,因为对超模塑工艺来说最好是在高温下进行。
将涂层的材料加热到使其熔体的粘度能与应用注射模塑设备相匹配。此时所用的温度即注射温度因材料而异,这是由于聚合物的熔化温度范围以及相应熔体的粘度将因材料的历史、化学特性、分子量、分枝程度及其他特性而变化。对于上面公开的最佳阻隔材料,注射温度最好为160~325℃,而尤为最好是200~275℃。例如对于共聚聚酯阻隔材料B-010,此最佳温度约为210℃,而对于PHAE XU-19040.00L,此最佳温度为160~260℃,而最好是约200~280℃。PHAE的最理想注射温度是约190~230℃。要是采用回收的PET则此注射温度宜取250~300℃。然后将涂层材料注入模具内,注入的量要足以充填此空闲的空隙。要是涂层材料包括阻隔材料,则此涂层是阻隔层。
涂层好的预型最好冷却到至少是这样一个温度,在此温度下,此预型可以自模具中移出或挪运而不使其损伤并从模具中撤出至可以进一步进行冷却的地方。要是采用PET,同时此预型业已加热到接近或高于PET结晶温度的温度时,就应相当快速和充分地冷却,以保证在此预型完全冷却时,PET主要是半结晶态。这样处理的结果使得在初始预型和继后所加的涂层材料之间形成了牢靠和有效的键合。
超模塑工艺也可用来形成具有三层或更多层的涂层预型。图16中示明了本发明的预型132的三层实施形式。这里所示的预型原有两层涂层,中间层134与外层136。图16中所示各层厚度可以变动以适合材料的具体组合或得以制造不同尺寸的瓶子。内行的人可知,随即可以授用类似于以上公开的方法,只不过是这里的初始预型乃是业已涂层的一种,而用于制造上述涂层预型的方法之一包括超模塑法。
1.超模塑的第一种优选方法与设备用于实行此超模塑工艺的第一种优选设备是基于采用Engel的330-330-200机(奥地利)。此机器的最佳模具部分概示于图10~15,包括可动半模142和固定半模144。这两个半模最好由硬金属制成。固定半模144包括至少两个模工位或模段146、148,其中各模段包括N(N>0)个一致的模腔114、120、用于冷却流体的输入与输出口、允许冷却流体在模段之中循环的通道、注射设备,以及使熔融材料从注射设备导引到各模腔的门的热流槽。由于各个模具段形成独立的预型层,而各个预型层最好由不同的材料制成,各个模段独立地控制以适应各种料与各个层所要求的可能不同的条件。与特定模具段相关的注射器在与此特定材料相适应的温度下注入熔融材料,通过此模具段的热流槽与门而进入模腔内。模具段本身的用于冷却流体的入口与出口允许改变模具段的温度以适应注入此模具段的特定材料的特性。结果,各个模具段可以具有不同的注射温度、模具温度、压力、注射体积、冷却流体温度等,以适应特定预型层的材料与作业要求。
模具的可动半模包括转台130和一批芯或芯轴98。有若干定位销导引此半模142沿水平方向滑向或滑离固定半模144。转台130可沿顺时针或反时针走向转动,且安装于可动半模142之上。这批芯轴98固定在转台130之上,起到预型内部的模型作用,同时在模塑作业中用作载运器件与冷却装置。芯轴中的冷却系统与模具段内的冷却系统相分开。
模具的温度或模具的冷却由循环流体控制。可动半模142与固定半模144的各模具段146、148,各有其独立的冷却流体循环。因此,在固定半模中具有两个模具段的模具中,存在着这两个模具段各自的独立冷却系统和用于模具的可动半模142的独立冷却系统。类似地,在固定半模中具有三个模具段的模具中便存在四个独立的冷却流体循环装置各个模具段一个共三个外加用于可动半模142的一个。各个冷却流体循环装置按类似方式工作。流体进入模具,流过前面相对于图9所示的内部通道或管道的网络,然后自出口流出。流体由此出口出来后在返回到模具内之前流经用于保持流体流动的泵和用于将流体保持于所需温度范围内的冷却系统。
在最佳实施例中,芯轴与模腔都用高传热材料如铍在其上涂以一层硬金属如铬制成。这种硬涂层保持此铍不与预型直接触,以及用作脱模时的松释目的同时提供长寿命的硬表面。这种高的传热材料允许更有效地冷却,因而有助于实现短的循环时间。这种高传热材料可以设在各芯轴和/或模腔的整个区域之上或也可以只设于其某些部分之上。最好是至少让芯轴的头部包括高传热材料。另一种甚至是更理想的高传热材料则是耐热耐蚀铜合金,可以购自Undenholm,Inc.。
芯轴的个数与模腔的总数相等,芯轴98在可动半模142上的布置与腔114、120在固定半模144上的布置成镜面反射。为了闭合模具,将可动半模142移向固定半模144,使芯轴98与模腔114、120匹配。为了打开模具,可让可动半模142移离开固定半模144,使芯轴98完全脱离开固定半模144上的坯料。在芯轴98完全从模具段146、148撤出后,可动半模142的转台130便转动芯轴98来对准不同的模具段。这样,此可动半模在每次从固定半模上撤出芯轴后便转过360°/固定半模中的模具段数。当在机器运行时的撤出与转动工序中,总会有预型存在于某些或所有芯轴上。
在给定的模具段146、148中,模腔的尺寸是一致的,但在各个模具段之间,模腔的尺寸可以不同。在首先模塑未涂层预型的模腔即预型模塑腔114中尺寸较小。在进行第一涂层工序的模具段148中模腔120的尺寸则大于预型模塑腔114的,用以容纳下未涂层的预型同时仍可为待注射的涂层材料提供形成超模塑涂层的空隙。在其中将进行另外的超模塑工序的各相继的模具段的模腔,将逐渐加大其尺寸以容纳由于各涂层步骤而变大了的预型。
在一组预型业已模塑与超模塑完后,由一列排出器将成品预型从芯轴98上排下。芯轴的排出器独立地工作,或者对于一组芯轴至少存在在个数与构型上同模具段相一致的排出器,得以只是使完工的预型才被排出。未涂层或未完成的预型则保留于芯轴上,以使它们可在此循环中继续进到下一模具段。这种排出作业可使预型完全与芯轴脱开而落入料仓或输送器上。或者,这种预型可在排出后继续保持于芯轴上,而后由机械手或其他这类设备抓住一个或成组预型,移送到料仓、输送机或其他所需位置上。
图10与11概示了上述设备的实施例。图11示明模具的固定半模144。在此实施例中,单元124有两个模具段,一个模具段146包括一组共三个预型模塑腔114,另一个模具段148包括一组共三个预型涂层腔120。各预型涂层器114最好与图9所示的类似,即把材料注入芯轴98(即使上面已没有预型)与模具壁所限定的空隙内,而此模具则是由循环流过模具单元内的通道内的液体冷却。结果,此设备的一个完整生产循环将产生三个两层预型。要是希望每个循环有多于三个预型,则可以重构固定半模以使各个模具段具有多个腔。这方面的一个例子示于图13,其中示明的固定半模包括两个模具段,一个模具段146包括48个预型模塑腔114而另一个模具段148包括48个预型涂层腔120。要是希望有三层和更多的层,则可重构固定半模144以容纳增设的模具段,每个预型层一个。
图10示明此模具的可动半模142。可动半模包括安装于转台130上的六个一致的芯轴98。每个芯轴98对应于此模具的固定半模144上的一个模腔。此可动半模还包括对位销110与固定半模144上的销座112对应。当可动半模142移动来关闭模具时,对位销110便与其对应的销座112对应,使模塑腔114与涂层腔120同芯轴98对准。在对准并关闭后,半数芯轴98定中于预型模塑腔114内而另一半芯轴98则定中于预型涂层腔120。
上述模腔、芯轴与对位销以及销座全部必需有足够的对称性,以在模具分离和转过适当的度数后,所有芯轴与模腔准直而所有对位销与销座准直。此外,各个芯轴必须处在不同于它在转动之前的模具段的腔中,以便对于此设备所制的各个预型能以一致的方式进行有秩序的模塑与超模塑处理。
上述两个半模概示于图14与15中。在图14中,可动半模142如箭头示向移向固定半模144。安装于转台130上的两个芯轴98开始进到腔内,一个进入模腔114而另一个进入安装于单元124中的涂层腔120内。图15中,芯轴98已完全从固定半模上的模腔中撤出。预型模塑腔114所具的冷却循环系统同包括有另一模具段148的预型涂层腔120的冷却循环系统相分开。这两个芯轴98由将所有芯轴连接到一起的一个单一系统冷却。图15中的箭头表示转台130的旋转方向。转台130也按顺时针走向转动。没有图示的是在设备仍进行作业下可能在芯轴上的已涂层和未涂层的预型。对位销与销座也略去以便于看得更清楚。
下面用制造双层预型的最佳两模具段设备来说明超模塑设备的作业。此模具通过将可通半模142移向固定半模直至它们接触而闭合。第一注射设备将第一材料的熔体注入第一模具段146,通过热流槽经由它们各相应的门而进入预型模塑腔114、形成未涂层的预型,每个这样的预型成为涂层预型的内层。第一材料充填预型模塑腔114与芯轴98之间的空隙。同时第二注射设备将第二材料的熔体注入固定半模144的第二模具段148内,通过热流槽经由它们各自的门进入各预型涂层腔120,使此第二材料充填涂层腔120的壁部与在其中安装于芯轴98上未涂层预型之间的空隙(图9中由100标明)中。
在以上整个过程,冷却流体循环地通过三个独立区域,它们分别对应于预型模塑腔114的模具段146、预型涂层腔120的模具段148以及模具的可动半模。这样,熔体与预型就将中央处通过可动半模中的循环流体冷却,而各个腔中的循环流体通过芯轴的内部并到达其外侧上。包含预型模塑腔148的第一模具段146中的冷却流体的工作参数分别由包含涂层腔的第二模具段148中冷却流体的工作参数控制,用以导引出预型与涂层的不同材料特性。这些冷却流体本身又与此模具中的可动半模142中的相分开,它们在整个周期内不论模具的开闭而为预型的内部提供恒定的冷却。
可动半模142然后往回滑动将两个半模分开而将模具打开,直至上面具有预型的所有芯轴98都完全从预型模塑腔114和预型涂层腔120中撤出。排出器将已涂层的完工预型从刚刚由预型涂层腔中卸下的芯轴98上排出。如上所述,这种排出操作使预型完全脱离开芯轴而落入料仓内或输送机之上,或要是预型在排出作业后仍保持于芯轴上,则可由机械手或其他装置抓住一个或成组的预型将其撤下到料仓、输送机或其他所需位置。转台130然后转过180°,使上面具有未涂层预型的各芯轴98位于预型模塑腔114之上。转台130的转动可以在快至0.3秒下发生。应用对位销110,使这两个半模再次对准与闭合,而第一注射器将第一材料注入预型模塑腔114内,同时第二注射器将阻隔材料注入预型涂层腔120。
闭合模具、注入熔体、打开模具、排出完工的阻隔预型、转动转台再闭合模具,重复这样的生产循环,可以连续地模塑和超模塑预型。
当设备第一次开始运行时,在初始循环中,预型涂层腔120中尚无预型。因此操作人员应防止第二注射器将第二材料在第一次注射中注入第二模具,或是让第二材料注入并排出,然后废弃此所得的只包含第二材料的单层预型。经此起动步骤后,操作者可以对有关作业进行手动控制或对所需参数编程以对此工艺进行自动控制。
可以用上述第一优选超模塑设备来制造双层预型件。在一最佳实施例中,此两层预型由聚酯组成的内层和阻隔材料组成的外层。在一些特别最佳的实施例中,内层包括纯净的PET。以下的描述是针对包括纯净PET内层的双层预型的特别最佳实施例。所描述的对象则是形成一组如图4所示这种涂层预型60,也就是来描述通过模塑、超模塑与排出的过程而得到的一组预型,而不是去描述作为一个整体的设备的作业,所描述的工艺是以这样的预型60为目标,它的壁部66总厚约3mm,包括约2mm厚的纯净PET层和约1mm厚的阻隔材料层。这两层的厚度则在预型60的其他部分会有变化,如图4所示。
内行的人应知,下述的某些参数对于预型的另一些实施形式会不相同。例如,模具保持闭合的时间将因预型的壁厚而变化。但是,根据下面对此最佳实施例所公开的内容以及在此所公开的其余内容,内行人是能够为其他实施形式测定合适的参数的。
上述的设备经构造成,使此给包含预型模塑腔114的模具段146供料的注射器供给纯净的PET,而给包含预型涂层腔120的模具段148供料的注射器则供给阻隔材料。两个半模都由循环流体最好是水在0~30℃而最好是10~15℃的温度下冷却。
模具的可动半模142通过移动而使模具闭合。纯净PET的熔体通过单元124的背后注入各个预型模塑腔114,形成成为涂层预型内层的未涂层预型30。PET熔体的注射温度最好是250~320℃,尤为最好是255~280℃。模具在PET熔体注入后保持闭合3~10秒而最好是4~6秒,然后由在模具中循环的冷却剂冷却。此时,与预型模塑腔114表面或芯轴98接触的预型表面开始形成外皮而预型的芯子则保持为熔融和未固化的状态。
此后将模具的可动半模142移开,使模具的两个半模在或通过这样一个点分开,在此点上,保留在芯轴98上的新模塑成的预型已脱离此模具的固定半模144。最好是在快速除热使PET的结晶化最小而让PET将处于半结晶态的方式下冷却。如上所述的通过模具循环的冷却水应能充分地完成这项工作。
在预型内侧冷却的同时,预型外表面的温度由于从预型的熔融芯吸热而开始升温,这种升温开始使新模塑成的预型外表面的表皮软化,尽管这种表皮在模腔114中业已冷却,但在从腔中取出时则升温而开始软化,此表皮的软化是从该熔融芯显著吸热的结果。这样,此种初始时形成而后软化的表皮将加速熔融芯预型的整体冷却,有助于它在冷却中避免结晶化。
当芯轴98离开模具的固定半模144,转台130即转过180°,使上面带有模塑成的预型的各芯轴98定位于预型涂层腔120之上。在这样地定位好后,上面不具有模塑成的预型的其他各芯轴98也分别定位于一预型模塑腔114之上。模具再次闭合。从预型模塑腔114取出到插入预型涂层腔120之间的时间最好是1~10秒,而尤为最好是1~3秒。
当此模塑成的预型最初置放于预型涂层腔120中时,此预型的外表面是不与模具表面接触的。这样,由于只是从芯轴内侧开始接触冷却,因而外表皮如上所述仍然是软化的与热的。未涂层预型(构成涂层预型内层)外表面的高温有助于促进完成的涂隔层预中PET与阻隔层之间的粘合。一般认为材料的表面在受热时更具活性,因而通过高温将增强阻隔或隔层材料与纯净PET之间的化合物的相互作用。阻隔材料将以冷的表面涂附到预型之上,因而可以用冷的初始涂层预型进行这种作业,但是例如在紧随未涂层预型模塑之后,于高温下完成超模塑工艺时粘合情形要好的多。
然后进行第二注射作业,将阻隔材料的熔体注入各预型涂层腔120中对预型进行涂层。阻隔材料熔体的温度最好是160~300℃。各种阻隔材料的精确温度范围取决于阻隔材料的具体特性,但是内行的人根据这里所公开的内容是能够通过常规试验确定此温度的适当范围的。例如若采用PHAE阻隔材料XU 19040.00L,则此熔体的温度(注射温度)应为160~260℃,更好是200~240℃而最好是220~230℃。要是采用共聚聚酯阻隔材料B-010,则此注射温度宜为160~260℃而更好是190~250℃。在同一时间内,这组预型在预型涂层腔120中再超模塑以阻隔材料,而另一组未涂层的预型则如上述在预型模塑腔114中进行模塑。
在注射工序开始后,这两个半模再次分开最好是3~10秒,而尤为最好是4~6秒。刚刚在预型涂层腔120中涂有隔层的预型从芯轴98上排出。刚刚在预型模塑腔中模制成的未涂层预型则保持于芯轴98上。然后将转台130转过180°,使上面具有未涂层预型的各芯轴位于相应的涂层腔120之上,而刚刚从其上取下已涂层预型的各芯轴98则定位于模塑腔114之上。
重复闭合模具、注入材料、打开模具、排出完成的涂隔层预型、转动转台与闭合模具这一循环,使预型能够不间断地进行模塑与超模塑。内行的人可知此设备的干循环时间会增加用于模塑一完整预型的整体生产循环时间。
采用这里所公开的工艺的众多优点之一是此工艺的循环时间类似于生产未涂层预型的标准工艺的;这就是说,由本工艺来模塑和涂层预型是在一段类似于现下用于预型生产的标准方法来制造尺寸近似的未涂层PET预型所需的时间内完成的。这样就可以制造涂隔层的PET预型来代替未涂层的PET预型而不会显著改变产量与生产能力。
要是PET熔体缓慢冷却,则PET将取结晶形式。由于结晶的聚合物不能像无定形聚合物那样良好地吹制模塑,结晶化PET的预型就不能指望它能同样良好地形成本发明的容器。但要是PET的冷却速率快于晶体形成的速率,如这里所指出的,结晶化将会最小而PET将取半结晶形式,无定形形式对于吹制模塑是理想的。因此,PET的充分冷却对于在处理时按照需要进行预型的成形至为关键。
PET层在例如前述模具中的冷却速率正比于PET层的厚度以及它所接触冷却表面的温度。要是此模具的温度系数保持不变,则厚的PET层要比薄层的冷却得较慢。这是由于需要较长的时间将热从厚的PET层内部将热传到与模具冷却表面接触的PET外表面,因为与较薄的层相比,热在较厚的层中必须传送过较长的距离。这样,具有较厚PET层的预型与具有较薄PET层的预型相比需要与模具的冷却表面接触较长的时间。换言之,在各种条件相同的情形下,模塑具有厚PET壁的预型要比模塑具有薄PET壁的预型耗用较长的时间。
本发明未涂层的预型,包括于上述设备中通过第一注射所形成的预型,在给定的容器尺寸下,最好是比传统的PET预型薄。这是由于在制造涂隔层预型时,传统PET预型中一定数量的PET可以由一种最佳阻隔材料的相近的量取代。之所以能如此,是因为这种最佳阻隔材料如前所述具有与PET类似的物理性质。于是当用这种阻隔材料置换预型或容器壁部中相近数量的PET时,容器的物理性能将无显著差别,由于形成涂隔层预型内层的最佳未涂层预型是薄壁的,它们就可比其厚壁的传统的同类预型较快地从模具中取出。例如,这种未涂层预型最好可在约4~6秒后从模具中取出,而具有约3mm总壁厚的传统PET预型的这种时间则约为12~24秒。总之,制造涂隔层预型的时间等于或略大于(最高约30%)制造具有相同厚度的单层PET预型所需的时间。
此外,由于这种最佳阻隔材料是无定形的,就不需作如同PET的相同处理。这样,用于上述模塑-超模塑过程的循环时间一般可由PET所需的冷却时间确定。在上述方法中,涂隔层的预型可以按生产未涂层预型大致相同的时间生产出。
较薄预型获得的优点当在此过程中制成的预型属于图4所示的这种时可以进一步扩大。在涂层预型的这一实施例中,PET壁厚在端罩42区域中心70减薄到最好约为总壁厚的约1/3。从此端罩中心外移至端罩半径端部,此厚度渐增至最好约为总壁厚的2/3,如壁部66中标号68处所示。此壁厚可以保持为常数或可以如图4所示,在支承环38之前过渡到较小的厚度。预型各部分的厚度可以变化,但在各种情形PET与阻隔层的壁厚对于任意给定的预型设计必须保持成高于临界熔体流的厚度。
采用图4中设计的预型60时可以比生产图3中这种预型50有短得多的循环时间。如上所述,缩短循环时间的最大障碍之一是PET在注射后需要有在模具中冷却的这段时间。要是包括PET的预型在其从芯轴上排出之前没有充分冷却,它将基本成为结晶态的而有可能在吹塑模制中造成困难。此外,若是PET层在进行超模塑过程前未曾充分冷却,则隔层材料进入模具内时的力将冲涮掉门区附近的某些PET。图4中的预型设计考虑到了上述的两个问题,即使得PET层在端罩区42的中心处最薄,而这是模具中的门所在地。薄的门区部分可使其较快地冷却,从而可让未涂层的PET由模具中以较短的时间撤出,同时仍然可以避免在门区发生结晶和在第二注射或超模塑阶段涮蚀PET。
最佳隔层材料的物理特性有助于使得这种预型设计成为可加工的。由于物理性质的类似,其壁部主要为隔层材料的容器可以在不牺牲其性能条件下制成。若是所用隔层材料与PET类似,则具有图4中可变壁部结构的容器可能出现会影响容器性能的弱部位或其他缺陷。
2.超模塑的第二种优选方法与设备用以实施这种超模塑法的第二种最优设备150特别适应预型PET内层和阻隔或隔层材料外层的性质。如上所述,此阻隔或隔层材料一般是无定形的,并且将冷却到半结晶态而与冷却速率无关。但PET除非快速冷却不然就会基本上成为结晶的。但要是PET快速冷却,结晶化就会最小,同时PET将最主要是无定形的而能良好地适用于吹制模塑。由于最佳预型的内层是由PET形成而外层是由隔层材料形成,最重要的就是要快速冷却预型的内层以免PET结晶化。于是,此第二种最优设备将冷却中的芯轴98上完工的预型在其从模具涂层腔158上撤出后仍将其保持一段时间。这样,在芯轴98继续从预型的内层提取热量的同时可让模腔156、158用于形成其他预型。
图17表明用于超模塑的设备150的第二实施例。料斗176、178给注射机152、154供料,这两台注射机加热PET与隔层材料,提供熔体流分别注入预型模塑腔156和涂层腔158中。如同前述第一最佳实施例,此模具分成固定半模180与可动半模182。固定半模180具有至少两个模具段184、186,各包括至少一个一致的模腔。此第一固定模具段184具有至少一个形成于其中的预型模塑腔156,而第二固定模具段具有至少一个形成于其中的预型涂层腔。
本发明的模具还具有前面业已讨论过的其他方面。例如模具冷却系统具有带出、入口用以使冷却剂循环通过模具部件的冷却管;使熔融塑料从注射设备流到匹配的芯轴与模腔间的空闲空隙以形成预型层的热流槽;由硬金属构成的半模;以及辅助可动半模对合到固定半模内的对位销与销座。这些模具部件中的某些可以购自HuskyInjection Mo1ding Systems,Ltd。
下面参看图18,模具的可动半模182包括一转台160,它最好分成四个段(A、B、C、D),两两相邻地分开90°。在所示实施例中,各段有固定于其上的单一芯轴98与各固定半模180中形成的单一模腔对应。但是与前述第一最佳实施例相同,每个段中的芯轴数可以调节以提高设备的产量,只要各模段中的腔数也作相应地增加即可。因此,尽管图示的实施例表明的是每段只有一个芯轴,在每个生产周期中每段只生产一个预型,但这种设备可以有例如每段三个、八个或甚至四十八个芯轴与模腔。
虽然所有的芯轴98实质上是一致的,但它们在此将描述和加标记以与它们所在的各相应段关联。例如位于段A的芯轴98标记为98a,设于段8的芯轴98标记为98b,如此等等。如上所述,芯轴98a~d对于预型内部则起到模具形式的作用。它们在模塑作业中也用作预型的载运件与冷却系统。
此设备150设计成采用近似于以上所述及的相同的注射时间、材料与温度。但是这种设备与转台160上的模具的取向可以调节来优化预型的冷却与设备的产量。下面说明用本设备来超模塑两层预型、特别是具有形成为外层的阻隔材料或隔层材料的最佳方法。为了说明本设备的作业,将依据段A,通过一个完整的生产循环来描述预型的模塑。应知段B~D也与段A相同地生产预型。图19是图表,用以说明各个段在生产周期各个点上的相对作用。
在周期开始时,段A上的芯轴98a无阻碍地直接与固定模具182的第一段184的预型模塑腔156对准。最好是液压缸的致动器162升降着转台130以便将芯轴98a插入模腔156中。然后在芯轴98a与模腔156之间的空闲空隙中充填PET熔体让其在模具中作短时间冷却,以便模塑出的预型生成出前述的冷却表皮。然后降下转台130,从模腔156中拉出芯轴98a。刚刚注射成的预型仍留在芯轴98a上。一旦芯轴98a离开模腔,转台130即转过90°,使芯轴98a直接对准第二固定模具段186的涂层腔158。转台130再次升举,将芯轴98a连同其上的预型插入涂层腔158。注入隔层材料的熔体给预型涂层,让其作短暂的冷却。再次降下转台130,而完全注射成的模塑预型仍保持于芯轴98a。转台转过90°,但芯轴98a不再对准任何模腔。相反,芯轴98a留置待用而芯轴98a的冷却系统继续从内表面冷却此预型。或者,芯轴98a也可与一冷却系统163对准,此冷却系统163具有例如水或空气的冷却管165能置纳芯轴98a及其上所附的预型,以从外表面冷却此预型。同时,段B与C的芯轴98b与98c则分别与涂层腔156和模塑腔158相互作用。当这种注射完成后,转台再转90°。接着,芯轴98a不与任何模腔对准而冷却过程继续。段C与D的芯轴98c与98d此时分别与涂层腔156和模塑腔158相互作用。冷却的预型随后为排出器从芯轴98a上排出并由机械手之类器件取下。此机械手将此完工的预型置于输送机、料仓等之中。在刚将预型排出后,芯轴98a再次成为无负荷的。一旦段C与D完成了它们与模腔的相互反应后,转台再旋转90°,而段A与芯轴98a再次与预型模塑腔156配合。生产循环再次开始。
上述设备150可以改造成通用性得到增强的设备170。参考图20与21,不再由单一的液压致动器来升降整个转台130而是将转台130的各段连接到其专用的致动器172上。这样,各段可以独立地起作用,可以使超模塑作业过程优化。例如,取决于所注射的材料,能够更好地让新注射的材料在一个腔中比注入另一个腔中的材料冷却更长或较短的一段时间。专用的液压致动器172可以让各个段与相应的模腔156、158独立地配合与脱离接触。
在说明上述设备时是结合形成两层预型的情形进行说明,但应认识到这里所公开的结构与操作原理是可以应用于模塑具有更多层的预型的。例如,可于转台上设置另外的段同时在设备中布设另外的注射机与相关的涂层腔来注射另外的层。
3.超模塑的第三种优选方法与设备图22~24示明了应用将新注射成的预型保持于芯轴上以加速预型内层冷却的原理来进行模塑的第三种优选方法与设备。在一些预型这样地冷却的同时,其他的芯轴便可与模腔相互作用形成另一些预型。冷却的预型就在它附于其上的芯轴要重新用来模塑另一预型之前从此芯轴上排出。
设备250包括的固定的第一模腔256通过热流槽连接到供应PET熔体的注射设备282上。第二注射设备254适用来供应阻隔或隔层材料的熔体流同时与上述第一模腔相邻且垂直地与固定地取向,转台260安装在可滑动地铺设于导轨266的支承件264上,以允许转台260及与其相关的所有部件能于轨道266上水平地往复运动。转台260可通过一垂直平面转动。沿此转台周边有类似于前述的段(AA、BB、CC、DD)。在段从~DD上分别设有芯轴98aa~98dd。第二模腔258设于转台260之上并与之连接。模腔258可由液压缸等之类的致动器268带动,与设在相关段上的芯轴98结合或脱开。第二模腔258也随转台作水平运动。转台上的各段与模腔分别具有如上所述的冷却系统、热流槽系统、对位系统等。
图22所示的本设备250处于开放位置而未有任何模具配合。图23示明设备250处于闭合位置以芯轴与各个腔配合的情形。图23还表明了第二模腔258定位成从第二注射设备254接收熔体流的情形。为了从开放位置移动到闭合位置,将第二模腔258首先拉向转台260与对应的芯轴98接合。然后沿着使第一腔256与对应芯轴98接合的路径移动转台组件。在完成这种结合后,第二模腔258便与第二熔体源254通连。
下面说明形成两层超模塑预型的方法。与以前所述相同,但是是使一特殊的芯轴98aa通过一生产周期。应该认识到,其他的芯轴99bb~dd可依相同方式用于此循环的其他工序中。图24是流程图,表明用此设备形成预型时各个段与芯轴将完成的步骤。
在周期开始时,设备处于开放位置而芯轴98aa未带任何预型。芯轴98aa定向成可沿水平方向伸展而同第一模腔256对准。同时,上面已有单层PET预型的芯轴沿垂直取向并与第二模腔258对准。为了闭合模具,首先将第二模腔258引入与芯轴98dd接合,然后沿轨道266水平移动转台组件使芯轴98aa与第一模腔256接合而将第二注射器254移至与第二模腔258接合处。第一注射器252此时将PET熔体流注入第一模腔256,充填芯轴98aa与第一模腔256之间的空闲空隙。同样地,第二注射器254将隔层或阻隔材料的熔体流注入第二模腔258与设在芯轴98dd上的PET层之间的空间空隙。在经过于刚注射成的PET预型上形成皮层的短暂冷却时间后,让转台260沿轨道水平转动以将芯轴98aa脱开第一腔256。如上所述,刚注射成的预型保持于芯轴98aa之上。然后将第二模腔258从芯轴98dd上撤下,同时转台260转过90°使此时的芯轴98aa与第二模腔258对准,这时的芯轴99bb则与第一模腔256对准。此模具关闭如上,有一层隔层材料注射到芯轴98aa上的PET预型上,同时有PET预型形成于芯轴98bb之上。经短暂冷却时间后,模具再次打开如上面转台260转过90°。芯轴98aa此时脱离开任何模腔,而位于芯轴98aa上新模塑成的预型即于这段时间内冷却。同时,芯轴98bb与98cc则与模腔通连。在完成与芯轴98bb和98cc的注射后,转台260再旋转90°。芯轴98aa再次保持于与任何模腔不对合的冷却位置。同时,芯轴98cc与98dd与模腔配合并在其上有注射成的层。刚冷却的预型从芯轴98aa排送到转台下的输送机或料仓中而转台260再转过90°。芯轴98aa再次无负载,与第一模腔258对准,预备开始另一生产周期。
上述设备250已相对形成双层预型的情形进行了说明,但应认识到,这里公开的有关结构与作业的原理可以用于模塑具有多层的预型。例如可在转台上设置另外的段而在设备上布设另外的注射机与相关涂层来注射另外的层。
4.薄层的注射模塑阻隔层或阻隔预型也可以由所谓的薄层注射模塑(LIM)法生产。LIM法的实质是形成由许多薄层组成的熔体流。在这里的应用中,此LIM熔体流最好包括交替地PET薄层与阻隔材料薄层。此种LIM法可以结合上述最佳超模塑设备来超模塑由多层薄层组成的薄层。
薄层注射模塑的一种方法是用类似于Schrenk的n个美国专利No.5202074、5540878与5628950中所公开的系统形成,它们的总体内容已综合于此供参考,但是应用这种方法和其他方法来获得类似的薄层熔体流的内容应视作为本发明的一部分。参看图25,其中概示了LIM系统270。图25中的系统表明了两种材料系统,但应认识到它可以类似方式用于三或多种材料。形成这种层的两种材料中的至少一种最好是阻隔树脂,它们放在不同的料斗272与274中,分别供给两个相应的分开的筒276与278。这两种材料共同挤压,挤压速率设计成能由各个筒提供形成构成一个层的薄层流所需的各种材料的相对量。
从这两个组合的筒输出的薄层熔体流然后加到层生成系统280中。在此层生成系统280中,这两层熔体流通过颇类似于制作多层面食点心所重复的一系列作业而扩大成多层式熔体流。首先将一段熔体流垂直于这两层界面切分成两份。然后将这两份弄扁平,使每份的长为原先未分成两份时的段长但只有原段厚度之半。然后将这两份重组合成具有与原段相似尺寸的一份,但是具有四层,使这样的一份叠置于另一个这样的一份之上且让两种材料的子层相互平行。上述切分、弄扁平与重组熔体流的三道工序可以重复多次而形成许多薄层。此熔体流可以进行切分、弄扁平与重组这样的多次而放大生成由许多子层的这些组份材料组成单一熔体流。在这两种材料的实施例中,上述这些层的组成在两种材料之间是交替式的。由此层生成系统的输出则通过一颈部282注入模具内形成预型或涂层。
例如图25中所示的这种生产薄层熔体流的系统可以用来置换前述超模塑法与设备中的一或两个注射器。或者,要是此熔体流包括隔层材料时,可以单一注射LIM熔体流来形成阻隔预型、要是预型专由L IM熔体流制成或是制备成具有由LIM熔体流制成的内层,当据此制成的容器要与食品接触时,则此LIM熔体流中的所有材料最好是FDA所核准的。
在一最佳实施例中,图4中的这种预型是用注射超注射法制成,其中是将薄层熔体流注入隔层涂层腔中。在形成据此由吹制模塑法制备饮料瓶的预型的LIM超注射法中,第一层或内层最好是纯净的PET,而LIM熔体流最好是阻隔材料如PHAE和回收的PET。回收的PET用于外层74中因为它不会与食品接触,而把它用来构成容器中的大部分时则要比纯净的PET或绝大多数阻隔材料便宜。
图4A是由LIM超注射法制得的图4中这种预型的壁部3的放大图。内层72只用一种材料而外层74包括由LIM法形成的许多微层构成。
制作这种预型的典型方法如下。将回收的PET通过供料斗272加到第一筒276内,同时将阻隔材料通过第二供料斗274加到第二筒278内。这两种材料的共挤压速率能提供包括最好是60~95wt.%回收的PET和最好5~40wt.%阻隔材料组成的双层式薄层熔体流。此薄层熔体流加入到层生成系统280内,在其中通过切分、弄扁平和重组此熔体流最好是至少两次而形成薄层熔体流。这种薄层熔体流于标号282指明的部位流出,然后注入例如图9所示的模具中。此薄层熔体流注入例如图10与11中超模塑设备的预型涂层腔120内,于一预型之上形成包括由阻隔材料与回收的PET的交替微层组成之阻隔层的LIM超注射涂层的预型。
在另一种典型方法中,将纯净的PET通过供料斗272加到第一筒276中,同时将B-010通过第二供料斗274加到第二筒278中。这两种聚合物共挤压的速率可提供包括最好是60~95wt.%纯净PET和最好5~40wt.%B-010的熔体流。这两层熔体流加到层生成系统280内,于其中通过切分、弄扁平和重组成熔体流最好至少两次这样的工序,形成包括两种材料的薄层熔体流,这种薄层熔体流于标号282所示的部位流出,然后注入上述超模塑设备150、250中之任一的预型模塑腔156、256中。此初始的LIM预型于预型涂层腔158、258内用回收的PET进行超模塑,使生产出的预型的内层由阻隔材料与纯PET交替的微层组成而外层由回收的PET组成。这种方法可称为注射超LIM法。
在多层式预型的LIM超注射或注射超LIM的实施例中,可以很好地利用薄层注射系统来提供许多最好包括PET与阻隔材料交替和重复的子层。本发明这些实施例的多层式结构为防止气体过早地扩散通过饮料容器或其他食品容器提供了进一步的保护措施。
H.改进模具性能如上所述,这两个半模具有广泛的冷却系统,此系统包括循环经过此模具的冷却剂,用以将热带走而改进模具的吸热性质,下面参看示明具有本发明的特征的模具芯轴298与模腔300的剖面26,通过设置螺旋式围绕模腔300且正好处于表面304之下的冷却管302,可使此模具冷却系统相对于模腔优化。可由这种冷却系统实现的快速冷却有助于PET层在冷却之际避免结晶。此外,快速的冷却可允许注射成的预型快速地从模腔中取下以加速模腔300的再利用,因而能缩短生产周期。
如前所述,模腔300的门区306在确定生产周期中至为关键。在将构成模塑的预型的底端304的门308附近的空间空隙中接收注入模腔300内的熔体流的最后部分。这样,此部分是最后开始冷却的部分。要是PET层在进行超模塑作业前尚未充分地冷却,阻隔材料熔体进到模具内的力将可能冲涮掉门区308附近的某些PET。为了加速模腔门区中的冷却以便缩短生产周期,可将具有特高传热性质的材料如耐蚀耐热铜合金制的插件310置于门区308中的门区中。此插件310将以极快的速率带走热量,为了改进和保护插件310,可于此插件的表面312上沉积上薄层的氮化钛或硬铬以形成硬的表面。这样沉积成的表面最好只有0.001~0.01″厚,而尤为最好是约0.002″。
如上所述,芯轴298在冷却过程中特别重要,因为它将直接冷却PET层。为了提高芯轴298对预型内表面的冷却效率,特别是为了提高芯轴298在预型的门区/底端314处的冷却效率,芯轴298最好实质上是空心的,具有较薄的均匀壁部320,如图26所示。此均匀的厚度最好为0.1~0.3″而尤为最好约0.2″。特别重要的是,芯轴298底端322处的壁厚不要超过芯轴壁314其余部分的壁厚,因为此处的薄壁有助于传热从注射成的预型的熔融门区314处快速带走。
为了进一步提高芯轴的冷却本领,可把可将水供应给鼓泡器装置330。芯管332设于芯轴298的中央,将急冷的冷却剂C输送至其底端322。由于此底端322是芯轴298的为冷却剂C接触的最早的点,冷却剂在这个位置最冷和最有效。这样,已注射完的预型的门区314就比预型的其余部分冷得较快。在底端322处注入芯轴内的冷却剂沿芯轴298的全长行进,经输出管线334输出。沿管芯332按螺旋构型设有一批肋状件336用以将冷却剂C沿芯轴壁部导引。
增强预型的门区处冷却效果的另一种方法已于上面讨论过,它涉及到将模腔形成为使得内PET层在门区处比在注射成的预型其余部位较薄,如图4所示。薄的门区于是将快速冷至基本上为固态而能迅即从第一模腔上撤出再插入第二模腔中,同时在其上注射有一层阻隔材料而不会导致PET的受冲涮。
为了继续缩短生产周期,尽可能快地从模腔中取出注射成的预型。但应认识到,新注射成的预型在将从模腔中取出时未必是已完全固化的。这样就会在从模腔300中取出预型时有可能构成问题。摩擦或甚至是在热的可延展塑料与模腔表面304之间的真空都有可能形成阻力,在企图将注射成的预型从模腔300中取出时给其造成损伤。
为了使注射的部分形成光滑的表面,模具的表面是抛光过的面极其光滑。但是抛光的表面会于其上产生表面张力。这种表面张力在模具与注射成的预型之间会造成摩擦,而可能在从模具撤出注射成的预型时使其受损。为了减少表面摩擦,模具表面最好以极精细的磨纱装置使模具表面略略糙化。所采用的砂纸的粒度级最好为约400~700,而尤为最好是600。此外,模具最好只沿纵向作磨纱处理,这样会更便于从模具中取出已注射成的预型。
在注射作业中,空气为注入的熔体流从模腔300中排出。结果在注射成的预型与模腔壁304之间会形成真空。当以注射成的预型从模腔300中取出时,此真空就会阻止取出而损伤未完全固化的预型,为了消除真空,可以采用空气引入系统340。另再参看图27与28,其中示明了空气引入系统340的实施例。在模腔300的分开的部件之间的接缝342处,最好沿圆周形成一凹座344并使之通入模腔300内。凹座344最好在0.002~0.005″的级差形成,而此级差的高度最好为0.003″。由于凹座344的尺寸小,注射时不会为塑料注入,但是可以让空气A引入到模腔300之内以在从其中撤出注射成的预型时能克服真空。空气管线350连接此凹座344至一空气压力源同时有阀(未图示)控制空气A的供给。注射时,该阀关闭,使得熔体充填到模腔300内时无空气阻力。在注射完成后,此阀打开,而供给的空气在压力约75~150psi而最好是约100psi下输出给凹座344。供给的空气消除了注射成的预型与模腔之间可能形成的真空,有助于预型的撤出。虽然图中所示明的是在模腔300中只有一个单一的空气供给凹座344,但取决于模具的尺寸与形状,可以设置任意多个这类凹座和取多种多样形状。
虽然上述对模具性能的改进是具体体现于这里所述的方法与设备,但内行的人应知这些改进也可用于许多不同类型的塑料注射模塑应用和相关的设备的。例如将耐蚀耐热铜合金用于模具中可以对于多种模具类型与熔体材料能快速地迁移热量和显著缩短生产周期。同样,使模具表面糙化和提供空气压力供应系统,对于众多的模具类型和熔体材料也有便于进行产品的取出。
I.由吹制模塑法形成最佳容器涂隔层的容器最好通过对上面所公开的涂隔层预型进行吹制模塑来生产。这种涂隔层预型可以采用与将未涂层的PET预型吹制模塑成容器的,即使不一致也非常类似的技术与条件进行吹制模塑。用于吹制模塑单层PET预型成为瓶子的这种技术与条件是内行人周知的,必要时可以使用或修改。
在此种工艺中,一般将预型加热到最好是80~120℃而尤为最好是100~105℃,并保持一段平衡时间。平衡后将此预型拉伸到近似于成品容器的长度。拉伸后立即将加压空气强制注入预型内扩展预型的壁部使之贴合预型在其内的模具而形成容器。
J.叠层式瓶的测试根据本发明的超模塑工艺制备了若干瓶子,它们所用的PET中有不等量的IPA,采用PHAE作为阻隔或隔层材料。也由不含IPA的PET制备了若干对比瓶。
这些用以测试的瓶子是由通过上述超模塑工艺所制的预型经吹制模塑而成。对这些瓶子进行了冲击测试,用一定的冲击力冲击各个瓶子的侧壁(体部)。然后观察瓶子物理损伤的痕迹,最重要的是观察瓶子侧壁中叠层材料的分层。
测试结果表明,内PET层含有较高量IPA的瓶子在冲击测试下比含有较低量IPA的叠层结构较少发生分层,而与那些完全不含IPA的PET所制的瓶子相比则更要好得多。这样就证明了,当把IPA-PET用于与苯氧基材料制作叠层件时,能使叠层件各层之间有更好的粘合性。
上面通过某些最佳实施例和若干典型方法描述了本发明,但应认识到本发明的范围是不受此限制的。相反,申请人认定本发明的范围只受后附权利要求书的限制,而内行人对这里所公开的方法与材料所作的种种变更也应属于本申请人发明的范围。
权利要求
1.一种用以注射模塑预型的模具,此模具包括一组芯轴和至少第一组腔,各芯轴具有基本均匀厚度的壁和在该芯轴内居中设置的冷却剂供应管,以将循环的冷却剂直接供给芯轴的底端,第一组的各腔具有用于注射熔融塑料的门,其中至少一部分所述腔和/或所述芯轴包括高的传热材料。
2.权利要求1所述的模具,它还包括第二组腔,所述第二组腔中的各个腔具有用于注射熔融塑料的门,其中至少一部分所述腔包括高的传热材料。
3.权利要求1或2所述的模具,其特征在于,至少一部分一个或多个所述腔包括高的传热材料。
4.权利要求1或2所述的模具,其特征在于,至少一部分所述的芯轴包括高的传热材料。
5.权利要求1、2或3所述的模具,其特征在于,所述每个腔的门区域包括具有高的传热材料的插入件。
6.权利要求1,2或4所述的模具,其特征在于,各芯轴的底端包括有高传热材料。
7.权利要求1-6中任一项所述的模具,其特征在于,在各芯轴与第一组腔的各腔之间限定出第一空隙,而第一组腔中的各个腔的尺寸被选定为能使此空隙在靠近所述腔的门处比沿该腔的体部处薄。
8.权利要求1~7中任一项所述的模具,其特征在于,在各芯轴与第二组腔的各腔之间限定出第二空隙,而第二组腔中各个腔的尺寸被选定为能使此空隙在靠近所述腔的门处比沿所述腔的体部处大。
9.权利要求1~8中任一项所述的模具,它还包括一空气注射系统,该空气注射系统包括空气压力源、通入每一个腔的孔口、连接在空气源与孔口间的通道、以及位于空气源与孔口之间的至少一个阀。
10.权利要求1~8中任一项所述的模具,其特征在于,所述芯轴的壁厚约0.1~0.3英寸。
11.权利要求1~8中任一项所述的模具,其特征在于,所述芯轴的壁具有大致均匀的厚度。
12.权利要求1~8中任一项所述的模具,其特征在于,所述芯轴与所述第一组腔具有独立的冷却系统。
13.权利要求1~8中任一项所述的模具,其特征在于,所述芯轴固定于一个转台上。
14.权利要求1~8中任一项所述的模具,其特征在于,在具有较大热导率的材料上形成有厚约0.001~0.005英寸的增硬表面层,而此表面层的材料选自由氮化钛与硬铬组成的组。
15.权利要求1~8中任一项所述的模具,其特征在于,所述腔部沿纵向被具有磨料粒度约400~700的糙化机糙化。
16.一种用于注射模塑多层式预型的设备,此设备包括依据权利要求2至15中任一项所述的模具,其中的第一组腔与第一熔体源连通而第二组腔与第二熔体源连通;分成至少两个工段的转台,各工段之上设有至少一个芯轴;其中,所述转台能将各工段转动到使该工段上的芯轴与第一组腔中的一个腔相互作用以形成第一预型层的第一位置,然后转动到其上形成有第一预型层的芯轴与第二组腔中的一个腔相互作用以形成第二预型层的第二位置,由此形成一个多层式预型。
17.权利要求16所述的设备,其特征在于,上述转台可转动到至少一个使多层式预型留在芯轴上以进行冷却的冷却位置。
18.权利要求16或17所述的设备,其特征在于,所述转台可作线性运动,以移动所述芯与模腔配合。
19.权利要求16或17所述的设备,其特征在于,所述转台的各工段可独立地进行线性运动。
20.权利要求16或17所述的设备,其特征在于,它还包括用于将模塑成的预型从每个芯上取下的排出器。
21.一种用于注射模塑多层式预型的方法,此方法包括下述步骤提供一个如权利要求12所述的设备;转动转台,使得包括两个或多个芯轴的第一工段与第一组腔对准;使第一工段的芯轴与第一组的腔配合,注射第一材料熔融体以在各芯轴上形成第一预型层;冷却第一模腔中的第一预型层,以在所述第一预型层的至少一个表面上形成表皮;将芯轴与第一组腔脱离配合,而将第一预型层保持于各芯轴上;转动转台,使第一工段与第二组腔对准;使第一工段的芯轴与第二组的腔配合,将第二材料的熔融体注入以在第一预型层之上形成第二预型层,由此在各芯轴上形成一个多层式预型;将第二模腔中的所述多层式预型冷却,以便在所述多层式预型的至少一个表面上形成表皮;将芯轴与第二组腔脱离配合,同时将所述多层式预型保持于各芯轴上。
22.权利要求21的注射模塑多层式预型的方法,其特征在于,它还包括将转台旋转至芯轴不与模腔对准而将多层式预型在芯轴上方进行冷却的第三位置。
23.权利要求21或22的注射模塑多层式预型的方法,其特征在于,它还包括从芯轴上取下所述多层式预型的工序。
24.权利要求23的注射模塑多层式预型的方法,其特征在于,用一个机械手将所述多层式预型取下。
全文摘要
本发明涉及由在其至少一面上直接涂有一或多层具良好隔气特性的热塑材料的聚酯,最好是PET来制造产品的方法与设备。在一种最佳的方法与设备中,先注射模塑成预型并立即涂以隔层材料并于模具部件上保持一段时间以加速完成的预型的冷却。这种涂隔层制品最好取涂有至少一层阻隔材料的预型形式而由其吹制模塑成预型。此种涂隔层容器最好是储放饮料如软饮料、啤酒或果汁的那种。最佳的阻隔材料与PET相比对氧与二氧化碳有低的渗透率但与PET有类似的关键物理性质。所述材料与方法能使阻隔材料对PET有良好的粘附性,即使是用吹制模塑法来由预型形成容器过程之中或之后。理想的阻隔材料包括聚羟基酰胺醚。
文档编号B29C49/00GK1880044SQ20061010030
公开日2006年12月20日 申请日期2000年4月10日 优先权日1999年4月21日
发明者G·A·胡钦森, R·A·李 申请人:先进塑胶技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1