一种双伺服控制系统及包括该系统的节能注塑机的制作方法

文档序号:4404677阅读:331来源:国知局
专利名称:一种双伺服控制系统及包括该系统的节能注塑机的制作方法
技术领域
本发明属于机电控制系统领域,尤其涉及一种双伺服控制系统及包括该系统的节能注塑机。
背景技术
传统液压型注塑机在生产时,由普通三相电机带动变量泵为整个注塑机液压系统提供动力,因此在整个注塑工艺流程中,电机一直在驱动油泵运转,为液压系统提供液压油,超过系统设定压力的液压油通过溢流阀流回油箱,从而造成发热和巨大的能量损耗,同时液压油易造成环境污染;而全电动注塑机虽然具有节能环保的特点,但其制造成本高,且合模用滚珠丝杆由于反复使用一小部分,而易造成磨损失去精度,所以维护和维修成本高。因此电液混合注塑机成为节能注塑机的研发方向。现有的电液混合节能型注塑机一般采用“伺服驱动器+伺服电机+定量泵”的单一主泵伺服控制结构形式,主泵伺服电机在快速制动过程中产生的再生能量将保存在驱动器的电解电容中,最终导致驱动器的母线电压升高。若伺服驱动器配备制动单元和制动电阻,伺服驱动器可以通过短时间接通电阻, 使这部分多余能量以发热方式消耗掉。以上方式会造成能量的白白浪费,节能效果差,设备能耗高。

发明内容
本发明的目的在于克服上述现有技术的不足,提供了一种双伺服控制系统及包括该系统的节能注塑机,其不仅保留了上述电液混合注塑机节能的优点,方便对注塑机负载进行跟踪匹配降低生产能耗,还可通过有效的编程控制实现熔胶动作与其它工艺动作的同步,大大缩短注塑周期,而且通过采用共用直流母线技术,可将两套伺服控制系统的刹车制动能互相利用起来,节能效果更佳,进一步降低设备能耗。本发明的技术方案是一种双伺服控制系统,所述双伺服控制系统包括第一伺服控制系统和第二伺服控制系统;所述第一伺服控制系统包括第一伺服驱动器与第一伺服电机,所述第一伺服驱动器的输出端和转速反馈端分别与所述第一伺服电机的输入端和转速输出端连接;所述第二伺服控制系统包括第二伺服驱动器与第二伺服电机,所述第二伺服驱动器的输出端和转速反馈端分别与所述第二伺服电机的输入端和转速输出端连接;控制单元,与所述第一伺服驱动器及所述第二伺服驱动器连接,用于对第一伺服控制系统的液压油流量与压力及对第二伺服控制系统的熔胶转速进行监控;共用直流母线组件,与所述第一伺服驱动器及所述第二伺服驱动器连接,用于收集所述第一伺服电机或所述第二伺服电机制动时所产生的能量,并将所述能量以电能形式反馈到所述第二伺服驱动器或者所述第一伺服驱动器。本发明还提供了一种节能注塑机,包括机架,所述机架上设置有熔胶系统和液压系统,还包括上述的双伺服控制系统;
所述液压系统由第一伺服控制系统控制,所述熔胶系统由第二伺服控制系统控制,所述第一伺服控制系统与第二伺服控制系统通过共用直流母线组件相连接,所述第一伺服控制系统和第二伺服控制系统均由主控计算机控制。具体地,所述第一伺服控制系统配备伺服或变频调速电机驱动定量泵通过液压系统为开合模、射胶、射台进退、顶出机构的工作提供动力;第二伺服控制系统由伺服电机或变频调速电机直驱或通过减速机构为熔胶系统提供动力;所述液压系统包括油泵和连接于油泵上的管道、阀门和液压缸,所述第一伺服控制系统包括用于驱动所述油泵的第一伺服电机、第一伺服驱动器、用于反馈第一伺服电机转速的第一旋转变压器,所述油泵出口处设置有用于反馈液压油压力的压力传感器,第一伺服驱动器、第一旋转变压器和压力传感器均电连接于主控计算机,所述第一伺服电机和第一伺服驱动器之间电连接;所述熔胶系统包括熔胶螺杆,所述第二伺服控制系统包括第二伺服驱动器、用于驱动所述熔胶螺杆的第二伺服电机,所述第二伺服驱动器与第二伺服电机之间电连接,所述第一伺服驱动器和第二伺服驱动器之间通过所述共用直流母线组件连接。具体地,所述油泵进油口连接于主油箱,油泵的出油口通过管道连接至注塑机的锁模单元、注射单元、顶出单元和安全阀模块;所述第二伺服电机后端设置有用于反馈所述第二伺服电机转速的旋转变压器,所述旋转变压器电连接于所述第二伺服驱动器和主控计算机。具体地,所述注射单元包括注射油缸和滑动设置于所述注射油缸内的活塞,所述活塞的一端设置有可轴向滑动的花键轴,所述花键轴上连接到由第二伺服电机驱动的同步带减速机构。具体地,所述机架上还设置有用于检测注射单元和顶出单元位移的位移传感器, 所述位移传感器电连接于所述主控计算机。具体地,所述主控计算机包括工业电脑和插接于所述工业电脑上的运动控制卡。本发明提供的一种双伺服控制系统及包括该系统的节能注塑机,其通过设置共用直流母线,可将两套伺服控制系统的制动能互相利用起来,节能效果佳,设备能耗低。


图1是本发明实施例提供的双伺服控制系统的模块结构;图2是本发明实施例提供的双伺服控制系统的电路结构简图;图3是本发明实施例提供的一种节能注塑机的平面结构示意图。
具体实施例方式为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。在本发明实施例中,通过在双伺服控制系统中采用共直流母线组件将第一伺服控制系统与第二伺服控制系统连接起来,对第一伺服控制系统或者第二伺服控制系统在制动过程中产生的能量进行收集,并将其转化为电能后反馈到处于工作状态的第二伺服控制系统或者第一伺服控制系统,实现了对制动能量的有效利用,达到了节约能耗的目的。
图1示出了本发明实施例提供的双伺服控制系统的模块结构,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下一种双伺服控制系统,该双伺服控制系统包括第一伺服控制系统100和第二伺服控制系统200 ;该第一伺服控制系统100包括第一伺服驱动器101与第一伺服电机102,第一伺服驱动器101的输出端OUT和转速反馈端 FB分别与第一伺服电机102的输入端和转速输出端连接;第一伺服控制系统100还包括定量泵103、液压执行机构104、压力传感器105及位移传感器106,定量泵103与第一伺服电机102的输出端、液压执行机构104的输入端及压力传感器105的输入端连接,液压执行机构104的输出端接位移传感器106的输入端;该第二伺服控制系统200包括第二伺服驱动器201与第二伺服电机202,第二伺服驱动器201的输出端OUT和转速反馈端FB分别与第二伺服电机202的输入端和转速输出端连接;控制单元300,与第一伺服驱动器101及所述第二伺服驱动器201连接,用于对第一伺服控制系统100的液压油流量与压力及对第二伺服控制系统200的熔胶转速进行监控;共用直流母线组件400,与第一伺服驱动器101及第二伺服驱动器201连接,用于收集第一伺服电机102或第二伺服电机202制动时所产生的能量,并将能量以电能形式反馈到第二伺服驱动器201或者所述第一伺服驱动器101。双伺服控制系统还包括触摸屏500,触摸屏500的通讯端与控制单元300的人机交互端连接,用于对控制单元300发出特定操作指令,命令控制单元300执行特定的工作任务,并将控制单元所接收到的第一伺服控制系统100和第二伺服控制系统200反馈回来的
信息显示在屏幕上。图2示出了本发明实施例提供的双伺服控制系统的示例结构,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下作为本发明一实施例,控制单元300包括熔胶转速控制模块301、主泵流量控制模块302、压力控制模块303及位置控制模块 304 ;熔胶转速控制模块301的对外交互端与第二伺服驱动器201的转速控制端IN连接,流量控制模块302的对外交互端与压力控制模块303的对外交互端同时与第一伺服驱动器101的转速控制端IN连接,压力控制模块303的压力数据输入端接压力传感器105的输出端,位置控制模块304的位移数据输入端接位移传感器106的输出端。作为本发明一实施例,共用直流母线组件400包括正极直流母线401、负极直流母线402、能量回馈单元403、第一电能导向单元404 及第二电能导向单元405 ;能量回馈单元403的正端“ + ”接正极直流母线401,负端“_”接负极直流母线402, 用于通过正极直流母线401收集第一伺服电机101或者第二伺服电机202制动时所产生的能量,并将能量以电能形式通过正极直流母线401反馈到第二伺服驱动器201或者第一伺服驱动器101 ;第一电能导向单元404的第一端口 1接正极直流母线401,第二端口 2接负极直流母线402,第三端口 3接第一伺服驱动器101的变频正电源端+DC,第四端口 4接第一伺服驱动器101的变频负电源端-DC,用于将第一伺服控制系统100制动时产生的能量导出至正极直流母线401,以及将能量回馈单元403输出的电能导入至第一伺服驱动器101 ;第二电能导向单元405的第一端口 1接正极直流母线401,第二端口 2接负极直流母线402,第三端口 3接第二伺服驱动器201的变频正电源端+DC,第四端口 4接第二伺服驱动器201的变频负电源端-DC,用于将第二伺服控制系统200制动时产生的能量导出至正极直流母线401,以及将能量回馈单元403输出的电能导入至第二伺服驱动器201。双伺服控制系统的工作原理如下控制单元300通过熔胶转速控制模块301读取伺服电机202的转速数据,流量控制模块302读取伺服电机102的转速数据并计算出油泵出口流量数据,压力控制模块303 读取定量泵103的输出压力数据,将伺服电机202的转速数据、油泵出口流量数据和定量泵 103的输出压力数据与用户通过触摸屏500输入的熔胶转速设定值、油泵出口流量设定值及油泵压力设定值进行比较处理后,获得相应的伺服电机转速控制数据,并输出相应的伺服电机转速指令控制伺服电机202和伺服电机102的转速。其中,位移传感器106通过接收液压执行机构104输出的位移数据,将位移数据反馈到304,位置控制模块304与压力控制模块303相互协调和补充,以提高注塑效率,满足注塑产品精度要求。在共用直流母线组件400中,通过第一电能导向单元404和第二电能导向单元405 对进入或流出第一伺服驱动器101与第二伺服驱动器201的电流进行流向控制。当第一伺服电机102制动时,其因制动所产生的能量通过第一伺服驱动器101的变频正电源端+DC 流出,并经过正极直流母线401进入能量回馈单元403,能量回馈单元403将接收到的第一伺服电机102的制动能转化为电能并将其输出至正极直流母线401,电能通过正极直流母线401进入第二电能导向单元405,并由第二电能导向单元405的第三端口 3进入第二伺服驱动器201的变频正电源端+DC,随后,第二伺服驱动器201将此电能与由外部三相电路输入的电能相配合为第二伺服电机202供电。当第二伺服电机202制动时,共用直流母线组件400对制动能的处理过程与上述一致,因此不再赘述。在本发明实施例中,通过在双伺服控制系统中采用共直流母线组件400将第一伺服控制系统100与第二伺服控制系统200连接起来,对第一伺服控制系统100或者第二伺服控制系统200在制动过程中产生的能量进行收集,并将其转化为电能后反馈到处于工作状态的第二伺服控制系统100或者第一伺服控制系统200,实现了对制动能量的有效利用, 达到了节约能耗的目的。如图3所示,本发明实施例还提供一种节能注塑机,包括机架10,所述机架10上设置有熔胶系统和液压系统,还包括如上述的双伺服控制系统;所述液压系统由第一伺服控制系统控制,所述熔胶系统由第二伺服控制系统控制,所述第一伺服控制系统与第二伺服控制系统通过共用直流母线组件20相连接,以共享再生能量,达到节能的设计目的。所述第一伺服控制系统和第二伺服控制系统均由主控计算机控制。第一伺服控制系统和第二伺服控制系统均由主控计算机控制,通过主控计算机实现对熔胶、射胶、射台进退、开合模、顶出等动作运动时间关系的协调和控制,这样,第一伺服控制系统和第二伺服控制系统可根据注塑工艺的实际需求实时准确地调整相应的伺服电机的转速及输出转矩,既实现了对注塑机负载的跟踪匹配降低了生产能耗,又实现了熔胶动作与其它工艺动作的同步,大大缩短了注塑周期。同时本发明采用共用直流母线技术将两套伺服驱动系统的刹车制动能互相利用起来,使得注塑机生产过程更加节能,节能效果佳,设备能耗大大降低,有利于降低产品的生产成本,提高产品的市场竞争力。具体地,所述第一伺服控制系统配备伺服或变频调速电机驱动定量泵通过液压系统为开合模、射胶、射台进退、顶出等机构的工作提供动力;第二伺服控制系统由伺服电机或变频调速电机直驱或通过减速机构为熔胶系统提供动力;具体地,如图3所示,所述液压系统包括油泵31,连接于油泵31上的管道、阀门和液压缸等,所述第一伺服控制系统包括用于驱动所述油泵31的第一伺服电机32、用于反馈第一伺服电机32转速的第一旋转变压器、第一伺服驱动器33,所述油泵31出口处设置有用于反馈液压油压力的压力传感器34,压力传感器34用于检测油泵31出口油压,主控计算机根据上述反馈的电机转速和油泵出口压力信息,经内部算法高速处理后,输出控制第一伺服电机32转速的信号,在输出转矩范围内可实现油泵31出口流量和压力对用户设定流量和压力的准确快速跟随。同时使用电子尺等位移传感器实时检测注塑机中动模板、顶针和熔胶螺杆M等运动部件的位移,用于整个注塑工艺过程中多段运动的速度(压力)切换和运动过程的安全监控。第一伺服驱动器33、第一旋转变压器35和压力传感器34均电连接于主控计算机,所述第一伺服电机32和第一伺服驱动器33之间电连接;油泵31可为定量泵等合适结构,均属于本发明的保护范围。主控计算机上还连接有注塑机操作部件,用户可通过注塑机操作部件手动输入参数,注塑机操作部件可为键盘或触摸屏结构等,以便于用户操作、使用注塑机。如图3所示,所述熔胶系统包括熔胶螺杆M,所述第二伺服控制系统包括第二伺服驱动器41、用于驱动所述熔胶螺杆M的第二伺服电机42,所述第二伺服驱动器41与第二伺服电机42之间电连接,所述第一伺服驱动器33和第二伺服驱动器41之间通过所述共用直流母线组件20连接。第二伺服驱动器41接收注塑机控制单元信号为发出的熔胶转速指令,控制第二伺服电机42的转速,第二伺服电机42的转速信息由安装在第二伺服电机 42后端的高精度旋转变压器反馈到第二伺服驱动器41和主控计算机中。由于注塑机熔胶质量直接与熔胶螺杆M的转速控制精度有关,而熔胶螺杆M的转速由第二伺服电机42驱动,所以本方案中利用第二伺服电机自带的高精度旋转变压器3反馈电机转子转速信息, 将第二伺服电机42转速信号反馈到第二伺服驱动器41和控制单元中,通过主控计算机完成熔胶动作速度的半闭环控制。如图3所示,注塑机中的主控计算机可接收各传感器反馈的电机转速和油泵31出口液压油压力实际值与用户输入的油泵31出口流量、压力设定值进行比较,经内部控制算法计算出相应电机转速控制信号输出到伺服驱动器。如图3所示,注塑机系统中使用的第一伺服驱动器33和第二伺服驱动器41使用共用直流母线组件20直接连接,也就是将其中一台伺服电机的刹车能通过共用直流母线收集起来,供给正在升速的另一台伺服电机使用,以达到进一步节能的目的;同时通过主控计算机调整注塑机控制系统中熔胶动作与其余工艺动作的运动时间关系,一方面缩短注塑周期,另一方面使两套伺服驱动系统能充分利用对方的再生能量(制动能),节能效果好, 最大程度避免了制动能的浪费。本发明中采用共用直流母线技术相连的两套伺服系统其功率应相差不大,这样在工作过程中才能正常发挥作用。同时在传统注塑机各动作中,预塑化时间一般会占到整个注塑周期的60% -80%,若使用伺服电机独立实现熔胶动作将可使该动作与其它动作同步,大大缩短注塑周期,可提高生产效率。如图3所示,第一伺服控制系统中第一伺服电机32的转速信号经第一伺服驱动器 33反馈至主控计算机,主控计算机内流量控制模块根据电机转速计算油泵31出口流量,再与用户经触摸屏输入的设定流量比较得到控制偏差值,经流量控制算法得出电机的规划转速。同样压力控制模块采用类似结构,压力控制模块将所接收压力传感器34反馈的压力值与用户设定压力值比较后,后根据一定算法计算输出相应的伺服电机转速控制指令。由于注塑机在工作过程中某一时刻只以速度或压力控制为主,所以控制单元300中位置控制模块304与压力控制模块303可以相互协调和补充,增加了系统的可靠性。两套伺服控制系统均由主控计算机统一实施控制,控制单元整合了高性能工业电脑和运动控制卡,采用实时操作系统Win-CE及基于Codesys内核的编程软件保证注塑机控制系统程序执行的实时性;控制单元内部自行开发了流量、压力控制算法模块完成对油泵31出口流量和压力的完全控制;温度控制模块采用Fuzzy PID控制单元实现了对熔胶温度的准确控制;控制单元通过本地数字量输入输出模块完成对注塑机电柜中低压开关电器(电磁继电器、交流接触器等)及注塑机各运动保护开关的检测;通过本地高速AD输入完成对注塑机液压执行机构位移及液压油压力等模拟量的实时检测;通过外部扩展模块实现对料筒温度、液压油路电磁阀的控制。此外,通过外接键盘鼠标和显示器(也可以是触摸屏),控制单元可以完成注塑各动作的参数设定、各传感器反馈信息显示、运动曲线监测等任务。更具体地,如图3所示,所述油泵31进油口连接于主油箱,油泵31的出油口通过管道连接至注塑机的锁模单元、注射单元、顶出单元和安全阀模块;所述第二伺服电机42 后端设置有用于反馈所述第二伺服电机42转速的旋转变压器,所述旋转变压器电连接于所述第二伺服驱动器41和主控计算机。以实时检测第二伺服电机42的工作情况,并根据算法控制相应部件的工作情况。更具体地,如图3所示,所述注射单元包括注射油缸50和设置于所述注射油缸50 内的活塞,所述活塞的一端设置有可轴向滑动的花键轴51,所述花键轴51上连接到由第二伺服电机42驱动的同步带减速机构52。第二伺服电机42通过同步带减速机构52将伺服电机末端速度降到熔胶过程所需转速范围,然后带动与同步带减速机构52相连的花键轴 51旋转,同时花键轴51驱动注射油缸50活塞同速旋转,熔胶螺杆M在另一侧与注射油缸 50活塞联接,完成熔胶动作。具体地,如图3所示,所述机架10上还设置有用于检测注射单元和顶出单元位移的位移传感器53,所述位移传感器53电连接于所述主控计算机。具体地,如图3所示,所述主控计算机包括工业电脑和插接于所述工业电脑上的运动控制卡。这样一方面可以利用工业电脑运行可靠性较高和运动控制卡实时控制能力强的特性,同时使用基于符合IEC61131-3标准的软件编写系统程序,保证注塑机控制软件运行的实时性,另一方面结合运动控制卡所附带的运动控制模块完成对伺服电机的精确控制。主控计算机可读取各传感器反馈回来的转速、压力和位置信号等,再将其与用户预设的相应参数比较获得相应偏差,经流量、压力控制算法处理后输出相应的电机转速指令,主泵伺服驱动器接收速度指令后驱动伺服电机带动油泵旋转。上述所有压力和流量控制算法在主控计算机中完成,伺服驱动器为仅需完成驱动功能的通用型号。注塑机系统中使用的两台伺服驱动器通过共用直流母线组件20直接连接,同时通过控制单元调整注塑机控制过程中熔胶动作与其余工艺动作的运动时间关系,使两者能充分利用对方的再生能量(制动能)。本发明实施例所提供的节能注塑机,与原有技术相比具有以下优点1、与仅采用主泵伺服系统的电液混合型注塑机相比,本方案由于还采用伺服电机驱动熔胶动作与其它注塑工艺动作可同时执行,大大缩短了注塑周期,提高了注塑机生产效率。2、采用集中控制方式,将以往油泵31出口流量和压力控制模块由驱动器前移至控制器中,同时将温度控制算法、传感器信号处理与检测、注塑机控制系统人机界面等任务均写入主控计算机中,大大简化了注塑机控制系统,避免了注塑机生产厂家购买专用的注塑机主泵伺服系统、料筒加热控制器和注塑机专用人机界面电脑等,大大节省了注塑机硬件成本。3、由于在注塑工艺流程中第一伺服电机32与第二伺服电机42分时工作,且两个伺服电机功率接近,通过引入共用直流母线技术,将两套伺服电机驱动系统的刹车制动能互相利用起来,实现能量互补,使得注塑机生产过程更加节能,降低了能耗。另外,本发明实施例所提供的双伺服控制系统,也可用在挖掘机、推土机等工程机械或生产设备上,只要其采用了本发明中的双伺服控制系统方案和共用直流母线技术,均属于本发明的保护范围。以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。
权利要求
1.一种双伺服控制系统,其特征在于,所述双伺服控制系统包括第一伺服控制系统和第二伺服控制系统;所述第一伺服控制系统包括第一伺服驱动器与第一伺服电机,所述第一伺服驱动器的输出端和转速反馈端分别与所述第一伺服电机的输入端和转速输出端连接;所述第二伺服控制系统包括第二伺服驱动器与第二伺服电机,所述第二伺服驱动器的输出端和转速反馈端分别与所述第二伺服电机的输入端和转速输出端连接;控制单元,与所述第一伺服驱动器及所述第二伺服驱动器连接,用于对所述第一伺服控制系统的液压油流量与压力及对所述第二伺服控制系统的熔胶转速进行监控;共用直流母线组件,与所述第一伺服驱动器及所述第二伺服驱动器连接,用于收集所述第一伺服电机或所述第二伺服电机制动时所产生的能量,并将所述能量以电能形式反馈到所述第二伺服驱动器或者所述第一伺服驱动器。
2.如权利要求1所述的双伺服控制系统,其特征在于,所述第一伺服控制系统还包括定量泵、液压执行机构、压力传感器及位移传感器,所述定量泵与所述第一伺服电机的输出端、所述液压执行机构的输入端及所述压力传感器的输入端连接,所述液压执行机构的位移输出端接所述位移传感器的滑动输入端;所述控制单元包括涉及第二伺服控制系统的熔胶转速控制模块,涉及第一伺服控制系统的主泵流量控制模块、压力控制模块及位置控制模块,所述熔胶转速控制模块的对外交互端与所述第二伺服电机的转速控制端连接,所述流量控制模块的对外交互端与所述压力控制模块的对外交互端同时与所述第一伺服电机的转速控制端连接,所述压力控制模块的压力数据输入端接所述压力传感器的输出端,所述位置控制模块的位移数据输入端接所述位移传感器的输出端。
3.如权利要求1所述的双伺服控制系统,其特征在于,所述共用直流母线组件包括正极直流母线、负极直流母线、能量回馈单元、第一电能导向单元及第二电能导向单元;所述能量回馈单元的正端接所述正极直流母线,负端接所述负极直流母线,用于通过所述正极直流母线收集所述第一伺服电机或者所述第二伺服电机制动时所产生的能量,并将所述能量以电能形式通过所述正极直流母线反馈到所述第二伺服驱动器或者所述第一伺服驱动器;所述第一电能导向单元的第一端口接所述正极直流母线,第二端口接所述负极直流母线,第三端口接所述第一伺服驱动器的变频正电源端,第四端口接所述第一伺服驱动器的变频负电源端,用于将所述第一伺服电机制动时产生的能量导出至所述正极直流母线,以及将所述能量回馈单元输出的电能导入至所述第一伺服驱动器;所述第二电能导向单元的第一端口接所述正极直流母线,第二端口接所述负极直流母线,第三端口接所述第二伺服驱动器的变频正电源端,第四端口接所述第二伺服驱动器的变频负电源端,用于将所述第二伺服电机制动时产生的能量导出至所述正极直流母线,以及将所述能量回馈单元输出的电能导入至所述第二伺服驱动器。
4.一种节能注塑机,包括机架,所述机架上设置有熔胶系统和液压系统,其特征在于, 还包括如权利要求1至3中任一项所述的双伺服控制系统;所述液压系统由第一伺服控制系统驱动,所述熔胶系统由第二伺服控制系统驱动,所述第一伺服控制系统与第二伺服控制系统通过共用直流母线组件相连接,所述第一伺服控制系统和第二伺服控制系统均由主控计算机控制。
5.如权利要求4所述的一种节能注塑机,其特征在于,所述第一伺服控制系统配备伺服或变频调速电机驱动定量泵通过液压系统为开合模、射胶、射台进退、顶出机构的工作提供动力;第二伺服控制系统由伺服电机或变频调速电机直驱或通过减速机构为熔胶系统提供动力;所述液压系统包括油泵和连接于油泵上的管道、阀门和液压缸,所述第一伺服控制系统包括用于驱动所述油泵的第一伺服电机、用于反馈第一伺服电机转速以实时检测油泵出口流量的第一旋转变压器、第一伺服驱动器,所述油泵出口处设置有用于反馈液压油压力的压力传感器,第一伺服驱动器、第一旋转变压器和压力传感器均电连接于主控计算机, 所述第一伺服电机和第一伺服驱动器之间电连接;所述熔胶系统包括熔胶螺杆,所述第二伺服控制系统包括第二伺服驱动器、用于驱动所述熔胶螺杆的第二伺服电机,所述第二伺服驱动器与第二伺服电机之间电连接,所述第一伺服驱动器和第二伺服驱动器之间通过所述共用直流母线组件连接。
6.如权利要求5所述的一种节能注塑机,其特征在于,所述油泵进油口连接于主油箱, 油泵的出油口通过管道连接至注塑机的锁模单元、注射单元、顶出单元和安全阀模块;所述第二伺服电机后端设置有用于反馈所述第二伺服电机转速的旋转变压器,所述旋转变压器电连接于所述第二伺服驱动器和主控计算机。
7.如权利要求6所述的一种节能注塑机,其特征在于,所述注射单元包括注射油缸和滑动设置于所述注射油缸内的活塞,所述活塞的一端设置有可轴向滑动的花键轴,所述花键轴上连接有由第二伺服电机驱动的同步带减速机构。
8.如权利要求7所述的一种节能注塑机,其特征在于,所述机架上还设置有用于检测注射单元和顶出单元位移的位移传感器,所述位移传感器电连接于所述主控计算机。
9.如权利要求4所述的一种节能注塑机,其特征在于,所述主控计算机包括工业电脑和插接于所述工业电脑上的运动控制卡。
全文摘要
本发明适用于机电控制领域,公开了一种双伺服控制系统及包括该系统的节能注塑机。双伺服控制系统包括通过共用直流母线组件相连接的第一、第二伺服控制系统,以互相利用制动能。节能注塑机包括机架,机架上设有机、电、液和上述双伺服控制系统。其中第一伺服控制系统为开合模、射胶、射台进退、顶出等机构工作提供动力;第二伺服控制系统驱动熔胶机构。本发明提供的双伺服控制系统及节能注塑机,一方面通过对负载的跟踪、控制匹配,消除了传统液压注塑机的溢流能量损失,并利用共直流母线技术将第一和第二伺服控制系统的制动能实现互补;另一方面,又实现了熔胶动作与其它工艺动作的同步,大大缩短了注塑周期,有效地较低了能耗,提高了工作效率。
文档编号B29C45/76GK102358019SQ20111021225
公开日2012年2月22日 申请日期2011年7月27日 优先权日2011年7月27日
发明者冯志远, 徐年生, 杜建铭, 罗一星, 蔡恒志, 谢金铎 申请人:深圳大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1