利用闭合环路热泵进行褐煤干燥的制作方法

文档序号:11943857阅读:169来源:国知局
利用闭合环路热泵进行褐煤干燥的制作方法与工艺

本公开总地涉及带或不带CO2捕集的煤功率装置中的褐煤干燥过程的热联合,并且更具体地说,涉及褐煤干燥蒸气中的热能的回收和返回干燥过程的重复使用。



背景技术:

在燃烧褐煤的装置中的褐煤干燥的一般原理是众所周知的,并且涉及利用来自水/蒸汽循环的热烟道气抽取和/或蒸汽抽取,以便将热能供给褐煤干燥系统,褐煤干燥系统包括锤击粉碎机、转鼓式干燥器或流化床干燥器。

所谓的锤击粉碎机技术使用了从炉顶部抽取的热烟道气,然后使这种抽取的热烟道气在粉碎机中再循环,从而使大量的褐煤水分蒸发,褐煤水分对于“B”级褐煤而言可能高达褐煤含量的60%。干燥是一个重要的步骤,因为其可使褐煤粉碎,这对于燃烧是必须的。这种系统的一个问题是其由于需要非常高的锅炉焓热用于干燥过程而造成了非常高的效率惩罚。这种高的热需求由于来自大烟道气流的残余显热的损失和从褐煤移除的水分中的潜热的零回收而造成了高的锅炉损失。

为了至少减轻这个问题,已经研究出了褐煤预干燥技术,其在粉碎之前利用中等或低焓热来实现部分或高水平的褐煤预干燥。这些技术在没有褐煤水分的蒸发蒸气的热量回收的条件下可提供高达3%点的效率增益,或者在褐煤水分的蒸发蒸气的热量回收的条件下提供5%点的效率增益。

德国专利DE19518644C2提供了一种利用所谓废热利用(WTA) 1型I和2型的过程从而预干燥褐煤的方法。

WTA 1型过程包括带有蒸气压缩机的直接热泵环路,其利用水分蒸气作为干燥热量。在移除褐煤颗粒的除尘之后,蒸气利用蒸气压缩机进行压缩,并发送到干燥器的热交换器中。离开干燥器热交换器的干燥蒸气冷凝物的剩余热量可合并在典型的蒸汽功率装置的水蒸汽循环的低压冷凝物加热器中。该过程不需要抽取来自水/蒸汽循环的任何蒸汽,并可相对功率装置独立地操作。虽然其最大限度地增加了干燥蒸气热量的再循环以蒸发褐煤水分,但是该过程可能具有缺点,即因为“脏的”干燥蒸气用于压缩,所以需要的压缩机可为大型的且昂贵的,并且如果事先没有执行脏蒸气的清洁的话还可能结垢和/或被腐蚀和/或被侵蚀。

备选的WTA 2型过程包括从典型的蒸汽功率装置的水/蒸汽循环中抽取蒸汽用于干燥热源。这个过程比WTA 1型更简单且更廉价得多,然而,蒸汽抽取的位置的优化随着装置负载而变化,并因而可能导致比1型系统更低的净装置效率,如果没有进行或进行有限的干燥蒸气的热量回收的话。另一问题可为,用于改善装置性能的干燥蒸气的热量回收的最大化以及出于环境原因对该蒸气的清洁可能需要通过冷凝清洁脏蒸气,从而避免污染物的释放,否则如果在蒸气状态下直接释放至大气中将发生污染物的释放。



技术实现要素:

本发明公开了一种用于干燥用于在锅炉中燃烧的褐煤的干燥器系统。该系统可提供用于干燥褐煤的热能的热回收。

其企图通过独立权利要求的宗旨来解决这个问题。在从属权利要求中给出了有利的实施例。

一方面提供了一种用于干燥在功率装置中使用的褐煤的干燥系统。该系统包括适合于干燥褐煤的干燥器以及闭合环路热泵回路,闭合环路热泵回路配置并设置为用于将热能提供给干燥器。

干燥器具有用于将褐煤引导至干燥器中的入口线路、用于从干燥器中移除干燥的褐煤的第一出口线路,以及用于从干燥器中移除蒸气的第二出口线路。

一个基本方面包括一种用于干燥在功率装置中使用的褐煤的干燥器系统。该系统包括适合于干燥褐煤的干燥器和闭合环路热泵。干燥器包括用于将褐煤引导至干燥器中的入口线路、用于从干燥器中移除干燥的褐煤的第一出口线路,以及用于从干燥器中移除蒸气的第二出口线路。闭合环路热泵回路配置并设置为用于将热能提供给干燥器,并且包括第一工作流体、位于干燥器中的干燥器热交换器、流通地连接在热交换器上并位于热交换器下游的膨胀装置、蒸发器热交换器以及用于压缩第一工作流体的压缩机,蒸发器热交换器流通地连接在膨胀装置上并位于其下游,并且进一步连接在第二出口线路上,从而可使热能从第二出口线路的蒸气传递给工作流体,并且压缩机流通地连接蒸发器热交换器上并位于其下游,并且连接在干燥器热交换器的上游端。

间接热泵过程设计用于将干燥热量从离开干燥器的干燥蒸气供给褐煤干燥器,从而避免热泵压缩机发生结垢、腐蚀或侵蚀的任何风险,它们可能发生在直接压缩脏的干燥蒸气的情况下。

其它方面可包括以下其中一个或多个特征。干燥器是一种流化床干燥器。干燥器系统是蒸汽加热式旋转管式干燥器。膨胀装置是阀。膨胀装置是涡轮。干燥器系统还包括分离罐,其流通地定位在膨胀装置和压缩机之间。分离罐具有从分离罐延伸至在流体方面在压缩机上游的点,从而绕过蒸发器热交换器的蒸气线路以及从分离器延伸至蒸发器热交换器的液体线路。在进入干燥器之前,闭合环路褐煤预热回路用于预热褐煤。闭合环路褐煤预热回路包括第二工作流体、热量回收热交换器以及预热器,热量回收热交换器连接在第二出口线路上,从而可实现从来自干燥器的蒸气至第二工作流体的热能交换,并且预热器连接在入口线路上,从而可实现在褐煤进入干燥器之前的褐煤的预热。预热器连接在入口线路上,从而可在褐煤进入干燥器之前利用来自第二工作流体的热能使褐煤预热。

从以下描述中,结合附图将明晰本发明的其它方面和优点,附图作为示例显示了本发明的示例性实施例。

附图说明

作为示例,后文中参照附图更完整地描述了本公开的一个实施例,其中:

图1是根据本公开的一个实施例的褐煤干燥器及热泵回路的示意图;

图2是图1的褐煤干燥器的示意图,其还包括输送给干燥器的褐煤的预热;

图3是图1的褐煤干燥器的示意图,其还包括利用来自干燥器的蒸气排气的热能预热输送给干燥器的褐煤;且

图4是图1的褐煤干燥器的示意图,其还包括利用来自干燥器的蒸气排气的热能以及通向压缩机热泵回路的进给线路中的额外的能量输入源而预热输送给干燥器的褐煤;且

图5是图1的褐煤干燥器的示意图,其还包括利用来自干燥器的蒸气排气的热能以及位于压缩机和褐煤干燥器之间的额外的能量输入源而预热输送给干燥器的褐煤。

部件列表

10干燥器

11入口线路

12固体颗粒出口线路

13干燥器热交换器

15热量回收热交换器

16蒸气出口线路

17膨胀装置

18分离罐

19蒸发器热交换器

21压缩机

22减热器

23预热器

25a,25b加热器。

具体实施方式

现在参照附图描述本公开的示例性实施例,其中相似的标号用于表示通篇相似的元件。在以下细节描述中,出于解释的目的,阐述了许多特定的细节,从而提供对本公开的完整理解。然而,本公开可在没有这些特定细节的条件下进行实践,并且不局限于这里公开的示例性实施例。

图1显示了干燥系统的一个示例性实施例,其利用间接的热泵过程干燥粉碎的褐煤。在其最简单的形式中,该系统包括干燥器10和用于加热干燥器10的闭合环路热泵回路。

干燥器10包括用于将褐煤引导至干燥器10中的入口线路11、用于从干燥器中排出载有水分的气体的蒸气出口线路16,以及固体颗粒出口线路12,固体颗粒出口线路12用于排出干燥的褐煤,以便用于燃烧褐煤的锅炉的燃烧器。干燥器10可为蒸汽流化床干燥器或蒸汽加热式旋转管式干燥器。

闭合环路热泵回路包括工作流体,其在定位于干燥器10中的干燥器热交换器13、膨胀装置17、蒸发器热交换器19和压缩机21之间循环。

在图1所示的一个示例性实施例中,干燥蒸气中所产生的干燥的蒸气在颗粒移除系统中进行除尘,例如旋风器、静电滤尘器、织物过滤器或任何旋风器、静电滤尘器、织物过滤器循环的组合,其中褐煤颗粒被移除并返回干燥器10或固体颗粒出口线路12。

在适用大气压或低压干燥器的一个示例性实施例中,闭合环路热泵回路为干燥器热交换器13提供了3-4巴(绝压)的低压低过热蒸汽,以便在干燥器10中加热和干燥湿的褐煤。蒸汽在干燥器10中的干燥器热交换器13中进行冷凝,造成湿的褐煤水分蒸发,因而产生干燥的蒸气,其从干燥器10通过蒸气出口线路16而被排出。闭合环路热泵回路中的低压冷凝物离开干燥器热交换器13,并通过膨胀装置17膨胀至非常低的压力,例如0.5巴,造成冷凝物的部分蒸发。在一个示例性实施例中,膨胀装置17是节流阀。在另一示例性实施例中,膨胀装置17是涡轮。

在一个示例性实施例中,来自膨胀装置17的工作流体蒸气和液体在分离罐18中进行分离,其中液体成分被引导穿过蒸发器热交换器19,而蒸气成分绕过蒸发器热交换器19,并在闭合环路热泵回路的下一单元操作之前与来自蒸发器热交换器19的工作流体蒸气进行混合。虽然蒸汽-水分离步骤从热力学和过程观点来看可为可选的,但是避免两相流可为有利的,并且如果蒸发器热交换器19只供有液相工作流体,那么还可提高蒸发器热交换器19中的热传递速率。

膨胀的工作流体然后在蒸发器热交换器19中逆着蒸气出口线路16进行蒸发。这导致工作流体的液体成分的蒸发和蒸气出口线路16中的蒸气至少部分地冷凝。

工作流体蒸气然后在压缩机21中进行进一步的压缩,并返回干燥器热交换器13中。

在一个示例性实施例中,在返回干燥器热交换器13中之前,工作流体的温度通过减热器22,例如喷水装置进行调整。

图2-5中所示的一个示例性实施例还包括在进入干燥器10之前预热褐煤。

在图2所示的一个示例性实施例中,预热器23定位在干燥器入口线路11上。该能源是从水蒸汽功率循环的低压蒸汽中抽取的蒸汽,例如从未显示的蒸汽涡轮传动系统的低压涡轮模块中抽取的蒸汽,其中来自预热器23的冷凝物返回至水/蒸汽功率循环的冷凝物预热系统。

在图3所示的一个示例性实施例中,预热器23定位在干燥器入口线路11上。用于预热器23的能源是定位在蒸气出口线路16中,位于蒸发器热交换器19下游的热量回收交换器15。湿的褐煤在输送到干燥器10中之前的预热容许在热泵循环中的工作流体蒸发之后进一步利用蒸气出口线路16中的低级热能。这可导致来自蒸气出口线路16的热能额外10%的回收。

图4中所示的一个示例性实施例包括工作流体的后加热,其利用蒸汽,例如从水蒸汽功率循环的低压蒸汽涡轮中所抽取的低压蒸汽干燥压缩机21上游的蒸汽。加热是利用流通地定位在压缩机21和蒸发器热交换器19之间的加热器25a来实现的。在具有分离罐的一个示例性实施例,加热器25a流通地定位在来自分离罐18的蒸气重新加入主工作流体流的点位和蒸发器热交换器19之间。在一个未显示的示例性实施例中,来自加热器25a的冷凝物返回水蒸汽功率循环的冷凝物系统中。

图5中所示的一个示例性实施例包括利用蒸汽,例如从水蒸汽功率循环的中等压力蒸汽涡轮中抽取的中等压力蒸汽对压缩机21下游的工作流体进行后加热。加热是利用流通地定位在压缩机21和干燥器热交换器13之间的加热器25b来实现的。在具有减热器22的一个示例性实施例中,加热器25b流通地定位在减热器22和压缩机21之间。在一个未显示的示例性实施例中,来自加热器25b的冷凝物返回水蒸汽功率循环的冷凝物系统中。

虽然这里已经在被认为是最恰实际的示例性实施例中显示并描述了本公开,但是本公开可以其它特殊的形式来体现。当前公开的实施例因此在所有方面都被认为是说明性的而非限制性的。本公开的范围是由附属权利要求而非前面的描述来指出,并且所有属于其涵义和范围以及等效范围内的变化都意图被包含进来。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1