一种用于进行隔离的防护装置的制作方法

文档序号:16483940发布日期:2019-01-04 22:54阅读:259来源:国知局
一种用于进行隔离的防护装置的制作方法

本实用新型涉及医疗设施技术领域,尤其涉及一种用于进行隔离的防护装置。



背景技术:

传染性疾病,尤其是传染源可以通过流动的空气进行传播而导致疾病感染他人的传染病,例如:SARS、Mers、埃博拉病毒以及流行性感冒等,已经逐渐成为威胁人类健康的重要问题,使得人类更加重视经由空气或者飞沫媒介所携带传播的潜在危险性病毒,其对于需要与患者进行近距离接触的人来说,具有非常大的威胁性,尤其是医务人员。目前,为了避免患者和与其近距离接触的人员之间发生以空气或飞沫为传染途径的交互感染,通常采取隔离措施,对类似病症患者进行病区隔离、病房隔离等,特别的,医务人员在治疗工作中则需要采取穿戴防护服装、戴手套口罩等方式与患者进行隔离接触,这种方式虽然也具备一定的隔离效果,但是会对患者造成很大的心理压力,且医患之间的交流也很不方便。而现有的具备隔离功能的防护装置,通常需要对整个病房或者医院内部作出改造,成本较高,整体结构较为复杂,使用不便,且隔离效果不佳;在采用吹风的方式进行隔离时,通常将吹风方向定为在竖直方向上,但是当患者与其他人员面对面交流时,当患者出现突发性的咳嗽或者打喷嚏的行为,由于过程具有较强的冲击力,故而容易导致携带有病毒的气溶胶突破风帘而传递至其他人员这一侧,进而损害对其他人员的安全,故这类吹风设计的可靠性非常低,患者呼出的气溶胶存在不能被完全隔离的风险,对其他人员的生命安全仍存在非常大的威胁。



技术实现要素:

基于上述现有技术的不足,本实用新型提供了一种用于进行隔离的防护装置,该防护装置能够将患有传染病的患者在交流时呼出的气溶胶与其他人员进行隔离,以保障其他人员的生命安全和健康,且整个装置的结构非常简单,隔离效果有效且可靠。

基于此,本实用新型提出了一种用于进行隔离的防护装置,其包括机架主体、净化单元、设置于所述机架主体的内部并使其内部形成正负压差的风机和用于形成隔离风帘的第一出风风道,所述风机的进风口用于吸入外部空气,所述净化单元设置于所述机架主体的内部,且与所述风机的进风口相连通,所述风机的出风口与所述第一出风风道相连通,所述第一出风风道设置于所述机架主体的顶部,且所述第一出风风道与所述机架主体的长边相平行,所述第一出风风道内设有至少一片用于使隔离风帘向患者方向进行倾斜的导向条,且所述导向条与所述第一出风风道的法线方向的夹角为15°~25°。

可选的,各所述导向条为相互平行布置,且各所述导向条之间的间隔相等。

可选的,所述机架主体的位于所述第一出风风道的两端的侧面上分别设有吸风口,所述吸风口与所述风机的进风口相连通,且所述净化单元连通于所述吸风口与所述风机的进口之间。

可选的,所述净化单元包括依次相连接的初效过滤网、消毒杀菌单元和高效过滤器,所述吸风口与所述初效过滤网相连通,所述高效过滤器与所述风机的进风口相连通。

进一步的,所述用于进行隔离的防护装置还包括鼓风箱,所述鼓风箱设置于所述机架主体的内部,所述风机的出风口与所述鼓风箱的入口相连通,所述鼓风箱的出口与所述第一出风风道相连通。

可选的,所述鼓风箱为Y漏斗形结构,所述鼓风箱的入口位于其侧部,所述鼓风箱的出口位于其顶部,且所述鼓风箱的出口的长度与所述第一出风风道的长度相等。

可选的,所述风机的送风速度为2m/s~4m/s。

进一步的,所述机架主体的顶部设有至少一条第二出风风道,所述第二出风风道沿所述机架主体的宽度方向布置,且所述第二出风风道的第一端部与所述第一出风风道的端部相连通。

可选的,所述机架主体上靠近需保护方的侧面上沿竖直方向设有至少一条第三出风风道,所述第三出风风道的端部与所述第二出风风道的第二端部相连通。

可选的,所述用于进行隔离的防护装置还包括控制单元,所述控制单元包括主控模块、用于检测风速的检测模块和设置于所述机架主体上的触摸屏,所述触摸屏与所述主控模块电连接,且所述主控模块分别与所述检测模块、所述风机、所述净化单元电连接。

实施本实用新型实施例,具有如下有益效果:

本实用新型的用于进行隔离的防护装置通过能够在机架主体内部形成正负压差的风机和第一出风风道的配合工作,在患者和需保护方之间吹出一道隔离风帘,在患有呼吸道疾病的患者和其他人员进行语言交流的过程中,能够加强对患者的唾液和/或气溶胶起到的隔离效果;而风机的进风口和净化单元相互配合工作,能够有效的吸入患者呼出的可能携带的病毒、细菌等传染源的唾液,并通过净化单元立刻做出消毒杀菌的净化处理,防止患者的唾液和/或气溶胶在空气中散发和传播,避免对需保护人员的健康造成威胁;由净化装置完成消毒杀菌后的干净空气能够通过风机重新传送入第一出风风道中吹出,再为隔离风帘的形成提供支持,从而完成对环境中的空气的循环利用。第一出风风道中设置的用于使隔离风帘向患者方向倾斜的导向条,能够使风帘与第一出风风道的法线方向形成15°~25°的夹角,由此从第一出风风道中吹出的风帘能够有效的将患者呼出的气体控制在其身后的一个小区域内,使该气体不容易抵达需保护人员的呼吸区内,从而能够达到最好的压制污染气体传播的目的,较好的阻隔患者与需保护人员之间的气流交互,降低实际环境中气溶胶交互感染的风险。

进一步的,相互平行布置且间隔相等的导向条能够使得第一出风风道处形成的风帘的均匀性更好;该防护装置中还包括鼓风箱,能够对风机排出的气体进行收集,并保证一定的风压,以便于通过第一出风风道将空气均匀的吹出,形成一道强度为均为分布的正压风帘,有效的保证风帘对患者和需保护人员进行隔离的可靠性;鼓风箱采用Y漏斗形结构,由此当空气从净化单元中排出时能够自动向两侧进行分流,从而提高第一出风风道内吹出的空气的均匀性,且Y漏斗形结构能够减小空气输送过程中的阻力,使得空气能够平稳地过渡进入第一出风风道中,保证空气流动的顺畅性。鼓风箱上设置的消音装置能够减小其在工作过程中产生的噪音,以能够达到较好的使用效果;且该防护装置上还分布有第二出风风道和第三出风风道,二者与第一出风风道相配合围设形成一个无物理装置阻隔的相对封闭的空间,需保护人员身处于该空间内,能够获得非常可靠有效的保护;整个防护装置的工作由控制单元进行调控,自动化程度较高,在实际的使用过程中具有灵活应变性。

附图说明

图1是本实施例所述的用于进行隔离的防护装置的爆炸结构示意图;

图2是本实施例所述的用于进行隔离的防护装置的气体流向示意图;

图3是本实施例所述的第一出风风道处的俯视结构示意图;

图4是图3中A-A出的剖视结构示意图;

图5是第一出风风道和左右两侧的第二出风风道上各测试点的位置示意图;

图6是左右两侧的第三出风风道上各测试点的位置示意图;

图7是对照组case0条件下的组分图;

图8是Scenario 5Case 2条件下的组分图;

图9是Scenario 5Case 5条件下的组分图;

图10是Scenario 5Case 8条件下的组分图;

图11是Scenario 1Case1条件下的组分图;

图12是Scenario 1Case 2条件下的组分图;

图13是Scenario 1Case 3条件下的组分图;

图14是不同送风速度和送风角度下医务人员嘴巴附近的示踪气体平均摩尔分数(×10-4)的折线图。

附图标记说明:

1、机架主体,11、吸风口,12、排风口,2、风机,3、第一出风风道,4、导向条,5、鼓风箱,6、第二出风风道,7、第三出风风道。

具体实施方式

下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。

在本实用新型的描述中,需要理解的是,术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。

参见图1至图4,本优选实施例所述的用于进行隔离的防护装置包括机架主体1、净化单元、设置于所述机架主体1的内部并使其内部形成正负压差的风机2和用于形成隔离风帘的第一出风风道3,所述风机2的进风口用于吸入外部空气,所述净化单元设置于所述机架主体1的内部,且与所述风机2的进风口相连通,所述风机2的出风口与所述第一出风风道3相连通,所述第一出风风道3设置于所述机架主体1的顶部,且所述第一出风风道3与所述机架主体1的长边相平行,所述第一出风风道3内设有至少一片用于使隔离风帘向患者方向进行倾斜的导向条4,且所述导向条4与所述第一出风风道3的法线方向的夹角为15°~25°,在本实施例中,导向条4的数量优选为两条。

基于以上结构,以该机架主体1上靠近患者的一侧作为前端,靠近医务人员的一侧则为后端,第一出风风道3设置于机架主体1的顶部并与机架主体1的长边相平行,且第一出风风道3为靠近机架主体1的前端进行布置,以便于其吹出的隔离风帘能够对患者呼出的气溶胶进行及时有效的阻隔,加强对患者呼出的气溶胶的隔离效果,风机2用于在机架主体1内部形成正负压差,第一出风风道3与风机2的出风口相连通以形成正压风帘,而风机2的进风口则与设置于机架主体1内的净化单元相连通,在患者与医务人员进行语言沟通交流时,风机2在机架主体1内部形成的负压能够将患者呼出的气体和/或气溶胶、喷出的唾液等进行可靠的吸收,并将吸入的气体、气溶胶或者唾液及时通入净化装置中进行消毒杀菌处理,防止携带有病毒的气体、气溶胶或者唾液在空气中进行传播,避免对医务人员造成传染;经过净化装置消毒杀菌后的干净气体通过风机2传送至第一出风风道3中,以便于持续不断的形成隔离风帘,由此能够提高环境中空气的利用率,采用将携带有病毒的气体进行阻隔和吸收杀菌的双重手段,有效的避免在医患交流过程中出现气溶胶交互感染现象,保证医务人员的安全。第一出风风道3内设置的导向条4能够使得隔离风帘偏向于患者的方向,且控制该隔离风帘与机架主体1的上表面的法线方向的夹角为15°~25°,在本实施例中优选为20°,由此,从第一出风风道3内吹出的风帘能够有效的将患者呼出的气体控制在患者身后的一个小区域内,使患者呼出的气体不易抵达医务人员的呼吸区,从而能够达到压制病毒传播的目的,医务人员周围的气流不收风帘的直接影响,故其热羽流能够正常发展,使得患者和医务人员之间的气流交互能够获得较好的阻隔,也能减小实际环境中的气溶胶感染的风险。

其中,各导向条4为相互平行布置,能够保证各导向条4之间的空气能够全部朝向同一个方向吹出,确保所能够形成的风帘的强度,且各导向条4之间的间隔相等,保证由风机2吹出的干净的空气能够均匀的分布在各导向条4之间,保证第一出风风道3内出风的均匀性,使得其形成的隔离风帘的工作效果更好。机架主体1的位于第一出风风道3的两端的侧面上分别设有吸风口11,即在机架主体1的左、右两侧面上分别设置有吸风口11,吸风口11与风机2的进风口相连通,且净化单元连通于吸风口11与风机2的进口之间,风机2能够在机架主体1的内部形成负压,故而外部的空气能够持续不断的从吸风口11处被吸入,其中包括由患者呼出的带有病毒的气体、气溶胶或唾液,带有病毒的空气通过吸风口11被吸入后直接进入到净化单元中进行快速有效的净化,消毒杀菌后能够重新获得干净的空气,这些干净的空气被源源不断的输送至风机2处,并由风机2将其正压输出,以形成隔离风帘,从而实现环境内空气的循环利用和不断净化。净化单元包括依次相连接的初效过滤网、消毒杀菌单元和高效过滤器,吸风口11与初效过滤网相连通,高效过滤器与风机2的进风口相连通,由吸风口11处被吸入的患者呼出的可能携带病毒和细菌的气体依次经过初效过滤网、消毒杀菌单元和高效过滤网后输入到风机2中,净化单元包括多重消杀环节,能够对空气进行高效可靠的净化,确保净化工作的质量。

另外,该用于进行隔离的防护装置还包括鼓风箱5,鼓风箱5设置于机架主体1的内部,风机2的出风口与鼓风箱5的入口相连通,鼓风箱5的出口与第一出风风道3相连通,干净的空气经由风机2输出至鼓风箱5中,通过鼓风箱5对输入其内部的空气压力进行保持,直至鼓风箱5内的空气压力达到一定值后,控制逐渐从鼓风箱5中溢出至第一出风风道3内,通过第一出风风道3均匀吹出,对鼓风箱工作过程中的第一出风风道3、各第二出风风道6和各第三出风风道7的出风情况进行试验并检测,参见图5和图6,分别为在第一出风风道3和左右两侧的第二出风风道6中各测试点的位置示意图以及左右两侧的第三出风风道7中的各个测试点的位置示意图,实验数据如下表1和表2统计所示:

表1为第一出风风道3、左侧第二出风风道6以及左侧第三出风风道7各测试点处的试验数据;

表1

表2为第一出风风道3、右侧第二出风风道6以及右侧第三出风风道7各测试点处的试验数据;

表2

一般的,在未安装鼓风箱之前,整个隔离装置内各出风风道处的风速的极差在1.5m/s~2.0m/s之间,通过观察上述试验数据可知,安装鼓风箱后的隔离装置上的各出风风道处的风速的极差获得了极大的减小,即各出风风道处能够形成一道强度均匀的正压风帘具备良好的隔离效果。

在此需要说明的是,在本实施例中,鼓风箱5选择为Y漏斗形结构,鼓风箱5的入口位于其侧部,鼓风箱5的出口位于其顶部,且鼓风箱5的出口的长度与第一出风风道3的长度相等,由风机2吹入鼓风箱5中的空气能够自动向两侧进行分流,从而使干净的空气吹出来相对比较均匀,Y漏斗形状的设计也有效的减小了空气的阻力,使得空气能够平稳地过渡到第一出风风道3中,由此保证空气流通的顺畅性。鼓风箱5的设计为采用机械结构有效的实现风帘均匀出风的效果,故鼓风箱5的安装和工作过程中不会产生多余的能耗,在提高风帘的吹风质量的同时,一定程度上节约成本。但在其他实施例中,鼓风箱5的结构形状设计并不受本实施例的限制,当可按照实际的需要,选择合适的鼓风箱5形状类型。鼓风箱5上还设有消音装置,能够减小鼓风箱5在工作过程中产生的噪音,为使用者提供更好的体验,以达到较好的使用效果。

参见图1和图2,机架主体1的顶部设有至少一条第二出风风道6,第二出风风道6沿机架主体1的宽度方向布置,且第二出风风道6的第一端部与第一出风风道3的端部相连通,本实施例中第二出风风道6的数量优选为两条,两条第二出风风道6分别连通于第一出风风道3的两端部处,且第二出风风道6与第一出风风道3相互垂直布置,在机架主体1的顶部形成U形出风风道,由此第二出风风道6吹出的风帘能够与第一出风风道3吹出的风帘相互拼接形成封闭性更好的防护空间,以对医务人员提供更好的保护。进一步的,机架主体1的后端的两侧分别设有沿竖直方向布置的第三出风风道7,且第三出风风道7的端部与第二出风风道6的第二端部相连通,由此第一出风风道3、第二出风风道6和第三出风风道7分别吹出的正压风帘能够为医务人员提供一个封闭性更高的空间,已为医务人员提供高质量的防护工作,第二出风风道6和第三出风风道7的存在还能够在一定程度上减少由于第一出风风道3的送风角度过大而为医务人员带来的风险,提高整个防护装置的可靠性。机架主体1的表面上分别设有与第一出风风道3、第二出风风道6和第三出风风道7相对应的排风口12,保证第一出风风道3、第二出风风道6和第三出风风道7吹出正压风帘的顺畅性。

进一步的,用于进行隔离的防护装置还包括控制单元,控制单元包括主控模块、用于检测进风风速的检测模块和设置于机架主体1上的触摸屏,触摸屏与主控模块电连接,且主控模块分别与检测模块、风机2、净化单元电连接,主控模块能够接收检测模块所反馈来的风速信息,并能够按照使用者通过触摸屏的操作来实现对风机2和净化单元的调整控制,根据实际的情况改变风速的大小和净化单元的工作情况,例如:在患者突然打喷嚏时,冲向医务人员的气流会突然加快,而会存在患者的唾液冲破第一出风风道3所形成的隔离风帘,此时使用者能够通过触摸屏控制主控模块提高风机2的风速,以增强隔离风帘的强度,从而能够对扑面而来的唾液进行阻断,有效的保证医务人员的安全,对整个过程的自动化程度高,使用方便。

针对风帘需偏向于患者方向20°进行布置时具备最好的隔离效果为通过CFD模拟技术试验进行研究获得结论,具体论证过程如下:

通过CFD模拟技术,对利用气流隔离防护装置的隔离效果进行研究,并得出不同参数对隔离效果的影响,主要包括:风帘送风口的速度、送风角度。并从这两个方面对防护装置的优化设计提出了改进建议。在本模拟的条件设置下,防护装置位于房间中央,医务人员和患者连线的中点为房间的中心点。几何模型中的相关参数,包括防护装置尺寸、送回风口的尺寸和位置均按照实际产品的已知参数建立,并进行了合理的简化。考虑到风帘的主要作用是隔离病人呼出的病原性微生物气溶胶,故在本模拟中对病人和医生在实际情况下同时呼吸的状态作了一定的简化,重点研究了病人呼气、医生吸气的情况。

CFD模型的建立以及边界条件的设置,先确定几何模型如表3所示:

表3几何模型尺寸

再设置模拟条件,参见表4所述:

表4模拟条件设置

其中,注:送风角度θ指机架主体1的上表面的长度方向送风口的送风方向与其法线方向的夹角(°)(偏向病人方向)。模拟过程中用示踪气体代表病人呼出的气体成分,所计算的组分图均指的是示踪气体的摩尔分数分布图。

以Case 0作为对照组,设为机架主体1无风帘,参见图7为Case0的组分图,用示踪气体代表病人呼出的气体成分,故该组分图均指的是示踪气体的摩尔分数分布图。病人呼出的气流被自己头顶产生的热羽流所卷吸,向头顶上升,同时也向一侧墙壁偏移。在相同的房间通风系统下,无风帘的换气次数小于有风帘的换气次数,因此Case 0的换气次数较小,污染物停留时间较长。因没有风帘阻隔,病人的气流可能会在房间各处盘旋,导致医生嘴巴附近的示踪气体浓度较高(能达到其他Case的几倍),并且医生的暴露时间也较长。因此,设置风帘来降低医生的感染风险的做法是十分有效的。

由模拟过程中可得知,送风角度对防护装置的隔离效果的影响,以Scenario 5(Case 2,5,8)为例,研究不同送风角度对病人呼出与染污轨迹的影响,参见图8、图9和图10分别对应Case 2、Case 5和Case 8条件下的组分图,对比个图中患者一侧的摩尔分数分布状态得出如下结论:

1、在Case 2的基础上,将送风角度调整为20°,由机架主体1的第一出风风道3射出的冷气流可以有效地将病人的呼出气体控制在病人身后的一个小区域里,不容易抵达医生呼吸区,从而达到压制污染物传播的目的。医生周围的气流不受风帘的直接影响,其热羽流能正常发展。这种情况能较好地阻隔病人和医生之间的气流交互,可以减小实际环境中的气溶胶感染风险。

2、Case 8将风帘送风方向再次向病人侧倾斜,送风角度调整为40°,病人和医生之间的气流是自由连通的,医生嘴巴呼吸区域的示踪气体浓度较高,风帘形同虚设。这是由于此时风帘的送风角度太低,送风气流极易受到病人呼出气流的吸引,甚至被温度较高的病人呼出气流压制在其下方,送风气流将直接抵达病人嘴巴下方,使得病人呼出气流则可以直接越过送风气流而往医生区域自由运动。但与此同时,由于机架主体1的第二出风风道6的作用又对病人呼出气流的运动起到了一定的干扰和压制,使得病人呼出气流最终偏离医生方向运动而回到病人身后,机架主体1上第二出风风道6和第三出风风道7的存在能够在一定程度上减小由于第一出风风道3处选择较大的送风角度(如40°)时给医务人员带来的风险。

由模拟过程也可以得知,送风速度对防护装置隔离效果的影响,以Scenario1(Case 1,2,3)为例,研究不同送风速度对病人呼出与染污轨迹的影响,参见图11、图12和图13分别对应Case 1、Case2和Case 3条件下的组分图,对比个图中患者一侧的摩尔分数分布状态得出如下结论:

1、在Case 1的情况下,由于风帘的送风速度不高,病人呼出的污染物可以很容易越过风帘,从高处(靠近天花板位置)向医生侧移动,风帘的隔离作用无法得到保障。这是由于风帘的送风角度竖直向上,且速度不高,较弱的送风气流在喷出后不久便受到病人呼出气流的卷吸作用,使得风帘的送风气流略微偏向病人侧。且由于病人呼出气体的密度大于空气,污染物有机会下沉,并有可能绕过机架主体1底部和侧面而到达医生的呼吸区。具体的感染风险还与污染物种类、暴露时间、感染阈值等因素有关。因此在这种情况下,虽然风帘在近机架主体1的表面上有一定的作用,但作用有限,应加大防护装置的送风风速,进一步阻隔两人之间的气流交换。

2、在Case 2中,风帘的送风速度加大到3m/s。此时,送风气流形成了比较完整的风帘,左边病人的污染物基本被阻挡在风帘左边,只有少数能逃逸到风帘右边。呼出气流偏向送风气流,这是由于送风气流的速度较大,对病人呼出气流有较强的卷吸作用而导致;另一方面,较冷的送风气流在房间内四散,甚至在房间中上部形成了一定的温度分层(上热-中上冷-中下热),破坏了热羽流。

3、在Case 3中,风帘的送风速度加大到4m/s的情况。此时,强化的风帘能够完全隔离两人,这是由于较冷且速度较高的送风气流直接冲向天花板,从而在医生和病人之间筑成一道有力的“风帘屏障”。在这种情况下,污染物到达医生呼吸区的机会更小了,一般在到达医生侧之前就能被防护装置两侧的回风口排走。但是,从模拟过程中可以得出,病人呼出气体在医生头顶上方天花板区域的平均浓度反而高于Case 2中风帘的送风速度为3m/s的情况,又增加了对医生呼吸区域污染的风险。这是由于速度较高的气流对病人呼出气体的卷吸作用更强,则其混合气体的密度与周围空气的密度差值越大,越容易在医生侧发生下沉。所以送风速度不是越大越好。

综上所述,参见图14为不同送风角度和送风速度下,医务人员嘴巴附近示踪气体平均摩尔分数的折线图,参考整个模拟的过程并结合该折线图所得到的结论是:

1、送风角度20°(Case 4,5,6)的隔离效果优于0°(Case 1,2,3)和40°(Case7,8,9)的情况。因为与0°相比,20°送风气流有一个向着病人方向倾斜的作用面,对病人的呼出气体有更好的压制作用,将污染物吹向病人身后的空间;而40°的送风角度,由于气流倾斜太多,接近于病人嘴巴高度,而在病人呼出气流的卷吸作用下直接被呼出气流带到病人嘴巴下方,不能起到阻挡病人呼出气流的作用;

2、送风速度3m/s(Case 2,5,8)的隔离效果优于2m/s(Case 1,4,7)和4m/s(Case 3,6,9)的情况。原因是2m/s的送风速度形成的风帘强度不够,患者说话时喷出的气溶胶具有一定的速度,而3m/s的风速形成的风帘的阻力大于2m/s的风速形成的风帘的阻力,故而2m/s的送风速度形成的风帘在靠近天花板的位置容易被病人呼出气流穿破而导致病人呼出气流的泄露进入医生侧;而4m/s的送风速度又会增强房间内气流的紊乱程度,从而加剧房间内空气的混合,导致病人的呼出气流很有可能在整个房间内充满,且4m/s的送风速度可能造成病人因为较高速度的出流而带来的吹风感,影响患者和医务人员的舒适度和体验感,且形成4m/s的风速的风机在工作过程中会产生较大的噪音,并消耗过多的能源,使用成本较高,在本实施例中风速优选为3m/s较合适。

3、风帘射流和人体热羽流的卷吸效应在模拟中得到了体现。不同风帘送风速度下,病人呼出气体会受到不同卷吸作用的影响。以Case 2和Case3为例,当风帘送风速度较小时,人体热羽流产生的卷吸效应对病人呼出气体的运动起主导作用,呼出气体被头顶的热羽流所捕获,并被加热上浮;当风帘送风速度较大时,风帘射流所产生的的卷吸效应起主导作用,病人呼出气体会被卷入风帘并跟随风帘的送风气流一起运动,同时污染物也被风帘包围而得到控制,从而使得医生的感染风险得以降低。

在此需要说明的是,本实施例中,所述的隔离防护装置的应用于医院的诊台为例,从需要对医务人员和患者进行隔离出发,在医务人员和患者之间形成风帘以能够进行气溶胶的阻断,防止携带有病毒的气溶胶威胁到医务人员的健康,在最大的程度上对医务人员进行保护。但在其他实施例中,该隔离防护装置的应用并不受本实施例的限制,当可应用于各种容易发生交叉感染的场所中,如:可应用于银行柜面上,替代传统的采用玻璃对工作人员和顾客进行隔离的方法;也可应用于医院内挂号台、车站的售票台以及办事处工作台等各种公共场所下的接待窗口处,避免业务人员和需要办事的顾客交流过程中的相互感染,保证内部工作者和外部顾客的健康和安全;可应用于各种车的内部,从而隔离司机与后座、副座上的人员,尤其是在救护车、出租车和公交车等公共使用的车辆内部,有效的阻断在交流过程中产生的气溶胶的传播,对司机和乘客均能够起到保护的作用;可应用于实验室,尤其是生物实验室内,对于试验过程中可能产生的有害气体等进行隔离阻挡,保证试验人员的安全;该装置不仅仅能够安装在只有台面或者桌面等的平面装置上,还能够设置在可移动的相关框架内,以形成类似于屏风的装置,从而方便使用者们对设置有该隔离装置的框架进行移动或/和携带,进而便于使用者能够随时应用,尤其在公共场所中,具有极其可靠的隔离保护的效果,且体验感较好,

本实用新型的用于进行隔离的防护装置通过能够在机架主体内部形成正负压差的风机和第一出风风道的配合工作,在患者和医务人员之间吹出一道隔离风帘,在患有呼吸道疾病的患者和医务人员进行语言交流的过程中,加强对患者的唾液和/或气溶胶起到的隔离效果;而风机的进风口和净化单元相互配合工作,能够有效的将患者呼出的可能携带病毒、细菌等传染源的唾液进行吸入,并通过净化单元立刻做出消毒杀菌的净化处理,防止患者的唾液和/或气溶胶在空气中散发和传播,避免对医务人员的健康造成威胁;由净化装置完成消毒杀菌后的干净空气能够通过风机重新传送入第一出风风道中吹出,再为隔离风帘的形成提供支持,从而完成对环境中的空气的循环利用。第一出风风道中设置的用于使隔离风帘向患者方向倾斜的导向条,能够使风帘与第一出风风道的法线方向形成20°的夹角,由此从第一出风风道中吹出的风帘能够有效的将患者呼出的气体控制在其身后的一个小区域内,使该气体不容易抵达医务人员的呼吸区内,从而能够达到最好的压制污染气体传播的目的,较好的阻隔患者与医务人员之间的气流交互,降低实际环境中气溶胶交互感染的风险。

应当理解的是,本实用新型中采用术语“第一”、“第二”等来描述各种信息,但这些信息不应限于这些术语,这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本实用新型范围的情况下,“第一”信息也可以被称为“第二”信息,类似的,“第二”信息也可以被称为“第一”信息。

以上所述是本实用新型的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以做出若干改进和变形,这些改进和变形也视为本实用新型的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1