用于空调启动的控制系统和控制方法

文档序号:4770232阅读:110来源:国知局
专利名称:用于空调启动的控制系统和控制方法
技术领域
本发明涉及空调,尤其涉及到一种采用脉冲宽度调制压缩机的控制空调启动的系统和方法。
尤其是,如果提供给任意室内单元的电源在多个-空调工作期间突然地断电,就更增加了液体制冷剂进入压缩机的可能性。当室内的单元在工作期间被突然地切断电源时,因为构成室内单元部件的电子膨胀阀门的电源被切断,所以电子膨胀阀门没有关闭。因此,驻留在冷凝器和电子膨胀阀门之间的制冷剂导管中的高压液体制冷剂进入压缩机,或者在不-蒸发状态通过电子膨胀阀门和蒸发器进入压缩机上流的蓄压器。
这种现象继续直到高和低压两边平衡。已经进入压缩机的液体制冷剂与包含在该压缩机中的油混合而稀释了油,所以压缩机摩擦部分的润滑恶化,因此而损坏压缩机。
同时,对于多个-空调,需要很大的制冷容量而且每个室内单元经常轮流地开/关,因此要求制冷容量可以改变。为了满足这种需求,一种具有大容量和可变容量的可变转数的压缩机使用在多个-空调系统中。在这种可变转数的压缩机中,压缩机的容量被调整到适合于制冷容量要求中的变化,是通过以反向控制方式改变施加给马达的电流频率来控制马达转数这样的方法控制的。然而,常规可变转数压缩机存在其马达的转数不能用所希望的响应和精度控制的问题,因为马达旋转必须根据需要的制冷容量直接地控制。另外,因为马达的转数经常改变,就容易产生颤动和噪音,因此导致马达和压缩机的使用时间缩短以及整个系统的机械可靠性降低。
另外,因为改变施加给马达的电流频率需要昂贵和复杂的电路装置而且功率消耗也很大,所以常规可变转数压缩机比通用型压缩机的效率低。尤其是,在常规可变转数压缩机中需要一些最初输入的商用交流电源到直流电源的电源转换以及这个直流电源到具有通过转换器要求频率的交流电源的电源转换,因此该电路装置的结构复杂而且在该电路装置中经常产生噪音。
另外,大-容量,可变转数的压缩机存在难以控制的问题,压缩机的效率低,压缩机的尺寸大以及压缩机的成本高,因此难以满足具有可变转数压缩机的大-容量的需求。所以,为了满足大容量的需求而使用两个或者更多的压缩机。在这种情况下,其马达以恒定速度旋转的标准压缩机通常与可变转数压缩机一起使用。如果使用多个压缩机,则室外单元的整体尺寸增大,而且室外单元的控制就变得困难了。
作为另外一种可变容量压缩机的脉冲宽度调制压缩机公开在美国专利号No.6,047,557和日本未审查专利申请公开号No.Hei 8-334094中。这些压缩机都在制冷系统中使用,每个都具有多个冷冻室或者制冷室,而且设计为应用于短管道,其中位于压缩机和蒸发器之间的制冷剂导管部分是较短的。因此,这些压缩机不能直接地应用到必须使用长管道的建筑物空调系统,而且指出控制环境不同于制冷系统的控制环境。另外,在已有技术中,没有公开在多个-空调系统中使用脉冲宽度调制压缩机的控制系统和方法,尤其是没有迅速并且安全地完成空调启动,防止液体制冷剂在启动工作或者连接启动以及正常平稳工作期间进入压缩机的控制系统和方法。
本发明的另一个目的是提供一种用于控制空调启动的系统和方法,其能够防止在使用脉冲宽度调制压缩机的空调中液体制冷剂的流入。
本发明的再一个目的是提供一种用于控制使用脉冲宽度调制压缩机的空调启动的系统和方法,其实现压缩机的工作分两个阶段启动,从而使启动和正常工作能够平滑地连接。
为实现上述目的,根据本发明的原理,一种用于控制空调启动的系统包括根据负载控制信号以脉冲宽度调制方式来控制的压缩机;电子膨胀阀门,用于膨胀压缩机中压缩的制冷剂;高压导管,用于连接压缩机一侧的出口和电子膨胀阀门一侧的入口;低压导管,用于连接电子膨胀阀门一侧出口和压缩机一侧入口;旁路导管,用于第一端连接到高压导管以及第二端连接到低压导管;流动速度调整阀,用于安装在旁路导管上用于调整液体流经过该旁路导管的流动速度;控制单元,用于控制电子膨胀阀门、流动速度调整阀和压缩机,以便实现分两个阶段启动工作这样的方式,在第一个启动工作中流动速度调整阀打开而电子膨胀阀门关闭,在第二个启动工作中流动速度调整阀关闭而电子膨胀阀门打开,以及该压缩机通过一个负载控制信号来控制,该信号具有在所述启动工作期间比正常工作的周期较短的周期。
根据本发明原理的另一个方面,一种用于控制具有根据负载控制信号以脉冲宽度调制方式来控制压缩机的空调启动的方法,其包括压缩机确定是否有启动信号输入;在启动信号被输入时,在负载控制信号的周期比正常工作时的负载控制信号的周期短的预定时间周期操纵该压缩机,同时在第一个启动工作中关闭电子膨胀阀门和打开位于连接压缩机两侧的出口和入口的旁路导管上的流动速度调整阀;以及包括在第二个启动工作中,在负载控制信号的周期比正常工作时负载控制信号的周期短的预定时间周期操纵压缩机,同时打开电子膨胀阀门到一个预定程度并且打开流动速度调整阀。
图2a显示脉冲宽度调制压缩机在装载位置时的截面视图,图2b显示该脉冲宽度调制压缩机卸载位置时的截面视图;图3显示附图2a和2b的压缩机工作期间的装载时间、卸载时间以及制冷剂释放量之间关系图;图4显示本发明用于控制空调启动的系统方框图;图5显示本发明用于控制空调启动的方法的流程图。
*主要部件参考字符的描述2 压缩机 5 蒸发器8 室外单元9 室内单元26脉冲宽度调制阀 27室外控制单元28室外通信电路单元29室内控制单元33压缩机温度传感器34冷凝器温度传感器发明的具体实施方式
在下文中,本发明的实施例将参考附图进行详细描述。

图1显示本发明的原理用于控制空调启动的系统循环实施例。本发明的空调1包括压缩机2,冷凝器3,多个电子膨胀阀门4,和多个蒸发器5,它们都是通过制冷剂导管彼此连接在一起,以便形成一个封闭环路。关于制冷剂导管,连接压缩机2的流出一侧到电子膨胀阀门4的流入一侧的制冷剂导管是高压导管6,其用于导引从压缩机2释放的高压制冷剂的流动,而连接电子膨胀阀门4的流出一侧到压缩机2的流入一侧的制冷剂导管是低压导管7,其用于导引在电子膨胀阀门4中膨胀的低制冷剂的流动。冷凝器3位于高压导管6上,而蒸发器5位于低压导管7上。在压缩机2工作时,制冷剂按照实线箭头方向流动。
空调1包括室外单元8和多个室内单元9。室外单元8包括上面描述的压缩机2和冷凝器3。室外单元8还包括一个位于压缩机2向上流的低压导管7上的蓄压器10,以及包括一个位于冷凝器3向下流的高压导管6上的收集器11。蓄压器10可作为收集和蒸发没有蒸发的液体制冷剂而且使蒸发的制冷剂能够流到压缩机2中。如果制冷剂没有在蒸发器5中完全蒸发,则进入蓄压器10的制冷剂是一种液体制冷剂和气体制冷剂的混合。蓄压器10蒸发液体制冷剂,并且只能允许气体的制冷剂(气体制冷剂)进入到压缩机2中。为了这个目的,所希望的是它位于蓄压器10上部分中的制冷剂导管的入口端和出口端处。
如果制冷剂在冷凝器3中没有完全地被压缩,则进入收集器11的制冷剂是一种液体制冷剂和气体制冷剂的混合。收集器11构造成为使得液体制冷剂和气体制冷剂彼此分开而且只允许液体制冷剂流出。为了这个目的,位于收集器11内侧的制冷剂导管的入口和出口端被延伸到收集器11的下面部分。
为了分流驻留在收集器11中的气体制冷剂,提供一个排气分流导管12连接收集器11到蓄压器10向上流的低压导管7。排气分流导管12的入口端是位于收集器11的上面的部分,因此只有气体制冷剂进入排气分流导管12。排气阀13提供在排气分流导管12上,而且控制气体制冷剂分流的流动速度。双点线箭头表示气体制冷剂流经过排气分流导管12的方向。
从收集器11延伸的高压导管6的部分构造成以便通过蓄压器10。这种结构通过利用经过高压导管6的相对高温度的制冷剂来蒸发在蓄压器10中收集的低温度液体制冷剂。为了有效地蒸发制冷剂,位于蓄压器10的低压导管部分形成U型,而通过蓄压器10的高压导管6部分是位于穿过低压导管7的U-形部分的内部。
室外单元还包括把压缩机2和冷凝器3之间的高压导管6的部分连接到蓄压器10的热气体分流导管14,和连接收集器11向下流一侧和蓄压器10向上流一侧的液体分流导管15。热气体阀16位于热气体分流导管14上,以便控制热气体分流的流动速度,而液体阀17位于液体分流导管15上,以便控制液体制冷剂分流的流动速度。因此,当热气体阀16打开时,从压缩机2释放的一部分热气体沿着图1点线箭头指示的方向流经热气体分流导管14;当液体阀17打开时,从收集器11释放的一部分液体制冷剂沿着图1中双点线箭头指示的方向流经液体分流导管15。
多个室内单元9是平行排列的。每个室内单元9包括电子膨胀阀门4和蒸发器5。因此,多个室内单元9连接到单一的室外单元8。室内单元的容量和形状可以一样也可以彼此不一样。
压缩机温度传感器33位于压缩机2出口一侧上,以便测量流出制冷剂气体的温度,而冷凝器温度传感器34位于冷凝器3的中心,以便测量冷凝器3的温度,最好是冷凝器3的中心温度。如下面描述,压缩机温度传感器33和冷凝器温度传感器34都连接到室外控制单元27。
如附图2a和2b所描述,采用以脉冲宽度调制方式控制的可变容量压缩机作为压缩机2。压缩机2包括具有入口18和出口19的外壳20,位于外壳20中的马达21,通过马达21的转动力旋转的转动轴22,和与转动轴22一起确定压缩室23的固定轴24。分流导管25附在外壳20,以便把固定轴24上的一个位置连接到进口18,而以螺线管阀形式的PWM阀门(脉冲宽度调制阀门)26安装在分流导管25上。在图2a中,PWM阀26关闭并且关闭了分流导管25。在这种状态下,压缩机2释放制冷剂。这种状态被称为“装载状态”,并且在这种状态下压缩机2工作在100%的能力。在图2b中,PWM阀26被打开并且打开分流导管25。在这种状态下,压缩机2没有释放制冷剂。这种状态被称为“卸载状态”,而且在这种状态下压缩机2工作在0%的能力。电源提供给压缩机2而与装载和卸载状态无关,马达21以一个恒定的速度旋转。当电源没有提供给压缩机2时,马达21不旋转而且压缩机2不工作。
如图3中所示,压缩机2在其工作期间周期性地经历着装载和卸载的状态。装载时间和卸载时间根据要求的制冷容量而变化。在装载期间因为压缩机2释放制冷剂所以蒸发器5的温度降低,而在卸载期间因为压缩机没有释放制冷剂所以蒸发器5的温度增加。在图3中,阴影线部分表示释放制冷剂的量。用于控制装载和卸载次数的信号被称为负载控制信号。在本发明的这些实施例中,以装载和卸载次数这种方法变化的压缩机2容量是根据压缩机2需要的总制冷容量来改变的,同时每个周期都保持恒定,例如20秒。
图4显示本发明用于控制空调启动的系统方框图。如图4所示,室外单元8包括一个为了发射和收到信号而连接到压缩机2和PWM阀26的室外控制单元27。室外控制单元27为了发射和接收数据而连接到室外通信电路单元28,并且连接到排气阀13,热气体阀16和液体阀17,以便如果需要就控制这些阀的工作。每个室内单元9包括室内控制单元29。温度检测单元30和温度设置单元31连接到室内控制单元29的输入端口,而且电子膨胀阀门4连接到室内控制单元29的输出端口。温度检测单元30是用于测量要装有空调的房间温度的温度传感器。每个室内单元9包括一个连接到室内控制单元29的室内通信电路单元32,以便发射和接收数据。室外通信电路单元28和室内通信电路单元32构造成以有线或者无线方式发射和接收数据。
在本发明中,压缩机29的工作是分成正常工作和启动工作。正常的工作指的是在电源加点给压缩机并且压缩机的启动已经完成之后,压缩机根据从室内单元发射的需要制冷容量信息将要完成的工作,而启动工作表示当一个启动信号发射给压缩机时,压缩机将要实现启动的工作。
在正常工作方式中,室内控制单元29接收来自温度检测单元30和温度设置单元31的信号,并且根据室内温度和设置温度之间的差值计算室内单元9需要的制冷容量。另外,室内控制单元29具有室内单元其本身的制冷容量信息,而且能够根据室内温度和设置温度与室内单元本身的制冷容量之间的差值来计算需要的制冷容量。按上述方式计算出的每个室内单元需要的制冷容量是通过通信电路单元28与32传送给室外控制单元27的。室外控制单元27计算所有的室内单元9要求制冷容量总和的全部需要制冷容量。压缩机2随着其装载时间与卸载时间相互交变而工作,它们是根据总的需要制冷容量预设的。
参考图5,描述的是启动工作之前和启动工作的压力平衡处理。首先,室外控制单元27确定压缩机2是否停止(S101)。如果压缩机2是停止的,电子膨胀阀门4和排气阀13被完全打开(S102)。确定是否已经过了三十秒(S103)。如果没有过三十秒,继续步骤102;但是如果已经过了三十秒,则热气体阀16打开(S104)。随后,确定在电子膨胀阀门4和排气阀13被打开(S105)之后是否过了三分钟(或者在热气体阀已经打开之后的两分三十秒)。如果三分钟没有过,电子膨胀阀门4,排气阀13和热气体阀16被保持打开;如果三分钟已过,电子膨胀阀门4,排气阀13和热气体阀16被关闭(S106)。执行三分钟的压力平衡过程的原因是为了通过平衡一个周期内高低压力来减少启动早期阶段的启动负荷。在这种情况下,三分钟是为了平衡周期内高低压力所需要的时间,但是该时间可以根据特殊的系统而改变。
下面将描述启动工作。在这个实施例中,启动工作是分两个阶段完成的。首先将描述第一阶段的启动工作。确定是否为压缩机2输入一个启动信号(S107)。如果该启动信号被输入,压缩机2就工作,电子膨胀阀门4被关闭而热气体阀16和排气阀13被打开(S108)。在这种情况下,用来控制压缩机2的负载控制信号的周期被确定为比正常工作的负载控制信号的周期短。启动工作时期被设置为比工作周期较短的原因是如果压缩机2通过正常工作周期来工作,则压力上下波动变得很大,从而使压缩机2的可靠性恶化并且导致压缩机2的安全启动困难。另外,当正常工作期间卸载时间相对长时,压缩机2的启动将花较长的时间。而当装载时候相对长时,压力的下降变得很大而且液体制冷剂可以从蓄压器10流到压缩机2。因此,如果装载时间被确定为相对地短并且装载工作经常执行,则压缩机的启动可能迅速地和安全地完成。在这个实施例中,启动工作的周期是正常工作周期的20%到80%,最好50%。启动工作周期的最低的限制为什么确定为20%的原因是装载时间和卸载时间是通过秒来设置的,并且在最低限制的减少中有一个限制。最高限制为什么确定为80%的原因是如果最高限制被确定为多于80%,则几乎不存在周期减少的影响。因此,当正常工作周期是二十秒时,启动工作周期是四到十六秒,最好十秒。
在第一阶段启动工作期间,压缩机工作在20%到50%的调制。20%调制意思是压缩机在两-秒装载时间和八-秒卸载时间交替工作。然而,30%调制最好。在这种情况下,装载和卸载时间比例是3∶7。启动工作为什么在50%或者较小的调制上实现的理由是,因为启动工作不是正常工作,所以在增加调制上受到限制,以及因为在低温度启动工作中增加调制会发生大的压力下降,使得压缩机的可靠性恶化。
第一阶段启动工作大约执行一到五分钟,最好一分钟。因此,在第一阶段启动操作开始之后确定是否一分钟已过(S109)。如果一分钟已过,开始第二阶段启动工作。
所有的电子膨胀阀门4为什么被关闭同时第一阶段执行启动工作的原因是为了防止在收集器11和蒸发器5中并且已经通过冷凝器3的液体制冷剂突然进入蓄压器,随后进入压缩机2。另外,电子膨胀阀门4被关闭,所以处在每个蒸发器5和压缩机2之间的低压制冷剂迅速地移动进入压缩机2而且被压缩和释放,从而使迅速的启动能够完成。
在此期间,当压缩机2工作而所有的电子膨胀阀门4被关闭时,每个电子膨胀阀门和压缩机2之间的制冷剂压力大大地下降而且制冷剂不能正常地循环,结果造成压缩机2过热。因此,热气体阀16被打开以便将压缩机2出口一侧连接到蓄压器10向上流的低压导管。因此,一部分热气体进入蓄压器10,所以处在蓄压器10中的制冷剂压力被大大地阻止下降而且压缩机2正常地工作。
另外,因为制冷剂没有正常地循环同时所有的电子膨胀阀门4被关闭,所以冷凝器3中冷凝的制冷剂不能迅速地进入收集器11。于是,使液体制冷剂能够流进收集器11,以至收集器11中含有的气体制冷剂通过打开排气阀13被释放到低压一侧。
在第二阶段启动工作中,启动和某些制冷是同时获得的。首先,确定压缩机出口一侧温度与冷凝器中心部分温度之间的差值是否大于10°到30℃(最好大于20℃)(S110)。压缩机2出口一侧的温度由位于压缩机2出口一侧的压缩机温度传感器33来测量,冷凝器3的中心温度由位于冷凝器3中心的冷凝器温度传感器34来测量,并且测量的温度被传送到室外控制单元27。室外控制单元27计算压缩机2出口一侧温度与冷凝器中心温度之间的差值,并且确定该差值是否大于10°到30℃(最好20℃)(S110)。如果该差值大于10°到30℃,则正常工作开始(S114);而如果不是,则软启动工作开始(S111)。在差值大于10°到30℃时开始正常工作的原因是确定制冷剂是否出现流入压缩机不足的情况。因此,温度范围可以根据系统来改变。
在软启动工作(S111)中,压缩机2的负载信号周期是正常工作的负载信号周期的20%到80%。另外,在软启动操作中,压缩机2的装载与卸载时间比例是4∶6到7∶3。因为在软启动工作中完成启动工作并且某些制冷工作也必须通过某些制冷剂的添加而完成,所以装载与卸载时间的比例与第一阶段启动工作的装载与卸载时间比例相比较稍微有所增加。在这种情况下,装载和卸载时间比例最好是5∶5。
另外,在软启动工作(S111)中,电子膨胀阀门4被开放到5%到33%(最好17%)的程度,而热气体阀16和排气阀13被打开。第二阶段启动工作是在调制大于第一阶段启动工作以及电子膨胀阀门开放到17%的程度,其原因是通过阻止制冷剂进入压缩机2的流入来获得安全的启动,而且启动工作平稳地转变到正常工作。
同时,即使在步骤111执行的同时,也能够确定压缩机2出口一侧的温度与冷凝器中心温度之间的差值是否大于10°到30℃(最好20℃)(S112)。如果该差值大于10°到30℃(最好20℃),则正常工作开始(S114)。否则,正常工作在对于预设时间内执行步骤111之后才开始。换句话讲,如果压缩机2出口一侧的温度与冷凝器中心的温度之间的差值小于10°到30℃(最好20℃),那么,在执行步骤111的同时,确定是否已过了三到八分钟(最好五分钟)。如果已过三到八分钟(最好五分钟),则正常工作(S114)开始。对于这种三到八分钟(最好五分钟)已过的原因是,压缩机2的工作进入安全阶段而且液体制冷剂的流入几乎不会发生。在这种情况下,确定时间周期(三到八分钟)是考虑到长时间周期对于安全的启动较好而短时间周期对于快速启动较好。
工业应用性如上所述,本发明提供用于控制空调启动的系统和方法,其中,使用脉冲宽度调制压缩机,电子膨胀阀门,热气体阀和排气阀被合适地控制,从而使空调的启动能够迅速地而安全地完成。另外,用于控制空调启动的系统和方法能够在压缩机工作同时防止液体制冷剂流入空调。
另外,本发明提供用于控制空调启动的系统和方法,它能够实现压缩机分为两个阶段的启动工作,从而使启动和正常工作能够平稳地连接。
权利要求
1.一种用于控制空调启动的系统,包括压缩机,根据负载控制信号以脉冲宽度调制方式来控制;电子膨胀阀门,用于膨胀所述压缩机中压缩的制冷剂;高压导管,连接所述压缩机一侧的出口和所述电子膨胀阀门一侧的入口;低压导管,连接所述电子膨胀阀门一侧出口和所述压缩机一侧入口;旁路导管,第一端连接到高压导管,第二端连接到低压导管;安装在所述旁路导管上的流动速度调整阀,用于调整液体流过所述旁路导管的流动速度;以及控制单元,用于控制所述电子膨胀阀门、流动速度调整阀和所述压缩机,以便实现分两个阶段启动工作方式,在第一个启动工作中所述流动速度调整阀打开而所述电子膨胀阀门关闭,在第二个启动工作中所述流动速度调整阀关闭而所述电子膨胀阀门打开,以及所述压缩机通过一个负载控制信号来控制,该信号具有在所述启动工作期间比正常工作的周期较短的周期。
2.根据权利要求1所述的系统,其特征在于还包括位于所述电压导管上的蓄压器。
3.根据权利要求2所述的系统,其特征在于所述旁路导管是连接位于所述压缩机和所述冷凝器与所述蓄压器之间的高压导管的热气体分流导管,所述流动速度调整阀门是位于所述热气体分流导管上的热气体阀门。
4.根据权利要求2所述的系统,其特征在于还包括收集器,位于所述冷凝器和所述电子膨胀阀门之间的所述高压导管上,其中,所述分流导管是一个连接所述收集器和所述蓄压器的向上流一侧的排气分流导管,所述流动速度调整阀门是一个位于所述排气分流导管上的排风阀门。
5.根据权利要求1所述的系统,其特征在于用于所述压缩机的所述启动工作的所述负载控制信号具有对应所述压缩机正常工作负载控制信号周期的20%到80%。
6.根据权利要求1所述的系统,其特征在于所述压缩机在所述第二阶段启动工作期间具有4∶6到7∶3的加载和卸载时间比。
7.根据权利要求1所述的系统,其特征在于还包括用于测量所述压缩机的所述出口温度的压缩机温度传感器和用于测量所述冷凝器中心温度的冷凝器温度传感器,其中,所述第二阶段启动工作是在所述压缩机的出口温度与所述冷凝器中心温度之间的差值直到变成10°到30℃时才执行。
8.根据权利要求1所述的系统,其特征在于所述第二阶段启动工作是三到八分钟完成。
9.一种用于控制空调启动的方法,所述空调包括具有根据负载控制信号以脉冲宽度调制方式来控制压缩机,和膨胀压缩的制冷剂的电子膨胀阀门,方法包括确定所述压缩机是否有启动信号输入;在所述启动信号被输入时,在负载控制信号的时间周期比正常工作时的负载控制信号的周期短的预定时间来操纵所述压缩机,同时在第一个启动工作中关闭所述电子膨胀阀门和打开所述位于连接所述压缩机两侧的出口和入口的旁路导管上的流动速度调整阀;以及在第二个启动工作中,在负载控制信号的周期比正常工作时负载控制信号的周期短的预定时间周期操纵所述压缩机,同时打开所述电子膨胀阀门到预定程度并且打开所述流动速度调整阀。
10.根据权利要求9所述的方法,其特征在于所述第二个启动工作的负载控制信号的周期是所述正常工作的所述周期的20%到80%。
11.根据权利要求9所述的方法,其特征在于所述第二个启动工作时所述压缩机的所述工作是按4∶6到7∶3的加载与卸载时间比执行的。
12.根据权利要求9所述的方法,其特征在于所述第二阶段启动工作是在所述压缩机的出口温度与所述冷凝器中心温度之间的差值直到变成10°到30℃时才执行。
13.根据权利要求9所述的方法,其特征在于所述第二阶段启动工作是在确定实质上没有液体制冷剂进入所述压缩机才执行。
14.根据权利要求9所述的方法,其特征在于所述第二阶段启动工作执行三到八分钟。
15.根据权利要求9所述的方法,其特征在于在所述第二阶段启动中所述电子膨胀阀门打开到5%到33%的程度。
全文摘要
一种系统包括一个压缩机和膨胀阀门。压缩机一侧的出口和电子膨胀阀门一侧的入口通过高压导管连接,膨胀阀门一侧出口和压缩机一侧入口通过一个低压导管连接。旁路导管连接到高压导管以及低压导管,而流动速度调整阀安装在旁路导管上。控制单元用于控制膨胀阀门,流动速度调整阀以便实现分两个阶段启动工作这样的方式,在第一个启动工作中流动速度调整阀打开而膨胀阀门关闭,在第二个启动工作中流动速度调整阀关闭而膨胀阀门打开到预定的程度。压缩机通过一个负载控制信号来控制,该信号具有在启动工作期间比正常工作的周期较短的周期。
文档编号F25B41/06GK1380960SQ01801265
公开日2002年11月20日 申请日期2001年1月5日 优先权日2000年6月7日
发明者文重基, 金荣晚, 文济明, 李庭泯, 金钟烨, 赵日镛 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1