从烃流除去氮以提供燃料气体流的方法和用于该方法的设备的制作方法

文档序号:4795555阅读:88来源:国知局
专利名称:从烃流除去氮以提供燃料气体流的方法和用于该方法的设备的制作方法
技术领域
本发明涉及从烃流除去氮以提 供燃料气体流的方法和用于该方法的设备。本发明还可以提供液化烃流,例如液化天然气(LNG)流。
背景技术
用于燃料气体流的普通烃流包含或基本组成为天然气(NG)。天然气是有用的燃料来源,也是各种烃化合物的来源。出于许多原因,经常需要在位于或接近天然气流来源的液化天然气(LNG)装置中使天然气物流液化。例如,与气体形式相比,天然气作为液体可更易于进行储存和长途运输,这是因为其占用更少的体积,并且不需要在高压下进行储存。通常,主要含甲烷的天然气在提高的压力下进入LNG装置并经过预处理以生产适合于在低温下进行液化的纯化进料流。使纯化气体经多个使用换热器的冷却阶段处理以逐步降低其温度直至实现液化。然后将液体天然气进一步冷却和膨胀至适合于储存和运输的最终大气压力。然而,虽然在液化前进行预处理,但烃流(包括纯化天然气流)可以含有明显量的氮。如果不采取特殊措施从烃流移除至少部分氮,则燃料气体和所生产的任何液化烃流可以含有不期望地高的氮含量。许多LNG规格要求在最终产品中氮小于Imol%。EP I 715 267公开了一种从液化天然气进料中除去氮的方法,该方法包括对液化天然气进行第一次分馏,以提供第一富含氮的顶部蒸气流和含氮的底部液体流。然后对至少部分所述含氮的底部液体流进行第二次分馏,以提供比所述第一顶部蒸气流纯度低的第二富含氮的顶部蒸气流和纯化的液化天然气流。在EP I 715 267描述的方法中,对于丙烷预冷却混合制冷剂主冷却方法(C3MR),由冷凝氮回流物流提供第一次分馏中的冷却负荷。通过与来自主换热器的经膨胀的冷液化天然气流热交换提供冷凝氮回流物流,从而提供不期望的过剩燃料气体。为对此加以防止,用于氮去除的额外冷却负荷最终由主冷却段中所用的混合制冷剂回路提供。这提高了施加在混合制冷剂主冷却循环上的荷载(load),从而需要功率更大的较大制冷剂压缩机、提高的制冷剂冷却等,产生受有效压缩机驱动器尺寸限制的减小的功率容量。

发明内容
本发明的目的是通过提供用于从烃流除去氮的改进方法来解决这些问题。特别地,本发明寻求提供降低主冷却循环荷载的方法。在第一方面,本发明提供了从烃流除去氮以提供燃料气体流的方法,该方法包括至少以下步骤(a)在换热器中使烃流至少部分液化以提供冷却的烃流;(b)在第一膨胀装置中使冷却的烃流的至少一部分膨胀以提供经膨胀的烃流;
(c)在分馏塔中将经膨胀的烃流进行分馏以提供上部富氮烃流和下部贫氮烃流;(d)在冷凝器中通过专用第一制冷剂回 路中经膨胀的第一制冷剂流进行冷却使上部富氮烃流冷凝以提供部分冷凝的富氮烃流和加热的第一制冷剂流;(e)在第一分离器将部分冷凝的富氮烃流进行分离以提供上部除氮物流和返回到分馏塔的下部贫氮回流物流;(f)在再沸器中通过第一制冷剂回路中的第一制冷剂进料流加热来自分馏塔的下部贫氮烃流以提供部分气化的贫氮烃流和冷却的第一制冷剂流;(g)在第二分离器将部分气化的贫氮烃流进行分离以提供返回到分馏塔的上部第二分离器蒸气流,和下部液化贫氮烃流;(h)在换热器中将下部液化贫氮烃流过冷(sub-cooling)以提供经过冷的贫氮烃流;和由过冷的贫氮烃流生产燃料气体流。在另一方面,本发明提供了用于从烃流除去氮的设备,该设备包括至少以下-第一换热器,具有烃流的第一入口和冷却的烃流的第一出口、换热器的第一出Π ;-第一膨胀装置,具有与第一换热器的第一出口连接的入口,和经膨胀的烃流的出Π ;-分馏塔,具有与第一膨胀装置的出口连接的第一入口,以及上部富氮烃流的第一出口、下部贫氮烃流的第二出口、下部贫氮回流物流的第二入口和上部第二分离器蒸气流的第三入口;-冷凝器,具有与分馏塔的第一出口连接的第一入口,以及部分冷凝的富氮烃流的第一出口、经膨胀的第一制冷剂流的第二入口和加热的第一制冷剂流的第二出口 ;-第一分离器,具有与冷凝器的第一出口连接的第一入口以及上部除氮物流的第一出口和下部贫氮回流物流的第二出口,所述第二出口与分馏塔的第二入口连接;-再沸器,具有与分馏塔的第二出口连接的第一入口,部分气化的贫氮烃流的第一出口,第一制冷剂进料流的第二入口和冷却的第一制冷剂流的第二出口 ;-第二分离器,具有与再沸器的第一出口连接的第一入口,上部第二分离器蒸气流的第一出口和下部液化贫氮烃流的第二出口,所述第二出口与分馏塔的第三入口连接;以及-第二换热器,其可以是第一换热器或不同的换热器,所述第二换热器具有与第二分离器的第二出口连接的第一入口和过冷的贫氮烃流的第一出口。在再一方面,本发明提供了控制燃料气体流中存在的氮浓度的方法,该方法至少包括如上文所限定从烃流除去氮以提供燃料气体流的方法步骤,并且还包括以下步骤-在第四换热器中使冷却的第一制冷剂流和加热的第一制冷剂流热交换以提供膨胀器制冷剂进料流和压缩机制冷剂进料流;和在第四膨胀装置中使膨胀器制冷剂进料流膨胀以提供经膨胀的第一制冷剂流;-在第一压缩机中将压缩机制冷剂进料流进行压缩以提供压缩的制冷剂流;-在冷却装置中将压缩的制冷剂流进行冷却以提供冷却的压缩制冷剂流;和在第五换热器中使冷却的压缩制冷剂流热交换以提供第一制冷剂进流;-提供从冷却的压缩制冷剂流到第一制冷剂进料流的第五换热器旁通管线,该第五换热器旁通管线含有第五换 热器旁通管线阀;-旁通第五换热器;以及-控制第五换热器旁通阀以影响在第五换热器中进行冷却的冷却压缩制冷剂流的相对比例。


现在将参照非限制性的附图以仅仅举例方式来描述本发明的实施方案,附图中图I是根据一个实施方案用于除去烃流的氮的方法和设备的示意图;以及图2是根据第二实施方案用于除去烃流的氮的方法和设备的示意图。
具体实施例方式出于本说明书的目的,管线以及该管路所载送的物流将被赋予单一附图标记。本发明提供了从烃流除去氮以提供燃料气体流的方法,其中由专用第一制冷剂回路提供用于氮去除的冷却负荷。第一制冷剂回路是专用回路,其含义是在第一制冷剂回路中进行循环的制冷剂或来自其的冷却负荷均不用于步骤(a)中烃流的冷却和至少部分液化以及步骤(h)中的过冷。换言之,第一制冷剂回路与用于烃流的冷却、液化和过冷的其它制冷剂回路是分开的。通过利用专用第一制冷剂回路,减小了施加在产生至少部分液化烃流并且可以是主冷却步骤的步骤(a)中的换热器上的冷却负荷。因此,对于恒定的LNG容量,供给换热器的主冷却制冷剂回路的容量与EP I 715 267相比可以得到减小。以另一种方式看,与EP I715 267相比,就等同的主冷却制冷剂回路而言本发明的方法提供了提高的液化烃产量。本发明特别适合于改造已有液化装置,这是因为其不改变对主冷却制冷剂回路的要求。本发明适用于许多方法,例如生产冷却烃流如由天然气生产LNG的那些方法。该方法可以适用于例如=AP-X液化方法如美国专利No. 6,308, 531中描述的那些方法,C3MR方法如美国专利No. 4,404, 008中描述的那些方法和双重混合制冷剂(DMR)方法如美国专利No. 6,370, 910中描述的那些方法。参考附图,图I显示了根据第一实施方案用于除去烃流10的氮的方法和设备I。烃流10可以是能够被冷却的任何合适烃流例如但不限于含烃气流。一个实例是从天然气或石油储层所获得的天然气流。替代地,天然气流也可以从其它来源获得,还包括例如费-托方法的合成来源。通常,这样的烃流10主要包含甲烷。优选地,这样的烃流10包含至少50mOl%的甲烷,更优选包括至少SOmol %的甲烷。虽然本文公开的方法适用于各种烃流,但是其特别适合于要液化的天然气流。烃流根据来源可以含有一种或多种非烃,例如H20、N2, CO2, Hg、H2S和其它硫化合物。本文公开的方法和设备可用于包含显著量的氮(例如超过4mol % )的烃流。例如,如果烃流10包含4-5m0l%的氮,则未采取除氮步骤的常规方法可以产生氮含量超过40mol%的燃料气体流。如果该燃料气体用于给燃气轮机供以动力则这可导致显著问题。许多航改式燃气轮机不能够容许它们的燃料气体中氮含量高于15mol%。此夕卜,甚至更加耐受氮的燃气轮机,例如常规重型エ业燃气轮机,也不能够依靠氮含量高于40-45mol%的燃料气体进行工作。因此,需要 从烃流10除去过量的氮以降低燃料气体和任何液化烃中的氮含量。如果需要的话,烃流可以在使用之前进行作为烃冷却过程的一部分或単独地进行预处理。该预处理可以包括減少和/或除去非烃酸性气体例如CO2和H2S,或者其它步骤例如早冷却、预加压。烃流10可以经预压缩和/或预冷却。优选使用预冷却制冷剂回路,任何预冷却段通常可将物流冷却至0°c以下,优选-20至-50°c的温度。由于这些步骤为本领域技术人员所熟知,因而它们的机制在此不加以进一歩讨论。本文公开的方法和设备的进ー步优点是从烃流除去氮而无需额外的压缩功率。例如,燃料气体可以在其生产后送去用于除氮。然而,本文公开的方法和设备在烃流已被压缩时处理烃流以在液化过程期间除去氮。例如可在约60巴的压カ下将烃流10提供到第一换热器50。本领域技术人员可理解本申请中的压カ值被认为是以与表压值相対的绝对压カ值
をA屮
S ロ山O因此,本文所使用的术语“烃流”还包括在经过任何处理前的组分(所述处理包括清洗、脱水和/或洗涤),以及包括已被部分地、基本上或完全地处理用以减少和/或除去一种或多种化合物或物质的任意组分,所述化合物或物质包括但不限于硫、硫化合物、ニ氧化碳和水。优选地,本文待使用的烃流10至少进行在后续允许烃流液化所需的最低预处理。液化天然气的这样的要求在本领中是已知的。烃流通常还含有变化量的比甲烷重的烃,例如こ烷、丙烷、丁烷和戊烷,以及ー些芳烃。组成根据烃流例如天然气的类型和位置而变化。通常需要将比丁烷重的烃从待液化的天然气除去,这是因为在LNG温度下它们可以冻析并且导致甲烷液化装置部件的阻塞。此外,LNG的所需规格会要求除去或按比例減少某些组分。可提取C2-4烃并且用其作为天然气液(NGL)和/或制冷剂的来源。为此目的,可以在例如高压洗涤塔中将待回收的天然气液与甲烷分离井随后在多个专用蒸馏塔中分馏以获得有价值的烃组分。这些作为产物物流本身或者用于液化装置和方法例如作为制冷剂组分可以具有价值。回到图1,将烃流10传送至换热器50的入口 52,所述换热器可以是第一换热器,并且优选是液化装置的主冷却段。在换热器50中使烃流10至少部分、优选完全液化以在出口 54提供冷却的烃流60。在图I中换热器50作为单ー単元象征性地加以显示,尽管其可以包括ー个或多个串联、并联或其两种方式的第一换热器。可通过ー个或多个主制冷剂回路以本领域中已知的方式满足ー个或多个换热器50的冷却负荷。冷却的烃流60可以具有-100°C以下,更优选-120°C以下的温度。然后将冷却的烃流60传送至第一膨胀装置100的入口 102,所述膨胀装置例如阀和/或膨胀器,更优选涡轮膨胀器或焦耳-汤姆森(Joule-Thomson)阀,于此使其膨胀以在出口 104提供经膨胀的烃流110。优选地,膨胀中的压カ降低大于由穿过常规导管和管道的流动所产生的最小压カ降低。压カ可以降低至少10巴,优选至少35巴,以进一歩降低物流的温度。冷却烃流60的膨胀,例如达到压カ小于或等于25巴,优选约15-约25巴,更优选约20巴,可进ー步冷却所述物流。此外,小于或等于25巴、特别是约15-约25巴的压カ被认为对于从物流110分离氮是有益 的。然后将经膨胀的烃流110在第一进料位传送至分馏塔150的第一入口 152,以在第一出ロ 154 (其优选位于或接近分馏塔150的顶部)提供上部富氮烃流160,和在第二出ロ156 (其优选位于或接近分馏塔150的底部)提供下部贫氮烃流170。上部富氮烃流160从烃流除去至少部分氮。如下文所讨论的,上部富氮烃流160还给分馏塔150提供回流物流。将上部富氮烃流160传送至冷凝器200的第一入ロ 202,在该冷凝器中使其部分冷凝以在冷凝器200的第一出ロ 204提供部分冷凝的富氮烃流210。通过第一专用制冷剂回路中存在的经膨胀的第一制冷剂流860进行冷凝。第一专用制冷剂回路与提供ー个或多个换热器50的冷却负荷的ー个或多个主制冷剂回路分开。将经膨胀的第一制冷剂流860传送至冷凝器200的第二入口 206,在该冷凝器中其冷却上部富氮烃流160并且作为加热的第一制冷剂流870在第二出ロ 208离开冷凝器200。在专用第一制冷剂回路800中提供经膨胀的第一制冷剂流860和加热的第一制冷剂流870。“专用”是指该回路与主制冷剂回路和任何预冷却制冷剂回路以及如果存在时的过冷制冷剂回路分开,使得第一制冷剂回路不与任何其它制冷剂回路共享压缩机和/或压缩机驱动器。将结合图2更为详细地讨论第一制冷剂回路。然后将部分冷凝的富氮烃流210传送至可以是气/液分离器的第一分离器250的入口,该分离器在第一出口 254提供上部除氮物流260和在第二出口 256提供下部氮回流物流270。上部除氮物流260的组成可以变化。当上部除氮物流260包含高纯度氮时,可将其排放到大气中。冷凝器200温度的降低提高了上部除氮物流260中氮的比例。例如,部分冷凝的富氮烃流210在约25巴下约_150°C的温度可提供包含> 99mol%氮的上部除氮物流260和具有< Imol^氮的液化烃流520。分馏塔150中的压カ可影响第一分离器250的所需温度。例如,通过提高分馏塔150中的压力,可在高至物流临界点的较高温度下获得上部除氮物流260的相同氮含量。或者,如果足够地升高冷凝器200的温度,可升高上部除氮物流260的烃含量例如高达80-90mol %氮,使得上部除氮物流260可作为用于能够容许较高氮含量烃流的设备例如燃气锅炉的燃料气体使用。在图I中未显示的其它实施方案中,可回收上部除氮物流260中存在的冷量(cold)的一部分。例如,可使用上部除氮物流260的冷量来冷却以下中的ー种或多种烃流10,或者制冷剂流例如第一制冷剂回路800中的制冷剂流或者任何预冷却或主冷却段制冷剂,以及提供烃流10的任选直接预冷却。此外,如可在对于图2的讨论中所找到的,可使用来自上部除氮物流260的冷量来进ー步冷却经过冷的贫氮烃流410。使在第二出ロ 256离开第一分离器250的下部贫氮回流物流270在高于第一进料位、优选接近塔的顶部的第二进料位返回到分馏塔150。下部贫氮烃流170通过第二出ロ 156 (优选接近塔的底部)离开分馏塔150。将下部贫氮烃流170传送至再沸器300的第一入ロ 302,在该再沸器中通过在第二入ロ 306进入再沸器300的也存在于第一制冷剂回路800中的第一制冷剂进料流810将其加热。再沸器300在第一出ロ 304提供部分气化的贫氮烃流310和在第二出ロ 308提供冷却的第一制冷剂流820。本文公开的再沸器300的作用可与上文讨论的现有技术文献EP 1715 267的图2中公开的再沸器47的作用形成对比。为了改变该现有技术文献中公开的再沸器47的负荷,如在该文献
段所讨论,必须改变从换 热器16取出的冷却高压进料气体17的温度。这种现有技术配置将负荷推给换热器的第二部分(section)例如过冷段。所引用的欧洲专利申请在
段宣称ー个目的是提供从任何LNGエ艺中除去部分氮,具有最小化的附加设备和对装置性能的最小影响。该目的不能够通过现有技术系统得到满足,这是因为用于除氮塔的冷却负荷由LNG的气化提供,从而产生降低的装置生产率。这种气化产生必须进行处置或再液化的额外燃料气体。为了替代已经气化的LNG,必须对换热器施加提高的荷载,从而对装置性能产生明显影响。在本文公开的方法和设备,再沸器300的负荷完全独立于施加在换热器50、400上的负荷进行控制。这是特别有利的,因为可将本文公开的设备改造为现有液化単元,而不改变影响该单元性能的施加在换热器上的冷却负荷。 将部分气化的贫氮烃流310传送至第二分离器350例如气/液分离器的入ロ 352,在该分离器中将其分离成在第一出ロ 354的上部第二分离器蒸气流360和在第二出ロ 356的下部液化贫氮烃流370。将上部第二分离器蒸气流360在低于第一进料位、优选接近塔的底部的第三进料位传送至分馏塔150的第三入口 158。将下部液化贫氮烃流370传送至可以是第二换热器的换热器400的第一入口。换热器400优选是图I中作为单ー単元象征性地显示的过冷段,尽管其可以包括ー个或多个串联、并联或其两种方式的第二换热器。换热器400可以与换热器50相同或不同。例如换热器50、400可以是存在于相同冷箱或罩壳内的相同换热器、不同换热器,或者可以是位置彼此分开的不同换热器。换热器50、400可以是板翅式或壳管式换热器,更优选蛇管式换热器。可以由ー个或多个过冷制冷剂回路以本领域已知的方式向一个或多个换热器400提供冷却负荷。这样的一个或多个过冷制冷剂回路可以与向一个或多个换热器50提供冷却负荷的ー个或多个主制冷剂回路共享,或者与其分开。但是ー个或多个过冷制冷剂回路与专用第一制冷剂回路分开。换热器400可将下部液化贫氮烃流370过冷以在第一出ロ 404提供过冷的贫氮烃流410。优选地,将下部液化贫氮烃流370冷却到-140°C以下的温度。通过本领域已知的方法使用过冷的贫氮烃流410来产生燃料气体流510。例如,如图I中所示,可将过冷的贫氮烃流410传送至第二膨胀装置450的入口 462,所述膨胀装置例如阀和/或膨胀器,优选涡轮膨胀器或焦耳-汤姆森阀。第二膨胀装置450在出口 454提供了经膨胀的贫氮烃流460。然后可将经膨胀的贫氮烃流460传送至第三分离器500例如气/液分离器的入ロ,以在第一出ロ 464、优选位于或接近分离器的顶部提供燃料气体流520和在第二出ロ466、优选位于或接近分离器的底部提供液化烃流520例如LNG流。如果需要加压,例如为了输出约30-50巴的气体压力,则可将燃料气体流510传送至一个或多个末端压缩机(end-compressor)(未示出)。图2显示了其中将用于除去氮的 方法和设备与主低温换热器700进行集成的第二实施方案。这样的换热器用于本领域已知的AP-X、C3MR和DMR液化天然气流方法。在该实施方案中还更为详细地描述了第一制冷剂回路800。通过第一入口 52将烃流10传送至主低温换热器(MCHE) 700。按与图I的实施方案类似的方式,可以按已知方式将烃流预冷却,例如在预冷却段中预冷却。MCHE 700包括对应于图I的换热器50的主冷却段50a,和对应于图I的换热器400的过冷段400a。MCHE 700可以包括一个或多个有关(associated)制冷剂回路,其在图2中未显示,例如主冷却制冷剂回路和过冷制冷剂回路,或者单连接(single linked)回路,如当使用轻和重的混合制冷剂部分吋。优选地,用含有包括氮、甲烷、こ烷、こ烯、丙烷、丙烯、丁烷和戊烷的组中的两种或更多种组分的混合制冷剂来冷却MCHE 700。制冷剂回路可以涉及任何数目的制冷剂压缩机、冷却器和分离器以按本领域已知的方式向MCHE 700提供ー个或多个制冷剂流。例如,轻和重的混合制冷剂流710和720可以由混合制冷剂回路分别提供并且使其通过MCHE 700用以进ー步冷却。然后可将轻和重的混合制冷剂流710、720从MCHE 700取出,在再次进入MCHE 700以在其中提供冷却之前通过ー个或多个阀和/或膨胀器(未示出)进行膨胀。MCHE 700可以是缠绕线轴式换热器,能够冷却和至少部分、优选完全液化烃流10以在主冷却段50a的液化管束和过冷段400a的过冷管束之间提供冷却的烃流60。使冷却的烃流60膨胀并将其传送至如对于图I所描述的分馏塔150。可提供具有旁通第一减压装置64的旁通管线62以通过合并器372将冷却的烃流60的至少一部分输送至下部液化贫氮烃流370。旁通管线62使得能够改变所传送的用于除氮的冷却烃流60的比例。图2中所示的第一制冷剂回路800提供了用于氮去除的冷却负荷。第一制冷剂回路800中的制冷剂优选包含氮,更优选> 90mol%的氮,余量由轻烃例如甲烷、こ烷和丙烷中的ー种或多种提供。在第一制冷剂回路800中,可将压缩机制冷剂进料流880传送至第一压缩机890的入口 892。第一压缩机890压缩该压缩机制冷剂进料流880以在出口 892提供压缩的制冷剂流900。可将压缩的制冷剂流900传送至冷却装置910例如空气或水冷却器的入口 912,以在出口 914提供冷却的压缩制冷剂流920。然后可将冷却的压缩制冷剂流920传送至第五换热器930的第一入口 932。第五换热器930进ー步冷却该冷却的压缩制冷剂流920以在出ロ 934提供第一制冷剂进料流810。将第一制冷剂进料流810传送至再沸器300的第二入口 306。在第五换热器930中,可将冷却的压缩制冷剂流920与第二制冷剂回路中的第二制冷剂例如主冷却回路中的混合制冷剂或预冷却制冷剂热交換。或者,可将冷却的压缩制冷剂流920与上部除氮物流260的至少一部分热交換。在图2中未显示的备选实施方案中,可提供部分开式的第一制冷剂回路800,在该回路中可将冷却的压缩制冷剂流920与上部除氮物流260的至少一部分合并以提供第一制冷剂流810。
第五换热器930可配设有从冷却的压缩制冷剂流920到第一制冷剂进料流810的第五换热器旁通管线940。第五换热器旁通管线940配设有第五换热器旁通管线减压装置950,例如阀。分馏塔150的再沸器负 荷由第五换热器旁通管线940控制,从而通过下部液化贫氮烃流370中剩余氮的量调整(set)在上部除氮物流260中排出的氮和燃料气体流510的氮含量。例如,如果再沸器300提供较高的加热负荷,则因为成比例地更多较轻组分例如氮将被气化,在第二分离器350中将除去更多氮到达上部第二分离器蒸气流360。更多氮蒸气将因此上升通过分馏塔150,从而提高上部富氮烃流160的氮含量。可在冷凝器200中将上部富氮烃流160中存在的任何甲烷再次冷凝并且使其在来自第一分离器250的下部贫氮回流物流270中之后返回到分馏塔150。相应地,如果再沸器300提供较低的加热负荷,这将导致上部富氮烃流160中除去的氮较少,因此上部除氮物流260中氮含量较低。第五换热器旁通管线减压装置950可由控制器Q进行操作,该控制器置于燃料气体流510上并且监测该物流的氮含量。控制器Q可向第五换热器旁通管线减压装置950发出信号以改变第五换热器旁通管线940中的流量,因此改变再沸器300的负荷和贫氮烃流370的量。再沸器300在第二出ロ 308提供冷却的第一制冷剂流820。可将冷却的第一制冷剂流820传送至第四换热器830的第一入口 832。第四换热器830通过传送至第四换热器830的第二入ロ的加热的第一制冷剂流870进ー步冷却该冷却的第一制冷剂流820,以在第一出口 834提供膨胀器制冷剂进料流840和在第二出ロ 838提供压缩机制冷剂进料流880。将膨胀器制冷剂进料流840传送至第四膨胀装置850的入口,所述膨胀装置例如阀和/或膨胀器,优选涡轮膨胀器或焦耳-汤姆森阀,于此使其膨胀以在出ロ 854提供经膨胀的第一制冷剂流860。将经膨胀的第一制冷剂流860传送至冷凝器200的第二入口 206,于此可随着其冷却来自分馏塔150的上部富氮烃流160而使其部分气化以提供混合的液体和蒸气流。加热的第一制冷剂流860在第二出ロ 208作为加热的第一制冷剂流870离开冷凝器200,将其传送至第四换热器830的第二入口 836以在热交換后提供压缩机制冷剂进料流880,因此完成第一制冷剂回路800。关于除氮方法和设备的其余部分,图2中的附图标记与就图I所讨论的相同编号的那些数字具有相同的名称和目的。回到图2,将第二分离器350提供的下部液化贫氮烃流370传送至MCHE 700的第ニ入ロ 402,于此在对应于图I换热器400的过冷段400a中将其过冷。过冷段400a在MCHE700的第二出ロ 404提供过冷的贫氮烃流410。将过冷的贫氮烃流410传送至第三换热器550的第一入口 552,于此通过从末端闪蒸单元650取出的贫氮烃流660的中间馏分将其冷却,以在第三换热器550的第一出ロ554提供预冷却贫氮烃流560。在图2中未显示的其它实施方案中,第三换热器550或者可以给进有至少部分上部除氮物流260,该物流可用于进一歩冷却过冷的贫氮烃流410。然后将预冷却贫氮烃流560传送至第三膨胀装置600的入口 602,所述膨胀装置例如阀和/或膨胀器,更优选涡轮膨胀器或焦耳-汤姆森阀,于此使其膨胀以在出ロ 604提供经膨胀的贫氮烃流610。然后可任选使经膨胀的贫氮烃流610在第四进料位传送至末端闪蒸单元650的第一入口 652之前通过另外的第二减压 装置620。燃料气体流510从第一出ロ 654、优选位于或接近该单元的顶部离开末端闪蒸单元650,液化烃流520例如LNG流在第二出ロ 656、优选位于或接近该单元的底部离开末端闪蒸单元650。可将燃料气体流510传送至燃料气体管网(未示出)用以分配到燃料气体用户例如燃气轮机和燃气锅炉。替代地和/或另外地,可任选在ー个或多个燃料气体压缩机中将燃料气体流510压缩并送去输出。可将液化烃流520送去储存或运输。可将贫氮烃流660的中间馏分从末端闪蒸单元650在第三出ロ 657取出,并传送至第三换热器550的第二入口 556,在该换热器中可用其冷却过冷的贫氮烃流410。贫氮烃流660的中间馏分在第二出口 558作为经加热的中间馏分贫氮烃流670离开第三换热器550,然后在低于第四进料位、优选接近该单元底部的第五进料位使其返回到最后闪蒸650的第二入口 658。加热的中间馏分贫氮烃流670可装配有连接到第三减压装置680的流量控制器FIC,其可以是阀,存在于加热的中间馏分贫氮烃流670中。流量控制器FIC与监测液化烃流520氮含量的氮传感器Ql连通。该流量控制器可调节给进到末端闪蒸单元650的经加热的中间馏分贫氮烃流670相比于由经膨胀的贫氮烃流610在穿过第二减压装置620后产生的并且给进到末端闪蒸单元650的末端闪蒸单元中的回流物流的比率。当通过第三减压装置680降低经加热的中间馏分贫氮烃流670的流量吋,贫氮烃流660的中间馏分在第三换热器550中的停留时间将増加。因此第三换热器550可将贫氮烃流660的中间馏分加热到较高温度,从而提供较热的经加热中间馏分贫氮烃流670。当将较热的经加热中间馏分贫氮烃流670传送至末端闪蒸单元650时,其将提供更多的汽提蒸气,蒸煮去更多的氮且因此从降落通过末端闪蒸单元的液体汽提去更多的氮。因此,通过改变回流与汽提蒸气的比率,可改变液化烃流例如LNG的品质。本领域技术人员应理解本发明可通过许多不同方式进行而不背离所附权利要求书的范围。例如,可使用图I的实施方案的第二膨胀装置450和第三分离器500来处理图2的实施方案的过冷的贫氮烃流410,或者可使用图2的第三热交换550,第三膨胀装置600和末端闪蒸单元650来处理图I的实施方案的过冷的贫氮烃流410。
权利要求
1.一种从烃流除去氮以提供燃料气体流的方法,该方法包括至少以下步骤 (a)在换热器中使烃流至少部分液化以提供冷却的烃流; (b)在第一膨胀装置中使冷却的烃流的至少一部分膨胀以提供经膨胀的烃流; (c)在分馏塔中将经膨胀的烃流进行分馏以提供上部富氮烃流和下部贫氮烃流; (d)在冷凝器中通过专用第一制冷剂回路中经膨胀的第一制冷剂流进行冷却使上部富氮烃流冷凝以提供部分冷凝的富氮烃流和加热的第一制冷剂流; (e)在第一分离器将部分冷凝的富氮烃流进行分离以提供上部除氮物流和返回到分馏塔的下部贫氮回流物流; (f)在再沸器中通过第一制冷剂回路中的第一制冷剂进料流加热来自分馏塔的下部贫氮烃流以提供部分气化的贫氮烃流和冷却的第一制冷剂流; (g)在第二分离器将部分气化的贫氮烃流进行分离以提供返回到分馏塔的上部第二分离器蒸气流,和下部液化贫氮烃流; (h)在换热器中将下部液化贫氮烃流过冷以提供经过冷的贫氮烃流;以及 (i)由过冷的贫氮烃流生产燃料气体流。
2.权利要求I的方法,其中步骤(a)包括在第一换热器中使烃流完全液化以提供冷却的烃流。
3.权利要求I或权利要求2的方法,其中在步骤(i)中包括 (1)在第二膨胀装置中使过冷的贫氮烃流膨胀以提供经膨胀的贫氮烃流;和 (2)在第三分离器将经膨胀的贫氮烃流进行分离以提供燃料气体流和液化烃流。
4.权利要求I或权利要求2的方法,其中步骤⑴包括 (1)在第三换热器中冷却过冷的贫氮烃流以提供预冷却贫氮烃流; (2)在第三膨胀装置中使预冷却贫氮烃流膨胀以提供经膨胀的贫氮烃流;和 (3)在末端闪蒸单元中将经膨胀的贫氮烃流进行分离以提供燃料气体流和液化烃流,优选LNG流。
5.权利要求4的方法,其中步骤(i)还包括 (4)从末端闪蒸单元取出贫氮烃流的中间馏分并且使其穿过第三换热器; (5)通过过冷的贫氮烃流加热贫氮烃流的中间馏分以提供预冷却贫氮烃流和加热的中间馏分贫氮烃流;和 (6)使经加热的中间馏分贫氮烃流穿过末端闪蒸单元。
6.前述权利要求中任一项的方法,该方法还包括使来自第一分离器的除氮物流与下面中的一种或多种热交换的步骤过冷的贫氮烃流,烃流和来自第一或第二换热器的制冷剂流。
7.前述权利要求中任一项的方法,其中第一制冷剂回路中的第一制冷剂流包含氮。
8.前述权利要求中任一项的方法,其中第一制冷剂回路为部分开式回路,包含从上部除氮物流取出的第一制冷剂。
9.前述权利要求中任一项的方法,该方法还包括步骤在第四换热器中使冷却的第一制冷剂流和加热的第一制冷剂流热交换以提供膨胀器制冷剂进料流和压缩机制冷剂进料流;和在第四膨胀装置中使膨胀器制冷剂进料流膨胀以提供经膨胀的第一制冷剂流。
10.权利要求9的方法,该方法还包括步骤在第一压缩机中将压缩机制冷剂进料流进行压缩以提供压缩的制冷剂流。
11.权利要求10的方法,该方法还包括在冷却装置中将压缩的制冷剂流进行冷却以提供第一制冷剂进料流。
12.权利要求10的方法,该方法还包括在冷却装置中将压缩的制冷剂流进行冷却以提供冷却的压缩制冷剂流;和在第五换热器中使冷却的压缩制冷剂流热交换以提供第一制冷剂进料流。
13.权利要求12的方法,其中使冷却的压缩制冷剂流与第二制冷剂回路中的第二制冷剂热交换。
14.权利要求12或权利要求13的方法,该方法还包括提供从冷却的压缩制冷剂流到第一制冷剂进料流的第五换热器旁通管线,该第五换热器旁通管线含有第五换热器旁通管线阀。
15.一种控制燃料气体流中存在的氮浓度的方法,该方法包括至少以下步骤 -旁通权利要求14方法中的第五换热器;和 -控制第五换热器旁通阀以影响在第五换热器中进行冷却的冷却压缩制冷剂流的相对比例。
16.一种用于从烃流除去氮以提供燃料气体流的设备,该设备至少包括 -第一换热器,具有烃流的第一入口和冷却的烃流的第一出口、换热器的第一出口 ; -第一膨胀装置,具有与第一换热器的第一出口连接的入口,和经膨胀的烃流的出口 ; -分馏塔,具有与第一膨胀装置的出口连接的第一入口,以及上部富氮烃流的第一出口、下部贫氮烃流的第二出口、下部贫氮回流物流的第二入口和上部第二分离器蒸气流的第三入口 ; -冷凝器,具有与分馏塔的第一出口连接的第一入口,以及部分冷凝的富氮烃流的第一出口、经膨胀的第一制冷剂流的第二入口和加热的第一制冷剂流的第二出口 ; -第一分离器,具有与冷凝器的第一出口连接的第一入口以及上部除氮物流的第一出口和下部贫氮回流物流的第二出口,所述第二出口与分馏塔的第二入口连接; -再沸器,具有与分馏塔的第二出口连接的第一入口,部分气化的贫氮烃流的第一出口,第一制冷剂进料流的第二入口和冷却的第一制冷剂流的第二出口 ; -第二分离器,具有与再沸器的第一出口连接的第一入口,上部第二分离器蒸气流的第一出口和下部液化贫氮烃流的第二出口,所述第二出口与分馏塔的第三入口连接;以及-第二换热器,其可以是第一换热器或不同的换热器,所述第二换热器具有与第二分离器的第二出口连接的第一入口和过冷的贫氮烃流的第一出口。
17.权利要求16的设备,该设备还包括 -第四换热器,具有与再沸器的第二出口连接的第一入口,膨胀器制冷剂进料流的第一出口,与冷凝器的第二出口连接的第二入口,和压缩机制冷剂进料流的第二出口 ; -第一压缩机,具有与第四换热器的第二出口连接的入口和压缩的制冷剂流的出口 ; -冷却装置,具有与第一压缩机的出口连接的入口和冷却的压缩制冷剂流的出口 ; -第五换热器,具有与冷却装置的出口连接的入口和与再沸器的第二入口连接的出口 ;以及 -第四膨胀装置,具有与第四换热器的第一出口连接的入口和与冷凝器的第二入口连接的出口 。
全文摘要
从烃流(10)除去氮以提供燃料气体流(510)的方法和设备(1)。使烃流(10)至少部分液化并随后膨胀。在分馏塔(150)中将经膨胀的烃流(110)分馏以提供富氮烃流(160)和贫氮烃流(170)。在冷凝器(200)中通过在专用第一制冷剂回路(800)中循环的制冷剂进行冷却使富氮烃流(160)部分冷凝,并且将其进行相分离以提供除氮物流(260)和返回到分馏塔(150)的贫氮回流物流(270)。使贫氮烃流(170)部分气化和相分离以提供返回到分馏塔(150)的蒸气流(360)和经受过冷的液化贫氮烃流(370)。由过冷的贫氮烃流(410)产生燃料气体流(510)。
文档编号F25J1/02GK102713479SQ200980142822
公开日2012年10月3日 申请日期2009年11月2日 优先权日2008年11月3日
发明者M·D·贾格, S·卡尔特 申请人:国际壳牌研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1