低温分离空气的方法和设备的制作方法

文档序号:4801421阅读:214来源:国知局
低温分离空气的方法和设备的制作方法
【专利摘要】该方法和设备用于在用于氮氧分离的蒸馏塔系统中低温分离空气,该蒸馏塔系统包括第一高压塔(23)和低压塔(25,26)以及三个冷凝器-蒸发器,即高压塔-塔顶冷凝器(27)、低压塔-塔底蒸发器(28)和辅助冷凝器(29;228)。将第一进料空气流在主热交换器(20,21)中冷却。将经冷却的第一进料空气流(22)在第一压力下导入第一高压塔(23)中。在高压塔-塔顶冷凝器(27)中使来自第一高压塔(23)的气态塔顶氮气(44,45)冷凝。将在高压塔-塔顶冷凝器(27)中冷凝的塔顶氮气(46)的至少一部分(47)作为回流液体送至第一高压塔(23)。低压塔(25,26)的塔底液体(66)的一部分在低压塔-塔底蒸发器(28)中通过与冷凝的加热流体(58)的间接热交换而蒸发。低压塔(25,26)的塔底液体(66)的未蒸发的部分(67)在辅助冷凝器(29;228)中至少部分地蒸发。在辅助冷凝器(29;228)中蒸发的液体(68)的至少一部分作为气态氧气产品(69)获得。该用于氮氧分离的蒸馏塔系统此外还包括第二高压塔(24)。将第二进料空气流(35)在主热交换器(20,21)中冷却,随后在高于第一压力的第二压力下导入第二高压塔(24)中。将第二高压塔(24)的塔顶气体(58)的至少一部分在低压塔-塔底蒸发器(28)中用作加热流体。
【专利说明】低温分离空气的方法和设备
【技术领域】
[0001]本发明涉及根据权利要求1的主题的低温分离空气的方法。该方法在用于氮氧分离的蒸馏塔系统中实施,该系统包括第一高压塔和低压塔以及三个冷凝器-蒸发器,即高压塔-塔顶冷凝器、低压塔-塔底蒸发器和辅助冷凝器。本发明尤其是涉及低压过程。
【背景技术】
[0002]“低压过程”在此理解为低压塔塔顶处的工作压力小于2.0巴、尤其是小于1.8巴、更尤其是小于1.5巴的过程。
[0003]“冷凝器-蒸发器”所指的是一种热交换器,在其中第一冷凝流体流与第二蒸发流体流进行间接热交换。每个冷凝器-蒸发器具有分别由液化通道和蒸发通道构成的液化腔室和蒸发腔室。在液化腔室中第一流体流被冷凝(液化),在蒸发腔室中第二流体流被蒸发。蒸发腔室和液化腔室由彼此成热交换关系的通道的组形成。
[0004]冷凝器-蒸发器例如可以构造成降膜蒸发器或浴式蒸发器。在“降膜蒸发器”中,待蒸发的流体从上向下穿过蒸发腔室流动并且在此过程中被部分地蒸发。在“浴式蒸发器”(有时也称作“循环蒸发器”或“热虹吸管蒸发器”)中,热交换器模块处于待蒸发的流体的液体浴中。由于热虹吸效应,流体由下向上穿过蒸发通道流动并且在顶部又作为两相混合物排出。剩余液体在热交换器模块外部回流至液体浴中。(在浴式蒸发器中,蒸发腔室不仅可以包括蒸发通道,而且还可以包括围绕热交换器模块的外部腔室)。
[0005]用于低压塔的冷凝器-蒸发器(高压塔-塔顶冷凝器,若其构造成低压塔-中间蒸发器,和低压塔-塔底蒸发器)可以设置在低压塔的内部或者在一个或多个单独的容器中。高压塔-塔顶冷凝器也可以设置在第一高压塔的塔顶。
[0006]“物料交换元件”在此理解为所有的塔内部构件,其在上升蒸汽和下降液体之间引起对于蒸馏(精馏)至关重要的强烈的物料交换。该术语尤其是包括传统的物料交换盘、有序填料和散装填料元件(无序填料)。在本发明的方法和设备中及在实施例中,原则上可以在每个塔中使用传统的物料交换盘(例如筛板塔盘)、松散填料(无序填料)和/或有序填料。在一个塔中还可以将不同种类的元件加以组合。由于压力损失小,优选为有序填料。其进一步增强了本发明的节能效果。
[0007]在工艺技术的意义上,高压塔和低压塔均形成分离塔。其通常设置在容器中。替代性地,每个塔的物料交换元件可以分配到两个或更多个相应地相连接的容器中。
[0008]辅助冷凝器的供料在一种选择中是通过离开低压塔-塔底蒸发器的蒸发腔室的低压塔塔底液体的一部分形成的;在低压塔-塔底蒸发器构造成浴式蒸发器时,通常选择该工艺过程。选择性地,例如在使用降膜蒸发器时,低压塔的塔底液体从最低的物料交换元件排出,导入低压塔-塔底蒸发器的蒸发腔室中,而低压塔-塔底液体的未蒸发的部分从低压塔底部排出,至少部分地送至辅助冷凝器。在辅助冷凝器中,来自高压塔的空气或氮富集的馏分可以用作加热介质。
[0009]在传统的将两个冷凝器-蒸发器用于低压塔的方法中,低压塔-塔底蒸发器与辅助冷凝器一起用空气流进行加热;这不利于分离效率,因为大部分空气被预先液化,并因此不再参与到高压塔中的预分离中。US2008/115531A1公开了前述类型的将两个冷凝器-蒸发器用于低压塔的辅助冷凝器-方法,其中不需要此类在提高的压力下的空气流。替代性地,来自高压塔的氮气在制冷压缩机中达到提高的压力,并在低压塔-塔底蒸发器中(以及在辅助冷凝器中)用作加热介质。使用制冷压缩机是昂贵且不方便的,此外与在低温水平弓I入热量相关联,这在能量方面从根本上是不利的。

【发明内容】

[0010]本发明的目的在于提供此类方法及相应的设备,从而以比较低的设备成本和复杂性运行,并且在能量方面也特别有利地运行。
[0011]该目的是通过权利要求1的特征实现的。尤其是使用了工作压力高于第一高压塔的工作压力的第二高压塔。
[0012]在本发明的方法中,可以省略掉制冷压缩机,而且空气不会在低压塔-塔底蒸发器中预先液化。低压塔-塔底蒸发器的液化腔室在大约为第二高压塔塔顶的压力下运行;在任何情况下,第二高压塔的塔顶气体在导入低压塔-塔底蒸发器中之前不被压缩,而是优选在其正常压力下进入所述蒸发器的液化腔室。
[0013]第一眼看上去这是荒谬的,与使用制冷压缩机的情况相比,其努力和花费看上去非常高,也就是说要使用额外的分离塔-第二高压塔,此外将一部分空气压缩到提高的压力。然而,在本发明的范畴内,节约能量的程度出人意料地高,实际上产生了不枉费额外的努力和成本的相当大的优势。
[0014]额外地或优选替代性地,可以通过使来自用于氮氧分离的蒸馏塔系统的高压塔的氮富集的流做功膨胀,并在主热交换器中对经做功膨胀的氮富集的流进行加热,从而通过压缩氮气透平获得冷量。氮富集的流可以来自第二高压塔,但优选从第一高压塔取出;其尤其是在不采取改变压力的措施的情况下被引导到相应的膨胀机;因此,其进入压力等于相应的高压塔的工作压力(减去压力损失)。
[0015]有利的是,将至少一部分在做功膨胀之后被加热的氮富集的流在进料空气的净化装置中用作再生气。这不仅有利地使用了经做功膨胀的流,而且使低压塔压力与再生气在净化装置中所经历的压力损失脱离关系。因为再生气并没有依照惯例从低压塔排出,低压塔压力可以相应地更低,例如低于1.3巴,因此可以降低整体压力水平。这进一步提高了该方法的能量效率。
[0016]此外有利的是,在本发明的方法中,高压塔-塔顶冷凝器作为低压塔-中间蒸发器运行,其方式是使来自低压塔的液体中间馏分在此蒸发并将在低压塔-中间蒸发器中蒸发的中间馏分的至少一部分作为上升气体导入低压塔中。由此以特别有利的方式产生用于第一高压塔的回流液体,同时改善了低压塔的分离效率。
[0017]在根据本发明的方法的一个扩展的实施方案中,低压塔由至少两个区段形成,其中第一区段和第二区段均设置在分离的包括物料交换元件的容器中,低压塔的第二区段设置成与第一高压塔并排。
[0018]在该方法中,低压塔被划分开,这意味着其物料交换元件被分配到多于一个容器中,尤其是精确为两个容器。这些容器通过管线以如下方式连接,总体上实现了低压塔的工艺技术效果。因此,塔和冷凝器-蒸发器可以如下方式设置,使液体基于自然的高差尽可能远地流入相应的容器中。
[0019]低压塔的第二区段设置成与第一高压塔并排。“并排”在此意味着在设备的正常运行中这两个塔以如下方式布置,它们的横截面在水平面上的投影彼此不重叠。
[0020]虽然“分开的低压塔”的应用本身由DE100 09 977所公开,但是与不同的冷凝器连接模式、与低压塔中升高的工作压力及与特定的侧塔的相关性是非常特殊的。因此到目前为止还没有人想到将此类塔分离模式应用于根据US2008/115531A1的低压过程。
[0021]在本发明的一个特别有利的实施方案中,低压塔的第一区段包括在低压塔-中间蒸发器和低压塔-塔底蒸发器之间的物料交换元件,第二区段包括低压塔的物料交换元件,经由该物料交换元件排出所述塔的塔顶产品。原则上还可以将低压塔划分成三个或更多个区段。优选使用精确的两个区段。
[0022]低压塔的第一区段优选也与第一高压塔并排布置,尤其是在第一高压塔和低压塔的第二区段之间。若第一高压塔构造成一个部分,并且低压塔构造成两个部分,则在此情况下这些塔的所有的区段彼此并排布置。由此实现了特别低的总建筑高度。在此有利的是,低压塔的第一区段不是直立在地面上,而是安装在一定高度,从而不必泵送需要在低压塔中作为回流的液氮。替代性地,低压塔的第一区段可以布置在第一高压塔上方。
[0023]替代性地,低压塔的第一区段可以设置在第一高压塔上方或者在另一个高压塔上方。
[0024]低压塔-中间蒸发器优选设置在低压塔的第一区段的上方或内部。第一种情况涉及其中低压塔-中间蒸发器容纳在与低压塔分离的外部容器中的构造形式;第二种情况涉及安装在低压塔的第一区段的塔顶的内部低压塔-中间蒸发器。
[0025]此外有利的是,低压塔-塔底蒸发器设置在低压塔的第一区段的下方或内部。第一种情况涉及其中低压塔-塔底蒸发器容纳在与低压塔分离的外部容器中的构造形式;第二种情况涉及安装在低压塔塔底的内部低压塔-塔底蒸发器。
[0026]特别是在分开的低压塔的情况下有利的是,辅助冷凝器设置在低压塔-塔底蒸发器下方。
[0027]在根据本发明的方法的另一个实施方案中,第一和第二高压塔彼此上下布置,第一高压塔设置在第二高压塔下方。
[0028]在根据本发明的方法的该改变的实施方案中,不采用常规的布置方式,也就是说,低压塔既不是设置在高压塔上方,所有的塔也不是彼此并排地布置。偏离这些传统的布置方法,这两个高压塔彼此上下布置,尤其是第二高压塔设置在第一高压塔上方。(特别是构造成一个部分的)低压塔优选与高压塔并排布置。
[0029]后一布置方式是特别不寻常的,因为实际上第一高压塔加热低压塔的中间蒸发器,该中间蒸发器的位置高于塔底蒸发器,该塔底蒸发器由第二高压塔的塔顶气体加热,因此相反的布置最初显得更自然。然而,在本发明的范畴内,在高压塔彼此上下布置的情况下,尤其是在最后所述的布置方式的情况下,特别是可以将用于输送液体进出冷凝器的泵的数量最小化,此外通过根据本发明的方式实现了特别节能的运行模式以及在设备方面比较简单的构造方式。
[0030]此外实现了特别节约空间的布置方式,特别是在考虑了设备所需的基底面积的情况下。这两个高压塔可以容纳在共同的冷箱中。该共同的冷箱可以在工厂中成本低廉地预先制造。随后作为整体被水平地运输到施工地点,在此竖立起来,并与其他的设备部件连接。低压塔优选容纳在分离的第二冷箱中,其可以相似的方式预先制造和运输。
[0031]两个塔“彼此上下”布置在此意味着这两个塔中较低者的顶端位于比这两个塔中较高者的底端更低的测地高度,并且这两个塔在水平面上的投影重叠。例如这两个塔精确地彼此上下布置,换而言之这两个塔的轴在相同的垂线上延伸。类似地,该定义适用于相似的术语,例如“上方”和“下方”。
[0032]辅助冷凝器优选设置在第一和第二高压塔之间,尤其是在第一高压塔上方且在第二高压塔下方。
[0033]这首先看上去是不合逻辑的,因为辅助冷凝器在功能上与这些塔并不相关联。然而总的来说实现了非常紧凑的布置方式,其中这两个高压塔和辅助冷凝器可以容纳在一个共同的冷箱中。该共同的冷箱可以如上所述在工厂中成本低廉地预先制造,不需要为辅助冷凝器设置专用的冷箱,并且通常已经处于一定高度的低压塔的冷箱也无需进一步升高。此外,在该布置方式的情况下,由于足够高的液体静压,不需要用于将液氧产品输送到储存罐中的LOX产品泵。
[0034]优选通过第三进料空气流在辅助冷凝器中至少部分地冷凝,将空气在辅助冷凝器中用作加热介质,该进料空气流尤其是在高于第一压力的第三压力下。例如第三压力等于第二压力,第二和第三进料空气流是从预先达到相应地提高的压力的共同的空气支流分流出的。
[0035]在相应的位置之间的压差不大于自然的管路损失时,则在此称压力“相等”,管路损失是由于在管路、热交换器、冷却器(冷凝器)、吸收器等中的压力损失造成的。
[0036]在本发明的范畴内有利的是,第一进料空气流仅被压缩到第一压力(加上管路损失),只有第二(任选连同第三)进料空气流被压缩或后期压缩到相应的更高的第二压力(加上管路损失)。这是特别有利地通过权利要求14的特征实现的。
[0037]进料空气流原则上可以共同地在较低的压力水平下送至共同的空气净化装置。然而在许多情况下更有利的是,设置两个分离的在两种不同压力下运行的净化装置,例如本身由EP342 436所公开的。
[0038]有利的是,第三进料空气流也由经冷却的第二空气支流的至少一部分形成。因此,第二和第三进料空气流共同达到更高的压力(例如第二或第三压力,加上管路损失),然后彼此分离地分别导入第二高压塔和辅助冷凝器。替代性地,全部的第二空气支流可以作为第二进料空气流被引导通过辅助冷凝器,在此仅一小部分发生部分冷凝,然后作为第一进料空气流导入第二高压塔中。第三压力(在辅助冷凝器的液化腔室中)优选等于第二压力(在第二进料空气流进入第二高压塔中时)。
[0039]除了上述压缩氮气透平以外或替代性地,在该方法中,通过使第四进料空气流做功膨胀并将其导入低压塔,例如可以通过空气吹入透平获得工艺冷量以补偿交换损失和隔离损失,任选用于产品液化。第四进料空气流例如可以被压缩到与用于第一高压塔的第一进料空气流相等的压力水平,并且例如在第一压力下导入相应的膨胀机。
[0040]辅助冷凝器优选构造成浴式蒸发器。在本发明的一个特定的改变的实施方案中,该方法的所有冷凝器-蒸发器都构造成浴式冷凝器。这尤其是在高压塔彼此上下布置的情况下实现了成本特别低廉的构造和特别可靠的运行模式。
[0041]在本发明的一个特别有利的改变的实施方案中,尤其是在高压塔彼此上下布置的情况下,低压塔-塔底蒸发器设置在第二高压塔的塔顶;换句话说,低压塔-塔底蒸发器位于第二高压塔上方,在此产生的回流液体由于自然的高差可以流入第二高压塔的塔顶(因此不需要液氮泵)。低压塔-塔底蒸发器优选如同传统的塔顶冷凝器一样直接设置在第二高压塔的塔顶上方。在此可以将第二高压塔和低压塔-塔底蒸发器容纳在共同的容器中,在低压塔-塔底蒸发器的蒸发腔室与第二高压塔的塔顶区域之间设置有隔墙。
[0042]可以通过使用一个或多个降膜蒸发器进一步节约能量。尤其是低压塔-中间蒸发器和/或低压塔-塔底蒸发器可以构造成降膜蒸发器。与此不同,辅助冷凝器可以构造成浴式蒸发器,或者替代性地同样构造成降膜蒸发器。
[0043]在本发明的方法中,可以额外地使用第三高压塔。其优选在高于第二高压塔的压力下运行。于是其塔顶气体可以用作辅助冷凝器的加热介质。空气预先液化的情况相应地变得更小。
[0044]本发明进一步涉及根据权利要求22和23的设备。根据本发明的设备可以通过对应于从属方法权利要求的特征的设备特征加以补充。
[0045]下面依照在附图中示意性显示的实施例更详细地阐述本发明以及本发明的其他细节。
【专利附图】

【附图说明】
[0046]图1所示为本发明的第一实施例,其具有压缩氮气透平和两个处于不同压力水平的净化装置;
[0047]图2所示为第二实施例,其具有空气吹入透平和共同的净化装置;
[0048]图3所示为第三实施例,其具有三个高压塔;
[0049]图4所示为低压塔的第一区段设置在第二高压塔上方的实施例;
[0050]图5所示为低压塔的第一区段设置在第一高压塔上方的实施例;
[0051]图6所示为辅助冷凝器设置在两个分离塔之间的另一个实施例;
[0052]图7所示为本发明的变体的第一实施例,其中高压塔彼此上下布置,辅助冷凝器设置在两个高压塔之间;
[0053]图8所示为本发明的该变体的第二实施例,其中辅助冷凝器与分离塔并排设置;及
[0054]图9所示为本发明的该变体的第三实施例,其中低压塔-塔底蒸发器设置在第二高压塔的塔顶。
【具体实施方式】
[0055]在图1中,大气空气I由具有后期冷却器4的主空气压缩机3经由过滤器2吸入,并在此被压缩至3.1巴的第一总空气压力。主空气压缩机可以包括两个或更多个具有中间冷却的级;出于冗余的原因,其优选被构造成两行(两者在图中均未示出)。总空气流5在第一总空气压力和295K的温度下被送至第一直接接触冷却器6,并在此在与来自蒸发式冷却器8的冷却水7的直接热交换中进一步冷却到283K。经冷却的总空气流9被分离成第一空气支流10和第二空气支流11。
[0056]第二空气支流11在具有后期冷却器13的后期压缩器12中从第一总空气压力(减去压力损失)被压缩到4.9巴的第二总空气压力。该后期压缩器可以包括两个或更多个具有中间冷却的级;出于冗余的原因,其优选被构造成两行(两者在图中均未示出)。主空气压缩机和后期压缩器的每一行可以构造成一个具有共同驱动的机器,尤其是作为齿轮式压缩机。第二空气支流14接着在第二直接接触冷却器15中从295K冷却至290K,更准确地说是与较暖的冷却水流16进行直接热交换。
[0057]第一空气支流在于第一总空气压力下运行的第一净化装置18中进行净化,然后在该压力下经由管道19被送至主热交换器的热端,其在该实施例中由两个平行连接的模块20、21形成。冷却到大约露点的空气形成“第一进料空气流”22,其被送入第一高压塔23。
[0058]第一高压塔23是用于氮氧分离的蒸馏塔系统的一部分,该蒸馏塔系统此外还具有第二高压塔24、由两个区段25、26组成的低压塔、在所有在此所示的实施例中都构造成低压塔-中间蒸发器27的高压塔-塔顶冷凝器、低压塔-塔底蒸发器28以及辅助冷凝器29。低压塔-中间蒸发器27和低压塔-塔底蒸发器28构造成降膜蒸发器,辅助冷凝器29构造成浴式蒸发器。
[0059]经预先冷却的第二空气支流17在于第二总空气压力下运行的第二净化装置30中进行净化。可以由经净化的第二空气支流经由管道32提取出一小部分,其用作仪表空气或用于空气分离以外的目的。剩余部分经由管道33流到主热交换器20,并在此进行冷却。经冷却的第二空气支流34被分离成被导入第二高压塔24的“第二进料空气流” 35和被送至辅助冷凝器29的液化腔室的“第三进料空气流” 36。
[0060]经冷凝的第三支流37至少部分地、优选基本上完全地被导入分离器(相分离器)38中。液体馏分39的第一部分40被送至第一高压塔23。将其第二部分41经由过冷逆流热交换器42和管道43送入低压塔26中。
[0061]第一高压塔23的富氮的塔顶气体44的第一部分在低压塔-中间蒸发器27中被冷凝。在此获得的液氮46的第一部分47作为回流被送至第一高压塔23的塔顶。第二部分48在过冷逆流热交换器42中被冷却,并经由管道49作为回流被送至低压塔26的塔顶。过冷液体的一部分50可以在需要时作为液体产品(LIN)获得。
[0062]第一高压塔23的富氮的塔顶气体44的第二部分51被导入主热交换器20中。其至少一部分52仅被加热到中间温度,然后在发电机制动的压缩氮气透平53中从2.7巴做功膨胀到1.25巴。该透平的出口压力已经足够驱动经做功膨胀的流54通过主热交换器20并经由管道55、56、57作为再生气通过第一和第二净化装置18、30。
[0063]该流51的另一部分在主热交换器20中被加热到环境温度,并作为气态的压缩氮气产品(PGAN)获得。
[0064]第二高压塔24的富氮的塔顶气体58在低压塔-塔底蒸发器28中被冷凝。在此获得的液氮59的第一部分60作为回流被送至第二高压塔24的塔顶。第二部分61在过冷逆流热交换器42中被冷却,并经由管道62作为回流被送至低压塔26的塔顶。
[0065]将两个高压塔23和24的塔底液体63和64汇合,并经由管道65、过冷逆流热交换器42和管道66送至低压塔26中。
[0066]将低压塔25的塔底液体166导入低压塔-塔底蒸发器28的蒸发腔室,并在此部分地蒸发。以液态留下的馏分67流入辅助冷凝器29的蒸发腔室,并在此部分地蒸发。在辅助冷凝器中蒸发的馏分68被送至主热交换器模块20的冷端,被加热到大约环境温度,最终经由管道69作为纯度为95摩尔%的气态氧气产品(GOX)获得。以液态留下的馏分的一部分70在泵71中达到6巴的压力,在主热交换器模块21中蒸发并被加热,最终混入气态氧气产品69。另一部分72可以经由过冷逆流热交换器42、泵73和管道74作为液氧产品(LOX)获得。
[0067]在第二低压塔区段26的底端产生的液态中间馏分75借助泵76被输送至低压塔-中间蒸发器27的蒸发腔室中,并在此部分地蒸发。将在此产生的蒸汽与于第一低压塔区段25的塔顶产生的蒸汽一起经由管道77和79导入第二低压塔区段26中,任选还与循环的冲洗液78—起。以液态留下的中间馏分的剩余部分在第一低压塔区段25中用作回流液体。
[0068]在低压塔26的塔顶,富氮的残留气体80以1.26巴的压力排出,在过冷逆流热交换器42和主热交换器20中加热之后,经由管道81实际上无压力地作为干燥气体送入蒸发式冷却器8中,并在此用于对冷却水82进行冷却。
[0069]图2在两个工艺区段与图1不同:冷量的产生以及包括预先冷却和净化的空气压缩。在下文中,只详细地阐述不同的方面,两者可以彼此独立地与其他工艺区段相结合。
[0070]在此不是通过压缩氮气透平,而是通过空气吹入透平153产生冷量。该透平利用“第四进料空气流”151、152运行,该第四进料空气流从第一空气支流119在较低的第一总空气压力下分流出,并且在主热交换器20中被冷却到中间温度。经做功膨胀的第四进料空气流154在合适的中间位置被送至低压塔26。
[0071]在此以比图中所示更简单的方式进行空气压缩,其特别是仅具有一个单独的净化装置118,其中总空气105、110在第一总空气压力下进行净化。而且还仅使用一个直接接触冷却器106。
[0072]在此在净化装置118的下游分离成第一空气支流119和第二空气支流111。后期压缩器112如图1所示构造,但是仅具有一个通常的后期冷却器113,空气不在直接接触冷却器中被进一步冷却。然后第二空气支流经由与图1中的管道19类似的管道119被引导。
[0073]图3基本上与图1相对应。该方法的热区段没有示出,其可以如图1所示或者如图2所示构造。
[0074]除了在第一压力下的第一空气支流19和第二空气支流以外,还将高压进料空气流233导入主热交换器20。冷的高压进料空气流235在5.3巴的第三压力下进入第三高压塔224。富氮的塔顶气体258在辅助冷凝器228中用作加热介质,并在此基本上全部冷凝。在此获得的液氮259的第一部分260作为回流被送至第二高压塔24的塔顶。第二部分261在过冷逆流热交换器42中被冷却,并经由管道262作为回流被送至低压塔26的塔顶。
[0075]在该实施例中,辅助冷凝器228构造为多层浴式蒸发器,尤其是作为级联蒸发器,其中单个层在蒸发侧串联连接并且在液化侧并联连接。在此可以使用级联蒸发器的各种相应的实施方式,尤其是在EPl 077 356A1、W001/92798A2 = US2005/028554A1、W001/092799A1 = US2003/159810A1、W003/012352A2 或 DElO 2007 003 437A1 中详细描述的。
[0076]代替压缩氮气透平53,在图3的方法中还可以使用空气吹入透平,同样如同在之后的图4至6中的情况。
[0077]如图3所示,第三高压塔224优选在辅助冷凝器228下方,或者在辅助冷凝器228、低压塔-塔底蒸发器、低压塔的第一区段以及低压塔-中间蒸发器的组合的下方。剩余的塔的空间布置与图1和2相对应。
[0078]图4与图1的区别在于,具有两个蒸发器27和28的低压塔的第一区段25被设置在第二高压塔24上方。
[0079]在图5中,与此不同,具有两个蒸发器27和28的低压塔的第一区段25被设置在第一高压塔23上方。
[0080]图6中的辅助冷凝器29被设置在第二高压塔24与低压塔的第一区段25之间。除此之外图6与图4的实施例相对应。根据图6辅助冷凝器29在两个分离塔之间的布置方式也可以转移到图5的实施例。
[0081]进料空气的压缩和净化以及仪表空气的任何分流都没有在图7至9中示出。该方法所需的两股具有不同压力的空气流仅通过一个由两个区段组成的空气压缩机提供。在此,全部进料空气在第一个两级区段中达到大约3.8巴的压力,并仅仅导入预冷却系统中。在预先冷却和净化之后,将大约一半的进料空气送回至第二个(一级)压缩区段,并以干燥方式压缩到大约5.35巴的最终压力。进料空气的此类压缩和净化在图2中详细地显示。
[0082]在图7中,第一空气支流19在大约3.6巴的第一压力下导入主热交换器20的热端。冷却到大约露点的空气形成“第一进料空气流”22,并被送至第一高压塔23。
[0083]第一高压塔23是用于氮氧分离的蒸馏塔系统的一部分,该蒸馏塔系统此外还具有第二高压塔24、低压塔、低压塔-中间蒸发器27、低压塔-塔底蒸发器28和辅助冷凝器29。在该实施例中,所有这些蒸发器都被构造成浴式蒸发器。
[0084]在图7的实施例中以及在后面的图8和9中,这两个高压塔23和24彼此上下布置,更准确地说是第一高压塔23位于第二高压塔24下方。该低压塔以一个部分构造,也就是说它的位于低压塔-中间蒸发器27下方和上方的两个区段25和26被设置在一个共同的容器中,并直立在地面上。这两个高压塔的组合和低压塔彼此并排布置。
[0085]第二空气支流33在约5.25巴的第二压力下流到主热交换器20,并在此进行冷却。经冷却的第二空气支流34被分离成为导入第二高压塔24的“第二进料空气流” 35和被导入辅助冷凝器29的液化腔室的“第三进料空气流” 36。
[0086]经冷凝的第三支流37的第一部分40至少部分地、优选基本上完全地被导入第一高压塔23。第二部分41经由过冷逆流热交换器42和管道43被送至低压塔26。
[0087]第一高压塔23的富氮的塔顶气体的第一部分44在低压塔-中间蒸发器27中被冷凝。在此获得的液氮46的第一部分47作为回流被送至第一高压塔23的塔顶。第二部分48在过冷逆流热交换器42中被冷却,并经由管道49作为回流被送至低压塔26的塔顶。过冷液体的一部分可以在需要时作为液体产品获得(未示出)。
[0088]第一高压塔23的富氮的塔顶气体的第二部分51在主热交换器20中被加热到中间温度。经加热的压缩氮气52作为气态压缩氮气产品(PGAN)获得。
[0089]第二高压塔24的富氮的塔顶气体58在低压塔-塔底蒸发器28中被冷凝。这此获得的液氮59的第一部分60借助泵57作为回流被送至第二高压塔24的塔顶。第二部分61在过冷逆流热交换器42中被冷却,并经由管道62作为回流被送至低压塔26的塔顶。[0090]第二高压塔24的塔底液体64被导入第一高压塔23中,更准确地说是塔底和/或略高的位置。第一高压塔23的塔底液体63经由过冷逆流热交换器42和管道65被送入低压塔26中。
[0091]低压塔25的塔底液体被导入低压塔-塔底蒸发器28的蒸发腔室中,并在此部分地蒸发。以液态留下的馏分67通过泵56流入辅助冷凝器29的蒸发腔室中,并在此在大约1.65巴的压力下部分地蒸发。在辅助冷凝器中蒸发的馏分68被送至主热交换器20的冷端,被加热到大约环境温度,最终经由管道69作为气态氧气产品(GOX)获得,在这一特定的情况下纯度约为93摩尔%。以液态留下的馏分86的一部分70在泵71中达到更高的压力,并在主热交换器20中蒸发(或者在压力超临界的情况下进行伪蒸发),并被加热。
[0092]若仅有小的冲洗量经过泵71,则所泵送的氧的更高的压力应当是超临界的。于是将经加热的冲洗流经由管道88混入气态氧气产品69中,或者替代性地作为分离的产品排出。
[0093]在一个不同的实施方案中(管道85以虚线画出),氧产品的一部分作为中间加压的产品ICG0X(例如氧总量的15%,压力为7巴)获得。由此同样非常良好地冲洗了辅助冷凝器29。在此情况下,若泵71使液氧达到所期望的产品压力(加上管道损失),则是足够的。
[0094]来自辅助冷凝器29的以液态留下的馏分86的另一部分72可以经由过冷逆流热交换器42和管道74作为液氧产品(LOX)获得。
[0095]在低压塔26的塔顶,富氮的残留气体80在大约1.33巴的压力下排出,在过冷逆流热交换器42和主热交换器20中被加热之后,经由管道81排出,并作为蒸发冷却器(未示出)8的干燥气体用于对冷却水进行冷却,或者可以在用于净化进料空气的装置中用作再生气(同样未不出)。
[0096]在该方法中,通过空气吹入透平153产生冷量。该透平利用“第四进料空气流”151运行,该第四进料空气流如同第一空气支流19 一样处于较低的第一压力下,并在主热交换器20中被冷却到中间温度。经做功膨胀的第四进料空气流154在合适的中间位置被送至低压塔26。
[0097]图8与图7的区别在于辅助冷凝器29与塔并排设置。
[0098]此外,通过在泵71下游分流出相应的流72并在分离器201中分离成气态馏分202和液态馏分272,从而在此获得处于压力下的液氧产品74。于是在使用泵71产生相对大量的中间加压的产品(ICGOX)时,该变体是特别有利的。于是该泵同时用作液氧产品的产品泵。分离器201安装在冷箱中相对较高的位置,并利用液体静压使液体产品272由该分离器流入储存罐中。
[0099]图9基本上对应于图8。但是低压塔-塔底蒸发器28不是设置在底部低压塔区段25的塔底,而是在第二高压塔24的塔顶,换句话说是在第二高压塔上方。由此使该系统在不使用液氮泵的情况下运行。回流液体60仅由于高差流到第二高压塔24的塔顶。
【权利要求】
1.在用于氮氧分离的蒸馏塔系统中低温分离空气的方法,该蒸馏塔系统包括第一高压塔(23)和低压塔(25,26)以及三个冷凝器-蒸发器,即高压塔-塔顶冷凝器(27)、低压塔-塔底蒸发器(28)和辅助冷凝器(29 ;228),在该方法中: -将第一进料空气流在主热交换器(20,21)中冷却, -将经冷却的第一进料空气流(22)在第一压力下导入第一高压塔(23)中, -在高压塔-塔顶冷凝器(27)中使来自第一高压塔(23)的气态塔顶氮气(44,45)冷凝, -将在高压塔-塔顶冷凝器(27)中冷凝的塔顶氮气(46)的至少一部分(47)作为回流液体送至第一高压塔(23), -低压塔(25,26)的塔底液体(66)的一部分在低压塔-塔底蒸发器(28)中通过与冷凝的加热流体(58)的间接热交换而蒸发, -低压塔(25,26)的塔底液体(66)的未蒸发的部分(67)在辅助冷凝器(29 ;228)中至少部分地蒸发,及 -在辅助冷凝器(29 ;228)中蒸发的液体(68)的至少一部分作为气态氧气产品(69)获得, 其特征在于, -该用于氮氧分离的蒸馏塔系统此外还包括第二高压塔(24), -将第二进料空气流在主热交换器(20,21)中冷却, -将经冷却的第二进料空气流(35)在高于第一压力的第二压力下导入第二高压塔(24)中,及 -将第二高压塔(24)的塔顶气体(58)的至少一部分在低压塔-塔底蒸发器(28)中用作加热流体。
2.根据权利要求1的方法,其特征在于,使来自用于氮氧分离的蒸馏塔系统的高压塔(23)的氮富集的流(51,52)做功膨胀(53),将经做功膨胀的氮富集的流(54)在主热交换器(20,21)中加热,其中尤其是将经加热的氮富集的流(55)的至少一部分在用于进料空气的净化装置(18,30;118)中用作再生气(56,57)。
3.根据权利要求1或2的方法,其特征在于,高压塔-塔顶冷凝器(27)作为低压塔-中间蒸发器(27)运行,其方式是通过在此使来自低压塔(25,26)的液态中间馏分(75)蒸发,并将在低压塔-中间蒸发器(27)中蒸发的中间馏分的至少一部分作为上升气体导入(77,79)低压塔(25,26)中。
4.根据权利要求1至3之一的方法,其特征在于,低压塔通过至少两个区段形成,其中第一区段(25)和第二区段(26)各自设置在分离的包括物料交换元件的容器中,低压塔的第二区段(26)与第一高压塔(23)并排设置。
5.根据权利要求3和4的方法,其特征在于,低压塔的第一区段(25)包括在低压塔-中间蒸发器(27)与低压塔-塔底蒸发器(28)之间的物料交换元件,第二区段(26)包括位于低压塔的塔顶的物料交换元件。
6.根据权利要求5的方法,其特征在于,低压塔的第一区段(25)与第一高压塔(23)并排设置,尤其是在第一高压塔(23)与低压塔的第二区段(26)之间。
7.根据权利要求5的方法,其特征在于,低压塔的第一区段(25)设置在第一高压塔(23)上方。
8.根据权利要求4至7之一的方法,其特征在于,高压塔-塔顶冷凝器(27)设置在低压塔的第一区段(25)的上方或内部。
9.根据权利要求4至8之一的方法,其特征在于,低压塔-塔底蒸发器(28)设置在低压塔的第一区段(25)的下方或内部。
10.根据权利要求1至9之一的方法,其特征在于,辅助冷凝器(29;228)设置在低压塔-塔底蒸发器(28)下方。
11.根据权利要求1至10之一的方法,其特征在于,第一和第二高压塔(23,24)彼此上下布置,第一高压塔(23)设置在第二高压塔(24)下方。
12.根据权利要求11的方法,其特征在于,辅助冷凝器(29)设置在第一高压塔与第二高压塔之间。
13.根据权利要求1至12之一的方法,其特征在于,将第三进料空气流在主热交换器(20,21)中冷却,使经冷却的第三进料空气流(36)在辅助冷凝器(29)中至少部分地冷凝,其中尤其是第三进料空气流(36)在导入辅助冷凝器(29)中时处于高于第一压力的第三压力。
14.根据权利要求1至13之一的方法,其特征在于, -将总空气流(I)压缩到高于第一压力但低于第二压力的第一总空气压力, -将处于第一总空气压力的总空气流(5,9)分离成第一空气支流(10)和第二空气支流(11), -将第一空气支流(10,19)在大约第一总空气压力下导入主热交换器(20,21)中,并在此进行冷却, -用于第一高压塔(23)的第一进料空气流(22)通过经冷却的第一空气支流的至少一部分形成, -将第二空气支流(11)后期压缩(12)到高于第一总空气压力的压力, -将经后期压缩的第二空气支流(14,17,33)导入主热交换器(20,21),并在此进行冷却,及 -用于第二高压塔(24)的第二进料空气流(35)通过经冷却的第二空气支流(34)的至少一部分形成。
15.根据权利要求13和14的方法,其特征在于,用于辅助冷凝器(29)的第三进料空气流(36)通过经冷却的第二空气支流(34)的至少一部分形成。
16.根据权利要求1至15之一的方法,其特征在于,第三压力等于第二压力。
17.根据权利要求1至16之一的方法,其特征在于,使第四进料空气流(151,152)做功膨胀(153),并导入(154)低压塔(25,26)中。
18.根据权利要求1至17之一的方法,其特征在于,辅助冷凝器(29)被构造成浴式蒸发器。
19.根据权利要求1至18之一的方法,其特征在于,高压塔-塔顶冷凝器(27)和低压塔-塔底蒸发器(28)被构造成浴式蒸发器。
20.根据权利要求1至19之一的方法,其特征在于,低压塔-塔底蒸发器(28)设置在第二高压塔(24)的塔顶。
21.根据权利要求1至20之一的方法,其特征在于,高压塔-塔顶冷凝器(27)和/或低压塔-塔底蒸发器(28)被构造成降膜蒸发器。
22.在用于氮氧分离的蒸馏塔系统中低温分离空气的设备,该蒸馏塔系统包括第一高压塔(23)和低压塔(25,26)以及三个冷凝器-蒸发器,即高压塔-塔顶冷凝器(27)、低压塔-塔底蒸发器(28)和辅助冷凝器(29 ;228),该设备包括: -用于冷却第一进料空气流的主热交换器(20,21), -将经冷却的第一进料空气流(22)在第一压力下导入第一高压塔(23)中的装置, -将气态塔顶氮气(44,45)从第一高压塔(23)导入高压塔-塔顶冷凝器(27)的液化腔室中的装置, -将在高压塔-塔顶冷凝器(27)中冷凝的塔顶氮气(46)的至少一部分(47)作为回流液体送至第一高压塔(23)的装置, -将低压塔(25,26)的塔底液体(66)的至少一部分导入低压塔-塔底蒸发器(28)的蒸发腔室中的装置, -将加热流体(58)导入低压塔-塔底蒸发器(28)的液化腔室中的装置, -将低压塔(25,26)的塔底液体(66)的未蒸发的部分(67)导入辅助冷凝器(29 ;228)的蒸发腔室中的装置,及 -将在辅助冷凝器(29 ;228)中蒸发的液体(68)的至少一部分作为气态氧气产品(69)获得的装置, 其特征在于, -该用于氮氧分离的蒸馏塔系统此外还包括第二高压塔(24), 该设备还包括: -将第二进料空气流导入主热交换器(20,21)中的装置, -将在主热交换器中冷却的第二进料空气流(35)导入第二高压塔(24)中的装置,及-将第二高压塔(24)的塔顶气体(58)的至少一部分作为加热流体导入低压塔-塔底蒸发器(28)的液化腔室中的装置,其中 -尤其是设置有调节装置,其作用是将第二进料空气流(35)在高于第一压力的第二压力下导入第二高压塔(24)中。
23.根据权利要求22的设备,其特征在于使来自用于氮氧分离的蒸馏塔系统的高压塔(23 )的氮富集的流(51,52)做功膨胀做功膨胀(53)的膨胀机(53)以及将经做功膨胀的氮富集的流(54)在主热交换器(20,21)中加热的装置,其中尤其是设置有将经加热的氮富集的流(55)的至少一部分作为再生气(56,57)导入用于进料空气的净化装置(18,30;118)的装置。
【文档编号】F25J3/04GK103998883SQ201280046019
【公开日】2014年8月20日 申请日期:2012年9月20日 优先权日:2011年9月20日
【发明者】G·德姆斯基, A·阿列克谢耶夫, T·拉斯伯恩, D·戈卢贝夫, A·亚伊利 申请人:林德股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1