整合的空气分离和发电方法

文档序号:5184786阅读:183来源:国知局
专利名称:整合的空气分离和发电方法
技术领域
本发明涉及一种整合的空气分离和发电方法。更具体地,本发明涉及一种从空气中至少分离氧和氮并将氧和氮的应用整合入有效发电过程中的方法。
背景技术
废热发电过程(cogeneration)涉及应用单一燃料源在同一设施中同时产生热能和电能,其中所述热能通常为蒸汽形式。由于1978年的公用事业的调整法案(Public Utility Regulatory PolicyAct),已经给予废热发电设施的拥有者财政刺激使其向公用工程出售过量的电能,同时鼓励公用工程购买这些电能。因此,一直在尝试改进废热发电装置的能量效率,特别是在美国更是这样。再者,天然气飞升的价格在经济上进一步刺激许多废热发电装置应用其它燃料源,如煤等。
许多废热发电过程应用一种整合的、高效的组合循环以提高效率。通常的组合循环为在热力学上与气体透平(即Brayton-循环)偶合的蒸汽透平(即Rankine-循环)。蒸汽和气体透平的组合循环系统通常应用天燃气作燃料源,这是因为天然气倾向于含有更少杂质,而这些杂质可能造成气体透平部件特别是气体透平桨叶表面的热腐蚀、结垢和迅速劣化。因此在历史上,由于煤中含有各种能使气体透平腐蚀的杂质,致使其中应用煤作燃料源的高效蒸汽/气体组合循环系统的应用不受推崇。因此,当在煤燃烧的废热发电方法中应用蒸汽/气体组合循环时,重要一点是限制气体透平对燃料气杂质及明显超过最大允许值的温度的暴露。对于气体透平来说最大允许温度主要由气体透平的构造材料及其其它操作条件决定,其通常范围为约1000℃至约1450℃。限制对燃料气杂质和较高温度的暴露将有助于阻止气体透平的明显腐蚀问题,从而保持设备维护费用较低。
Willyoung的US 4,116,005提出了应用含有硫吸收颗粒的流化床燃料器,其在约大气压力下用气体透平的空气废气流化,该气体同时为煤的燃烧提供O2源。但Willyoung所提出的系统不能进一步提高在废热发电方法中应用蒸汽/气体组合循环的固有效率。另外,Willyoung利用流化床对燃烧室的改进为了限制气体透平的腐蚀需要很高的费用及维护费。
使许多煤燃烧废热发电方法受到限制的另一个因素是向大气中排放气体,具体为氮氧化物(NOx)如一氧化氮(NO)、二氧化氮(NO2)和一氧化二氮(N2O),硫氧化物(SOx)如二氧化硫(SO2)和三氧化硫(SO3)以及二氧化碳(CO2)。部分全球变暖的支持者认为N2O和CO2的过量排放与气候变化有关。另外,NOx如NO或NO2的排放在足够浓度下可能会对健康和环境造成毒害。另外,SOx的排放在足够浓度下可能会产生“酸雨”,而酸雨可能对各种植物和水生生物有害。因此这些气体中的许多种或全部均有可能会成为更严格控制的对象,至少在某些市场发达的国家或地区如美国、加拿大、日本和欧洲是这样。因此,这种对通常作为煤燃烧副产品的部分或全部气体的排放日益受到严格限制的前景使得从操作费用角度来看,以煤作燃料的废热发电方法缺少吸引力。
例如,各个国家,包括法国、德国、英国、澳大利亚、美国、加拿大和日本都已经同意在它们各自的管辖范围内寻求京都协定(Kyoto Protocol)的内部批准和采纳。京都协定是在1997年十二月在日本京都召开的针对气候变化的联合国框架会议上产生的。按照京都协定,每一个参与国均从原则上同意“根据各国环境实施和/或进一步制定政策和措施”以提高能量效率并保护一些未受蒙特利尔协定(Montreal Protocol)控制的大气源(如二氧化碳)。
概括地说,按照京都协定,每一个参与国均同意限制协定中所规定的温室气体的排放,包括二氧化碳、甲烷(CH4)、N2O、氢氟碳(HFCs)、全氟碳(PFCs)和六氟化硫(SF6)等,并且在目标期限2008-2012年间其工作朝着使这些气体的总排放量低于1990年排放水平至少5个百分点。直到现在,1990年的美国清洁空气法修正案(CAAA)的立法修正还没有被通过,而这一法案要求在美国操作的设备要遵守京都协定的温室气体排放目标。但1996-2000年美国的管理部门已经制定了一个政策决定来鼓励自愿遵守京都协定。相应地,在美国运行的具有大量二氧化碳排放的公司已经受到鼓励自愿朝着向京都协定所规定的温室气体的目标水平努力。同时,如果朝着京都协定的目标没有显示出好的进展,则可能会由京都协定出台关于CAAA的一些进一步的修正案。如果基于目前和预期的气体排放开发出更加确定地测量和预测全球气候变化程度的模型,则遵守京都协定的CAAA修正案也可以得到激励。因此,限制气体排放,特别是来自以煤为燃料的发电装置的气体排放,同时保持能量有效的发电方法已经成为越来越重要的工业目标。
例如,Abdelmalek的US 5,937,652提出了由组合的煤气化和合成气(即一氧化碳(CO)和氢气(H2)的混合物)燃烧方法而更有效地产生能量并减少二氧化碳的排放。煤的气化步骤是在无氧(O2)气氛下进行的,同时应用二氧化碳和蒸汽作为煤燃料的氧化剂。来自煤/CO2气化反应的热用于产生蒸汽,而该蒸汽用于驱动蒸气透平/发电机而发电。另外,Abdelmalek应用US 5,403,569和US 5,321,946中公开的旋风分离器系统分离二氧化碳和二氧化硫(SO2)以及由锅炉排出的其它气体。
Abdelmalek指出其方法具有更高的效率,因为气化反应是在无O2情况下运行的,同时分离出来的二氧化碳循环回气化室与煤反应,产生不含氮(N2)的合成气即CO和H2的混合物。然后这种CO/H2混合物与O2燃烧产生热。根据Abdelmalek的方法,他的这种组合煤气化和合成气燃烧过程的总热值比常规煤燃烧方法多20%,其中在煤气化中只有很少或无O2存在,其中合成气燃烧过程中CO和H2与O2反应产生主要的热,而在所述的常规煤燃烧过程中用O2作主要氧化剂来燃烧煤。Abdelmalek宣称这种方法减少二氧化碳排放20%。另外,Abdelmalek指出燃烧反应化学,特别是用煤作燃料源(例如煤+O2)的燃烧反应化学,使常规的燃烧类反应在使得它们能更有效地进行的程度固有地受到局限,甚至对废热发电方法来说也是一样。因此,Abdelmalek未能公开如何提高主要应用燃料如煤直接燃烧的废热发电方法的效率,和/或如何减少向大气中的二氧化碳排放以及其它气体的排放,所述其它气体如一氧化氮(NO)、一氧化二氮(N2O)和二氧化氮(NO2)(统称为NOx)和/或二氧化硫(SO2)和三氧化硫(SO2)(统称为SOx)。
在US 6,047,547中Heaf公开了由同一过程及燃料源产生二氧化碳和能量的另一个例子。Heaf提出了一种轻便的整合废热发电系统,这种系统产生电能、蒸汽和液体二氧化碳以及其它生产和填充瓶装或罐装饮料产品所必须的产品。具体地,Heaf提出应用燃烧发电机(CEG)来产生电能和以燃烧提供动力的水锅炉来产生蒸汽。与CEG和水锅炉相连的CO2回收装置接收来自CEG和水锅炉的废气,用于从废气中分离和回收CO2,并应用压缩机来液化所回收的CO2。Heaf建议他的废热发电系统可以由一个优选为两个CEG和以燃烧提供动力的水锅炉一起可以产生大量CO2。但针对操作效率,Heaf仅指出他的整合废热发电系统“当与饮料生产设施组合时是有效率的且节省费用”。但Heaf未能量化他所提出的废热发电方法的效率。再者,Heaf未能提出对用于饮料生产和瓶装设施之外的以燃烧提供动力的锅炉系统提高操作效率的任何手段或方法。
Rathbone等人的US 5,067,837涉及一种与化学过程组合的空气分离方法。在空气分离装置中产生的氮物流被加压至至少5个大气压,并通过与在化学过程中产生的热流体进行热交换而被加热。然后加热的氮在一个膨胀透平中膨胀而做功。流出透平的氮(a)用于在换热器中加热氧或燃料;(b)被排放到大气中;或(c)用于在蒸汽发生器中产生蒸汽。但Rathbone建议在部分氧化类反应中应用O2使纯化的天然气与O2反应以形成具有希望的CO含量的合成气(即气化过程)。另外,Rathbone建议应用仅由气化过程而不是燃烧过程产生的热合成气加热的N2,所述燃烧过程以天然气为燃料,更加彻底地使燃料氧化以产生主要含有CO2的烟道气以及CO2和水蒸汽等其它反应产物。另外,Rathbone没有提出对用于天然气气化过程以外的以燃烧提供动力的锅炉系统提高操作效率的任何手段或方法。
US 5,709,077(1998年1月20日)、US 5,715,673(1998年2月10日)、US 5,956,937(1999年9月28日)和US 5,970,702(1999年10月26日)均属于Beichel且均转让给了Clean Energy Systems,Inc.(Sacramento,California),这些专利均描述了一种发电系统,其中高压燃料和高压O2在气体发生器中燃烧从而产生高温气体。其燃烧温度由注入到气体发生器中的气体混合室中的冷却水来控制。来自气体发生器的高压、高温蒸汽/CO2混合物通过串联的三个透平,在透平间带有中间-透平再热器。气体被冷凝并将水循环回到气体发生器中。
属于Viteri并转让给Clean Energy Systems,Inc.的US5,680,764(1997年10月28日)描述了一种发电系统,其中向气体发生器中进料加压的燃料和O2以达到完全燃烧,并产生最高温度的热气体(6,500°R(6,040下,3,300℃)。热气体用水稀释从而降低温度至2,000°R(1,540°F,840℃)。当用氢作燃料时,驱动气体为蒸汽,而当使用轻烃时,驱动气体为蒸汽和CO2。热气体在透平中膨胀从而为车辆提供动力,然后冷凝为水以完成Rankine循环。约75%的水循环回到气体发生器中。在一种实施方案中,用Otto和Diesel热循环替代Rankine循环从而不需要冷凝器和循环水系统。根据所应用的燃料,低温蒸汽(氢燃料)或蒸汽/CO2(烃燃料)气体在Otto和Diesel实施方案中作为工作流体而被循环。
亦属于Viteri并转让给Clean Energy Systems,Inc.的US6,170,264(2001年1月9日)描述了与US 5,680,764相同的方法,并进一步建议应用空气分离装置。在燃烧设备中应用富集O2并且将富集N2排放至大气中。在一种实施方案中,CO2被埋藏至地层深处或海底。
大部分燃烧煤的废热发电方法的总的产能效率通常为约25%至约35%。因此,需要具有改进效率的整合废热发电方法来产生电能和热能。改进的废热发电方法的总效率优选高于约40%,并且更优选高于约50%。
另外,能量效率更高的废热发电方法应该具有减少对用于蒸汽透平/气体透平组合循环的气体透平腐蚀作用的方法,并且如果需要,所述方法应该能够适应于结合一个减少和/或消除向大气中排放各种气体如CO2、NOx和/或SOx的系统。
发明概述按照本发明,提供一种整合的空气分离和发电方法,包括如下步骤(a)向空气分离装置引入O2/N2源;(b)分离O2/N2源至少为富O2气流和富N2气流;(c)向燃烧器引入至少一部分压力至少为约3巴(300kPa)的富O2气流和燃料,从而产生燃烧混合物;(d)使燃烧混合物燃烧从而至少产生烟道气;(e)在燃烧混合物燃烧步骤之前、过程中和/或之后,向燃烧器中注入蒸汽,从而产生改性的至少为蒸汽和烟道气的燃烧混合物;(f)通过将流出燃烧器的改性燃烧混合物引入到第一发电装置中而进行发电;(g)加热至少一部分压力为至少约3巴(300kPa)的富N2气流;和(h)通过将加热的富N2气流引入第二发电装置中而发电。
附图的简要描述本发明步骤的整合特点通过参考优选实施方案及其参考附图的如下详细描述以可以得到更好的理解,其中

图1为所述整合方法的一种实施方案的流程图,描述了应用从燃烧器流出的烟道气和蒸汽(“FG/S”)物流和由空气分离产生并用来自FG/S物流的残余热加热的富N2物流进行的互助的空气分离和发电过程;
图2为所述整合方法的另一种实施方案的流程图,描述了互助的空气分离和发电过程,其中蒸汽由来自FG/S物流的残余热产生,而富N2物流通过与部分蒸汽混合而加热;图3为所述整合方法的另一种实施方案的流程图,描述了互助的空气分离和发电过程,其中用来自FG/S物流的残余热在锅炉中产生蒸汽。
图4为所述整合方法的另一种实施方案的流程图,描述了互助的空气分离和发电过程,其中利用用来自富N2物流的残余热预热富含水的物流;和图5为所述整合方法的又一种实施方案的流程图,描述了利用燃料气化和富CO2物流处理系统的互助空气分离和发电过程。
在附图中,O2/N2指氧和氮源,O2指富氧气流,N2指富氮气流,CO2指富二氧化碳气流,H2O(λ)指富含液态水的物流,而H2O(g)指富含水蒸汽(即蒸汽)的物流。“CO2+H2O(g)”为至少二氧化碳和蒸汽的混合物,而“N2+H2O(g)”为至少氮和蒸汽的混合物。
优选实施方案的详细描述定义“空气分离装置”或“ASU”指任何气体或液体分离设备以及应用所述设备分离两种或多种气体和/或液体组分的方法,包括膜系统、致冷系统、变真空吸附(VSA)系统、变压吸附(PSA)系统、变温吸附(TSA)系统以及它们的组合,但并不局限于此。ASU可以为现场的,或者O2和/或N2气流可以从远处的ASU通过管线输送而来。
“O2/N2源”指以气态、液态或二者组合状态存在的任何混合物,至少包括O2和N2,其至少可以被分离为富O2物流和富N2气流。
“气体”指所述物流其基本上为气相,但可以夹带固体颗粒或液体。
“富含”指气流的主要组分超过相同气体组分在地球大气中的平均浓度。例如,正如这里所应用的,“富O2气流”将在气流中具有高于约21%体积的O2,“富N2气流”将在气流中具有高于约78%体积的N2。“富Ar气流”将在气流中具有高于约0.9%体积的氩(Ar)。“富CO2气流”将在气流中具有高于约3×10-2%体积的CO2。“富He气流”将在气流中具有高于约5×10-4%体积的氦(He)。“富Kr气流”将在气流中具有高于约1×10-4%体积的氪(Kr)。“富Xe气流”将在气流中具有高于约8×10-6%体积的氙(Xe)等。相应地,单个气流可以“富含”一种或多种感兴趣的气体组分。
“高压”或“较高压力”指高于或等于约3巴(300kPa或44.1psi)的压力。当在这里应用时,如果不特别指出,压力单位的参考值为绝压。
所述整合方法的“效率”用在整合方法中得到的总输出功率和由引入到锅炉中的燃料得到的理论热量输入之间的比来计算。
方法总述整合的空气分离和发电方法由高压富O2气流和高压富N2气流来发电,而所述这两种物流来自在空气分离装置(“ASU”)中分离的O2/N2源。至少一部分高压富O2气流与燃料和蒸汽一起被引入燃烧器中从而产生至少含有烟道气和蒸汽的气流(“FG/S物流”)。使FG/S物流通过第一发电装置例如气体透平而发电。
加热高压富N2气流,并应用第二发电装置如气体透平由加热的高压富N2气流发电。
在燃烧器中应用的蒸汽优选通过在锅炉中用流出气体透平的FG/S物流的残余热加热富含液体水的物流而产生。部分富含蒸汽的物流可以用作工业蒸汽源。
所述整合方法的总的过程效率优选为约40%至约70%。
下面参考图1,本发明用于空气分离和发电的整合系统10具有用于分离O2/N2源如空气24成为高压富O2气流28和高压富N2气流36的ASU 22。燃烧器12用于燃烧燃料14和高压富O2气流28。通过使流出燃烧器12的FG/S物流18通过发电装置例如气体透平32而由FG/S物流18发电。也可以在发电装置例如气体透平42中由加热的富N2气流36发电。
空气分离ASU 22由O2/N2源24例如空气产生高压富O2气流28和高压富N2气流36。引入到ASU 22的O2/N2源24被分离成所希望的产品26,包括一种或多种独立地为液态或气态形式的氧、氮、氩、氦、氪和氙,但不局限于此。为了满足客户的需求,这些组分中每一种的产量都可以改变。
高压富O2气流28和高压富N2气流36均具有压力至少约3巴(300kPa)。根据所应用ASU的类型,富O2和富N2气流中的每一个均可以要求进一步压缩以升高压力到至少约3巴(300kPa),例如应用压缩机。例如,在图5的实施方案中描述的压缩机92可用于压缩富N2气流36。一个差不多的压缩机(图中未画出)可用于压缩富O2气流。
ASU 22可以为例如致冷装置、膜装置、变真空吸附(VSA)系统、变压吸附(PSA)系统、变温吸附(TSA)系统或它们的组合,但并不局限于此。ASU 22可以为现场的,或者富O2和/或富N2气流可以从位于远处的ASU 22通过管线输送而来。
任选地,在被分离之前,进料至ASU 22的O2/N2物流24被压缩(图中未画出)至压力范围约3巴(300kPa)至约25巴(2,500kPa)。
当在液体和/或气体进料物流中的微量杂质可能导致可燃性杂质与氧化剂(例如在富O2气体或液体中的乙炔)组合时,则存在潜在的爆炸危险。相应地,应该采取特殊的预防措施以减少和/或消除这种爆炸危险以及任何其它潜在的爆炸危险。因此,如果不能排除其应用的话,则任何可能的点火源的应用都应该保持为最小,特别是在富O2气体的压缩过程中和在升高的压力下处理富O2气体的系统中。
另外,当应用空气作为O2/N2源时,在引入到ASU 22中之前应对其进行处理。按照适当的安全预防措施,所述空气处理过程可以包括过滤步骤以脱除和/或降低潜在的气流污染物(例如颗粒和烃,如果有的话)至可接受的限度,以及气体压缩步骤,但并不局限于此。另外,应该采取措施以保护在任何致冷过程(例如暴露于致冷灼烧和窒息)和任何高温和高压过程周围工作的人员,同时保护在这些过程中及其周围应用的设备。
在ASU 22中产生的高压富O2气流28的至少一部分用作燃烧器12的输入。
高压富O2气流28可以在ASU 22中按多种方式产生。例如在ASU22中产生的富O2气流28可以在后-空气分离压缩机(图中未画出)中被压缩。另外应用ASU 22通过加压液体O2可以产生一种基本为液体的加压富O2物流,而加压液体O2在ASU 22中应用泵的作用(图中未画出)来产生。在该另一种情况下,然后基本为液体的加压富O2物流通过一个换热器(图中未画出),在其中加热和蒸发富O2物流,同时冷却进料至ASU 22的空气物流。
在任何情况下,通过应用压力至少为约3巴(300kPa)的高压富O2气流28,可以使所述整合方法的效率得到提高。富O2气流28的压力范围优选为约3巴(300kPa)至约300巴(30,000kPa)。富O2气流的压力范围更优选为约10巴(1,000kPa)至约150巴(15,000kPa)。该压力最优选为约12巴(1,200kPa)至约50巴(5,000kPa)。
在ASU 22中产生的高压富N2气流36的至少一部分用作N2发电的输入。
高压富N2气流36可以按照与高压富O2气流28相同的方式产生。富N2气流的压力范围优选为约3巴(300kPa)至约50巴(5,000kPa)。富N2气流的压力范围更优选为约10巴(1,000kPa)至约40巴(4,000kPa)。该压力最优选为约12巴(1,200kPa)至约30巴(3,000kPa)。
燃烧和FG/S发电燃烧器12用于燃烧燃料14和富O2气流28。当燃料燃烧时,产生烟道气。应用富O2气流作为燃料燃烧氧化剂的一个优点是燃烧更加完全。富O2进料的另一优点是NOx的产量降低,这是因为产生NOx的主要氮源已经被ASU 22明显减少。
但应用富O2气流导致燃烧温度升高,因而所产生的烟道气温度升高。虽然根据燃料的类型和在富O2气流中的O2含量,燃烧温度范围通常为约3,200℃至约3,700℃(约5,800°F至约6,700°F)。但通常用于由烟道气发电的气体透平的常用构造材料不能忍受如此高的温度。
因此,按照本发明,除其它因素外,还应用富含蒸汽的物流16来控制燃烧温度为预定温度,该预定温度低于应用含有相同燃料和富O2气流但不含蒸汽的燃烧混合物产生的温度。例如,通过加入蒸汽,燃烧和烟道气温度可以被降低至约1,200℃(2,200°F)。所述预定温度是例如燃烧器12和气体透平32的构造材料以及在燃烧器12中如果有的话存在的N2的浓度的函数,但并不局限于此。具体地,保持FG/S物流的温度不超过气体透平32所能接受的最大值,将会有助于提高所述整合过程的效率,同时减少气体透平的腐蚀和相关的维修费用,其中所述气体透平所能接受的最大值可能基于不同的操作条件而变化。相应地,除其它组分外,蒸汽是用于控制燃烧温度的燃烧混合物改性剂。
根据燃料的化学组成,O2和燃料优选按约为化学计量比加入到燃烧器12中,从而产生大量的CO2或CO2和H2O燃烧产品。
燃烧器12和/或锅炉38的合适燃料为气相的、液相的或固相的含碳化合物或其组合物。合适燃料的例子有天然气、煤、煤泥、石油焦、沥青、燃料油和废燃料油、气化气、合成气、焦炉气、鼓风炉气及其组合。
富含蒸汽物流16优选为加入到燃烧器12中的总的富O2气流、燃料和富含蒸汽物流的约70mol%至约99mol%。富含蒸汽物流16更优选为加入到燃烧器12中的总的富O2气流、燃料和富含蒸汽物流的约75mol%至约95mol%。富含蒸汽物流16最优选为加入到燃烧器12中的总的富O2气流、燃料和富含蒸汽物流的约80mol%至约92mol%。
按照所希望的燃烧器操作温度和整个过程的效率,富含蒸汽物流16在燃烧前、燃烧过程中和/或燃烧之后加入。加入到燃烧混合物中的蒸汽量取决于许多因素,包括燃料的类型、在富O2气流中O2的量、燃烧温度、相对于燃烧而言加入蒸汽的时刻、蒸汽的温度和希望的FG/S物流出口温度,但不局限于此。在确定条件下,可能会发生有害的结焦,这可能表明燃烧温度对于保持基本完全的燃烧反应(即主要产生CO2或CO2和H2O)来说太低了。在这种情况下,可能希望降低在燃烧前或燃烧过程中加入的蒸汽量,从而提高燃烧温度并因此降低有害结焦的程度,如果存在有害结焦的话。
在燃烧器12中的气体优选为充分混合且均匀的。流出燃烧器12的FG/S物流18至少由烟道气和蒸汽组成。
通过向发电装置中加入来自燃烧器12的FG/S物流18的至少一部分而进行发电,所述发电装置可以为气体透平32。由于进入气体透平32的气体是烟道气和蒸汽的混合物,所以透平按混合Rankine/Brayton循环操作。
通过降低FG/S物流18的入口温度以及增加通过气体透平的质量流量,应用富含蒸汽物流16增加在气体透平中所产生的电,如下式(1)所示W=m&(hi-h0)(1)其中W为所产生的电(Btu);m&为气体的质量流量(lbm/hr);hi为在气体透平入口的气体的比焓(即热焓)(Btu/lbm);和h0为在气体透平出口的气体的比焓(即热焓)(Btu/lbm)。
在气体透平入口处的最高气体温度受透平材料的最大可接受应力限制,当应用不含蒸汽的燃料/O2燃烧混合物时则会超过这一最大可接受应力。向燃烧混合物中加入蒸汽,从而降低hi。但因为蒸汽加入提高了质量流量,从而增加了由透平产生的电。
气体透平32可以与发电机(图中未画出)或循环压缩机(图中未画出)例如ASU压缩机相连从而发电,但不局限于此。
在被导入发电装置前可以对FG/S物流18进行过滤。例如当在燃烧器16中应用的燃料14为煤时,过滤FG/S物流18可能是特别有利的。其它优选被过滤的合适燃料包括石油焦、沥青、燃料油、废燃料油、所述每种燃料与天然气的组合物或它们的组合物,但不局限于此。但当燃料仅为天然气时,很可能并不需要过滤。
过滤可以按本领域熟练技术人员已知的方式进行,例如包括烛形过滤器、旋风及其组合,但不局限于此。
流出发电装置的FG/S物流18随后被加入到锅炉38中用于产生蒸汽、加热富N2气流36或其组合。
N2发电加热在ASU 22中产生的高压富N2气流36,并且通过将加热后的高压富N2气流从锅炉38引入发电装置而发电,其中所述发电装置可以为气体透平42。
在图1和2中描述了用于加热富N2气流36的两种实施方案。在一种实施方案中,如图1所示,应用从发电装置流出的FG/S物流34的残余热加热富N2气流36。正如图中所示,富N2气流36在与锅炉38相连的换热器中加热。通过使加热的富N2气流36通过气体透平42而发电。
在另一种实施方案中,如图2所示,富N2气流36通过与蒸汽混合而被加热。所述蒸汽优选在整合的空气分离和发电过程中产生。更优选通过用流出发电装置的FG/S物流34的残余热,例如在与锅炉38相连的换热器中加热而产生富含蒸汽物流78。在该实施方案中,在混合器66中混合富含蒸汽物流78和富N2气体36。富含蒸汽物流78和富N2气体36优选在基本相同的压力下引入到混合器66中。
然后混合后的富N2气体和富含蒸汽物流(N2/S)68按照由FG/S物流18发电类似的方式而用于发电。由(N2/S)物流68发电的一个优点是质量流量增加,而该流量增加按照公式(1)增加在透平42中所产生的电。由于进入气体透平42的气体为N2和蒸汽的混合物,因此透平在蒸汽混合实施方案中按照混合Rankine/Brayton循环操作。
所述气体透平42可以与发电机(图中未画出)或循环压缩机(图中未画出)例如ASU压缩机相连而发电,但不局限于此。
在图2的实施方案中,流出气体透平42的N2/S物流然后在冷凝器96中被处理,从而使富含水物流98与富N2气流44分离。富含水物流98优选与富含水物流58混合,并在锅炉38中加热。
另外,蒸汽与FG/S物流混合并进行换热的组合可用于加热富N2气流44。
加热前高压富N2气流36的温度取决于ASU 22和随后任意的压缩或热交换,但其通常范围为约30℃至约500℃(约85°F至约950°F)。在其中富N2气流36在与锅炉38相连的换热器中加热的实施方案中,加热后的富N2气流的温度范围优选为约800℃至约1,500℃(约1,450°F至约2,700°F)。在蒸汽混合实施方案中,N2/S物流68的温度范围优选为约250℃至约650℃(约480°F至约1,200°F)。
锅炉38的合适例子有粉碎固体燃料锅炉、粉碎液体燃料锅炉、流化床锅炉、燃烧天然气锅炉、燃烧管锅炉、燃烧室锅炉、以及水管锅炉。
锅炉38优选在压力范围为约1巴(100kPa)至约5巴(500kPa)下操作。锅炉38更优选在压力范围为约1巴(100kPa)至约3巴(300kPa)下操作。锅炉38最优选在压力范围为约1巴(100kPa)至约1.5巴(150kPa)下操作。
附加燃料、高压富O2气流和/或蒸汽任选被加入到锅炉38内或与锅炉38相连的燃烧器中。
流出发电装置的富N2气流的任何残余热能可任选在换热器62(参考图4和5)中用于预热进入锅炉38的水。为了达到所希望的总的过程效率,同时明显减少气体透平的维修费用,应用富N2气流进行发电和任选在换热器62中进行换热是很重要的。
另外,流出气体透平42或换热器62的富N2气流44可以用作产品。根据产品要求,可以处理富N2气流44以脱除任意杂质。另外或附加地,可以处理富N2气流44以产生压缩气体产品或液态N2产品。另外,可任选处理富N2气流或液态N2的一部分,并循环回锅炉38作为其换热器的高压气体输入。
蒸汽产生优选在整合的空气分离和发电过程10中产生引入到燃烧器12中的蒸汽16。更优选由流出锅炉38的FG/S物流52中分离出的富含水物流58产生蒸汽16。
在图3,4,5所描述的一种实施方案中,流出锅炉38的FG/S物流52在冷凝器54中被冷凝从而产生富CO2物流56和富含水物流58。在图3所示的实施方案中,富含水物流58在锅炉38中被加热从而产生富含蒸汽物流16。然后向燃烧器12中注入富含蒸汽物流16并作为FG/S物流18的一部分而流出。
在图4和5所示的实施方案中,在换热器62中应用流出气体透平42的富N2气流中的残余热而预热富含水物流58。然后流出换热器62的预热后的富含水物流64被引入到锅炉38中,从而产生富含蒸汽物流。在锅炉38中产生的富含蒸汽物流的温度范围优选为约250℃(480°F)至约650℃(1,200°F),压力范围优选为约3巴(300kPa)至约300巴(30,000kPa)。富含蒸汽气流的压力范围更优选为约10巴(1,000kPa)至约150巴(15,000kPa)。该压力范围最优选为约12巴(1,200kPa)至约50巴(5,000kPa)。蒸汽压力的上限主要受设备容量限制。所述整合空气分离和发电方法的效率随着蒸汽压力的提高而提高。
优选在富含蒸汽物流16中基本上没有CO2。
正如图4和5所示,在锅炉38中产生的蒸汽的一部分任选可以在装置的其它区域中用作工业蒸汽74。
烟道气处理在一种优选实施方案中,如图3、4和5所示,流出锅炉38的FG/S物流52在冷凝器54中被冷凝从而分离富CO2物流56和富含水物流58。另外,图5描述了本实施方案的一个优选方面。在该优选方面中,流出冷凝器54的富CO2物流在烟道气处理系统76中进行处理,从而产生处理后的富CO2物流。
FG/S物流的组成取决于燃料的类型、氧化剂的组成和浓度、注入物流的浓度、以及燃料的C∶H比。但流出锅炉38的典型FG/S物流52的烟道气含有约2至约20mol%CO2约80至约92mol%H2O微量的NOx、SOx和灰在烟道气处理系统76中,流出冷凝器54的富CO2物流可以被处理从而脱除或转化灰、其它颗粒物质、在燃烧器12和/或锅炉38的燃烧器中产生的NOx和SOx。可以通过本领域熟练技术人员已知的技术脱除或转化NOx和SOx,包括例如洗涤器、催化装置及其组合,但不局限于此。
灰和其它颗粒物质可以通过本领域熟练技术人员已知的技术脱除,包括例如洗涤器、气雾捕集分离器、旋风分离器、离心分离器、过滤器、旋风及其组合,但不局限于此。
另外,在冷凝器54中冷凝FG/S物流52后,烟道气处理系统76也可以用于脱除在富CO2物流中剩余的任何残余水。这些残余水可以用本领域熟练技术人员已知的技术脱除,包括例如附加的冷凝器、分离器及其组合,但不局限于此。
在一种实施方案中,富CO2物流可以在烟道气处理系统76中被液化,从而产生液态CO2产品。富CO2物流可以通过压缩和冷却而被液化。富CO2产品可以用于多种用途,包括例如水处理、饮料和化学工业,但不局限于此。
在烟道气处理系统76中也可以有利地从烟道气中分离出稀有气体,例如Ar、Xe和Kr。可以利用例如精馏塔(图中未画出)或控制冷冻区过程来分离稀有气体,但不局限于此。对分离稀有气体领域的熟练技术人员来说,其它方法也是明显的。
燃料气化在图5描述的实施方案的另一方面中,在燃烧前,在气化装置82中处理燃料。在该实施方案中,通过与在ASU 22中产生的富O2气体84和富含蒸汽物流74反应而氧化固体或液体燃料86,例如煤、炭、生物质和油残余物,但不局限于这些燃料,从而产生由CO和H2组成的合成气。另外,在整合的空气分离和发电方法中蒸汽和/或水来自另一点。例如流出换热器62流出的物流64可以进料至气化装置82中。
与燃烧器相比,蒸汽在产生合成气的反应中用作反应物。另外,在气化装置82中加入的O2的量通常少于加入到燃烧器中的O2的量。加入到气化装置中的O2∶C比优选低于0.5。O2∶C比范围更优选为约0.1至约0.4。
合成气88优选在燃烧器12中用作燃料。
实施例应用ASPEN软件模拟所述整合方法并从而确定过程效率。对于整合的空气分离和发电方法来说,所达到的效率范围为约45%至约70%。
另外应用ASPEN软件比较有及没有N2发电的整合方法的效率。在没有N2发电的情况下,燃烧器的出口处的FG/S温度为2,600°F(1,427℃),总过程效率为48.3%。在相同条件下,除了使所述过程进一步与N2发电组件整合外(例如其中N2排放压力=30巴,并且N2排放温度为2,000°F(1,093℃)),总过程效率增加到54.4%。
已经描述了实施本发明的优选过程。应该理解的是前述内容仅是描述性的,在不偏离在下列权利要求所定义的本发明的真正范围的情况下,可以采用所述整合方法的其它实施方案。
权利要求
1.一种整合的空气分离和发电方法,包括如下步骤(a)向空气分离装置中引入O2/N2源;(b)分离O2/N2源至少为富O2气流和富N2气流;(c)向燃烧器引入至少一部分压力至少为约3巴(300kPa)的富O2气流和燃料,从而产生燃烧混合物;(d)使燃烧混合物燃烧从而至少产生烟道气;(e)在燃烧混合物燃烧步骤之前、过程中和/或之后,向燃烧器中注入蒸汽,从而产生改性的至少为蒸汽和烟道气的燃烧混合物;(f)通过将流出燃烧器的改性燃烧混合物引入到第一发电装置中而进行发电;(g)加热至少一部分压力为至少约3巴(300kPa)的富N2气流;和(h)通过将加热的富N2气流引入第二发电装置中而发电。
2.权利要求1的方法,其中注入到燃烧器中的蒸汽在注入前基本上不含CO2。
3.权利要求1的方法,其中注入到燃烧器中的蒸汽用于控制燃烧器的温度为预定温度,该预定温度低于应用含有相同燃料和富O2气流但不含蒸汽的燃烧混合物的燃烧温度。
4.权利要求1的方法,其中蒸汽占在燃烧器中总的富O2气流、燃料和蒸汽的约70mol%至约99mol%。
5.权利要求1的方法,其中富N2气流在换热器中用流出第一发电装置的FG/S物流的残余热加热。
6.权利要求1的方法,其中富N2气流通过与蒸汽混合而加热。
7.权利要求1的方法,进一步包括如下步骤(i)在冷凝器中冷凝改性的燃烧混合物从而分离水和CO2。
8.权利要求7的方法,进一步包括如下步骤(j)引导流出冷凝器的水进入锅炉以产生蒸汽。
9.权利要求8的方法,其中在步骤(j)中产生的蒸汽被注入到步骤(e)的燃烧器中。
10.权利要求8的方法,其中在步骤(g)中使蒸汽与富N2气流混合。
11.权利要求8的方法,其中流出锅炉的蒸汽的压力范围为约3巴(300kPa)至约300巴(30,000kPa)。
12.权利要求8的方法,其中流出锅炉的蒸汽的温度范围为约250℃2(480°F)至约650℃(1,200°F)。
13.权利要求1的方法,其中燃料选自气相的、液相的和固相的含碳化合物及其组合物。
14.权利要求1的方法,其中富N2气流的压力范围为约10巴(1,000kPa)至约50巴(5,000kPa)。
15.权利要求1的方法,其中富N2气流在被加热前在压缩机中通过压缩而加压。
16.权利要求1的方法,其中富N2气流在空气分离装置中通过泵送在空气分离装置中产生的液氮而加压,从而产生加压的基本为液体的富N2物流,并在换热器中加热该加压的基本为液体的富N2物流,同时冷却压缩空气。
17.权利要求1的方法,其中富O2气流的压力范围为约10巴(1,000kPa)至约300巴(30,000kPa)。
18.权利要求1的方法,其中富O2气流在被加入到燃烧器之前在压缩机中通过压缩而加压。
19.权利要求1的方法,其中富O2气流在空气分离装置中通过泵送在空气分离装置中产生的液氧而加压,从而产生加压的基本为液体的富O2物流,并在换热器中加热该加压的基本为液体的富O2物流,同时冷却压缩空气。
20.权利要求8的方法,其中在将水引入到锅炉前,流出第二发电装置的富N2气流被引入到换热器中从而加热流出冷凝器的水。
21.权利要求1的方法,其中空气分离装置选自致冷装置、膜装置、变真空吸附系统、变压吸附系统、变温吸附系统以及它们的组合。
22.权利要求21的方法,其中在被引入到空气分离装置前O2/N2源被压缩。
23.权利要求1的方法,其中在被引入到第一发电装置前过滤改性的燃烧混合物。
24.权利要求7的方法,进一步包括向处理系统中引入由冷凝器分离的CO2,从而产生处理过的富CO2物流。
25.权利要求24的方法,进一步包括液化富CO2物流的步骤。
26.权利要求24的方法,进一步包括在产生富CO2物流的步骤之前、其过程中或之后分离稀有气体物流的步骤。
27.权利要求26的方法,其中稀有气体物流选自富Ar气流、富Kr气流、富Xe气流及其组合。
28.权利要求1的方法,其中第一和第二发电装置包括至少一个气体透平。
29.权利要求13的方法,进一步包括向气化装置中引入燃料原料,从而产生气体燃料。
30.权利要求1的方法,其中所述整合方法的总效率为约40%至约70%。
全文摘要
一种整合的空气分离和发电方法在空气分离装置(22)中产生富O
文档编号F01K23/06GK1539051SQ02807129
公开日2004年10月20日 申请日期2002年3月6日 优先权日2001年3月23日
发明者O·马林, O 马林, J-P·马里古特, 砝锕盘, O·卡龙, P·迪扎诺 申请人:液体空气乔治洛德方法利用和研究的具, 液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1