一种天然气提纯液化方法

文档序号:4803164阅读:517来源:国知局
一种天然气提纯液化方法
【专利摘要】本发明涉及气体净化领域,更具体地,提供了一种天然气提纯液化方法,包括如下步骤:利用冷箱(1)对原料气进行冷却,并将冷却后的原料气节流至中间压力,然后送入精馏塔(2)进行甲烷提纯分离;精馏塔(2)中用于部分蒸发液态产物的再沸器(3)所需的热量,来自于从原料气中直接或间接取出的热量。本发明的目的在于提供一种可提高液化天然气纯度、并对天然气提纯液化过程中能量进行充分利用的天然气提纯液化方法。
【专利说明】一种天然气提纯液化方法
【技术领域】
[0001]本发明涉及气体净化领域,更具体地,涉及一种天然气提纯液化方法。
【背景技术】
[0002]天然气作为一种清洁能源在社会各个领域所占比例正逐渐提升,市场需求量迅速增加。传统的天然气管输供应方式仍为主流,但受原料条件及用户分布限制,需选择液化的方式,将甲烷转变为液体再采用灵活的运输方式将其送往用户终端。另外,对于某些合成天然气,需将其中的氢气等杂质脱除到一定程度,才能作为液化天然气产品产出。
[0003]液化天然气工业的不断发展,对天然气液化工艺在能耗、投资和效率等方面提出了更高的要求。现有的天然气提纯液化工艺在产品纯度或能量利用方面都存在不同程度的局限性,如CN102620521A中提到的技术方案,利用在精馏塔塔顶设置冷凝器对天然气进行液化,且冷凝器所需冷量由系统外氮气经冷箱低温液化后转化为液氮供给,增加了冷箱等设备的复杂性和系统能耗;CN102620522A中揭示的技术方案利用闪蒸技术对天然气提纯液化,这种技术无法满足保证较高液化率的同时获得高纯度的产品(小于等于lOOOppm),因此这种分离方式适用于氢气的初步分离,无法满足获得高纯度产品的需要;另有关于利用低温液化含氢天然气并实现氢分离的工艺技术公开,此种技术方案采用常压精馏,要求进入精馏塔前原料气被液化达到温度较低,否则无法满足达到理想的液化率的要求,因此对液化流程的有效性提出了较高的要求并导致综合能耗的增加。

【发明内容】

[0004]针对相关技术中存在的问题,本发明的目的在于提供一种可提高液化天然气纯度、并对天然气提纯液化过程中能量进行充分利用的天然气提纯液化方法。
[0005]为实现上述目的,本发明提供了一种天然气提纯液化方法,包括如下步骤:利用冷箱对原料气进行冷却,并将冷却后的原料气节流至中间压力,然后送入精馏塔进行甲烷提纯分离;精馏塔中用于部分蒸发液态产物的再沸器所需的热量,来自于从原料气中直接或间接取出的热量。
[0006]根据本发明,冷箱具有第一管路,原料气流经第一管路时向冷箱中的冷源放热,其中第一管路具有位于冷箱的外侧的外管段,从流经外管段中的原料气提取热量送入再沸器,以实施上述的从原料气中直接取出热量进行对液态产物的部分蒸发。
[0007]根据本发明,冷箱还具有第二管路,第二管路中通入有对流经冷箱的原料气进行吸热的制冷剂,从经过吸热的制冷剂中提取热量送入再沸器,以实施上述的从原料气中间接取出热量进行对液态产物的部分蒸发。
[0008]根据本发明,还包括如下步骤:液态产物送入再沸器后,所得气相产物返回精馏塔,同时将获得的液相产物排出。
[0009]根据本发明,还包括如下步骤:将液相产物送回冷箱进行冷却后经由第一节流阀节流至常压排出。[0010]根据本发明,在送回冷箱进行冷却之前的液相产物为0.31-2.0lMPa压力下的饱和液相产品。
[0011]根据本发明,还包括如下步骤:在上述的将冷却后的原料气送入精馏塔进行提纯分离之前,利用第二节流阀对冷却后的原料气进行上述的节流至中间压力,冷却后的原料气被节流到0.3?2Mpa压力范围中。
[0012]根据本发明,在原料气送入冷箱进行冷却之前,利用第一压缩机和第一水冷器依次对原料气进行压缩和水冷。
[0013]根据本发明,在制冷剂通入冷箱之前,利用第二压缩机和第二水冷器依次对制冷剂进行压缩和水冷。
[0014]根据本发明,还包括将精馏塔中分离出的气态产物排出的步骤。
[0015]本发明的有益技术效果在于:
[0016]在本发明的天然气提纯液化方法中,由于其采用了精馏塔对诸如含氢天然气进行提纯,从而可以实现提高液化天然气产品的纯度。此外,由于利用再沸器对从精馏塔中分离出的液态产物进行部分蒸发所用的热量来自于原料气中直接或间接取出的热量,因此可以实现对天然气提纯液化过程中能量进行充分利用。
【专利附图】

【附图说明】
[0017]图1是本发明天然气提纯液化方法的工艺流程图;
[0018]图2是实施本发明天然气提纯液化方法的一个实施例的示意图;
[0019]图3是实施本发明天然气提纯液化方法的另一个实施例的示意图。
【具体实施方式】
[0020]结合图1描述本发明方法的工艺流程。本发明的天然气提纯液化方法包括如下步骤:利用冷箱I对原料气进行冷却,并将冷却后的原料气节流至中间压力,然后送入精馏塔2进行提纯分离;将精馏塔2中分离出的液态产物送入再沸器3,以对其进行部分蒸发,其中,再沸器3对液态产物进行部分蒸发时所用的热量,来自于从原料气中直接或间接取出的热量。在上述步骤中,对冷却后的原料气进行节流至0.3?2Mpa压力范围中。通过这种方式,可以使得经冷却后的原料气形成带压原料气并进入精馏塔2,因此在精馏塔2中进行的提纯分离为带压操作。此外应当理解,在上述步骤中,将冷却后的原料气节流至中间压力可通过本领域技术人员所知的方式进行,例如,通过节流阀进行。并且应当理解,该中间压力可根据后续反应的具体情况由用户设定。
[0021]现参照图2和图3具体描述本发明方法从原料气中直接或间接取出热量的过程。如图2所示,是本发明方法的一个实施例,在该实施例中,冷箱I具有第一管路4,原料气流经第一管路4时会向冷箱I中的冷源放热。此处所谓的冷源指的是与原料气进行热交换的制冷回路中的制冷剂,制冷剂与原料气进行换热后温度升高,而原料气放热后温度降低。此夕卜,第一管路4具有位于冷箱I的外侧的外管段5。然后,从流经外管段5中的原料气提取热量送入再沸器3,即实现了从原料气中直接取出热量进行上述对液态产物的部分蒸发。如图3所示是本发明方法的另一个实施例,在该实施例中,冷箱I具有第二管路6,第二管路6中通入有对流经冷箱I的原料气进行吸热的制冷剂(即,相当于图2实施例中的冷源)。然后,从经过吸热的制冷剂中提取热量送入再沸器3,即实现了从原料气中间接取出热量进行上述对液态产物的部分蒸发。换句话说,在图2的实施例中,进行对液态产物部分蒸发的热量来源是直接从原料气的部分输送管段中提取出的,即,上述的外管段5 ;而在图3的实施例中,进行对液态产物部分蒸发的热量来源是部分制冷剂输送管段(即,上述的第二管路6)中的制冷剂与原料气进行热交换从而获得热量,然后从吸热的制冷剂中提取热量,即,利用制冷剂与原料气的热交换实现对原料气热量的间接提取。
[0022]但是应当理解,无论通过何种方式提取,该热量都是来源于天然气提纯液化过程中的能量。
[0023]因此,在本发明的天然气提纯液化方法中,由于其采用了精馏塔2进行提纯分离,从而可以实现提高液化天然器产品的纯度。此外,由于利用再沸器3对从精馏塔2中分离出的液态产物进行部分蒸发所用的热量来自于原料气中取出的热量,因此可以实现对天然气提纯液化过程中能量进行充分利用。
[0024]此外,继续参照图2和图3,在本发明的天然气提纯液化方法中,当液态产物送入再沸器3后,所获得的气相产物会返回至精馏塔2中继续反应,同时获得的液相产物由再沸器3排出。
[0025]进一步,由再沸器3排出的液相产物被再次送回至冷箱I中进行冷却,然后经冷却后的液相产物经第一节流阀71节流至常压后排出。
[0026]此外,如图2和图3所示,在将冷却后的原料气送入精馏塔2进行气液分离之前,利用第二节流阀72对冷却后的原料气进行节流。
[0027]更具体地,在原料气送入冷箱I进行冷却之前利用第一压缩机81和第一水冷器91进行压缩和水冷,此外制冷剂通入冷箱I之前,利用第二压缩机82和第二水冷器92对制冷剂进行压缩和水冷。另外,精馏塔2中分离出的气态产物会从精馏塔2中排出。
[0028]现结合图1、以及图2和图3所示的两个实施例,举例对本发明的天然气提纯液化方法的实施过程进行具体描述。
[0029]在图2所示实施例中,所使用的制冷剂例如可以为:由氮气、甲烧、乙烧、丙烧、异丁烷等组成的混和制冷剂。原料气为含氢天然气,例如,原料气组分可以为体积百分比为5%H2+95%CH4组成。制冷剂在冷箱I中流动吸热,从而充当冷箱I中冷源。相应地,原料气在进入第一管路4之前经压缩、冷却至一定压力,其中,该压力优选为4.5MPa。然后原料气流经第一管路4时,向冷箱I中放出热量,这部分热量被充当冷源的制冷剂吸收。然后原料气通过外管段5被引出至冷箱I外侧,进而从被引出的原料气中提取热量送至再沸器3。然后原料气再次回到冷箱I中进行放热,进一步原料气经过第二节流阀72节流到0.3?2MPa压力范围内送至精馏塔2。优选地,原料气可被节流到0.7MPa,该压力可根据原料气中含氢量作出调整。在精馏塔2中对原料气进行气液分离,所得气态产物由精馏塔2的顶部排出,此处的气态产物为氢气。分离出的液态产物由精馏塔2底部进入再沸器3,然后再沸器3利用所提取的热量对液态产物进行部分蒸发,所得的气相产物返回精馏塔2继续进行反应,同时将获得的液相产物排出。此时所获得的液相产物为具有一定压力的饱和液相产品,其中,该压力可以在0.3IMPa?2.0lMPa范围内,优选的为0.7IMPa。进一步,所获得的液相产物被送至冷箱I中再次进行冷却并节流到常压状态(0.1lMPa)后,所得产品即为高纯度的液化天然气。此时,所获得的产品为常压状态下液化天然气,在优选情况下所得液化天然气温度可以达到-161.3°C、含氢量可降至IOOppm (浓度)、甲烷回收率可提升至0.9475并且单位能耗可降低至0.3275kWh/Nm3。当然应当理解,在不同条件和环境条件下,上述数据可能会有所不同,下表示出了在本实施例中不同条件下所获数据:
[0030]
【权利要求】
1.一种天然气提纯液化方法,其特征在于,包括如下步骤: 利用冷箱(I)对原料气进行冷却,并将冷却后的原料气节流至中间压力,然后送入精馏塔(2)进行甲烷提纯分离; 所述精馏塔(2)中用于部分蒸发液态产物的再沸器(3)所需的热量,来自于从所述原料气中直接或间接取出的热量。
2.根据权利要求1所述的天然气提纯液化方法,其特征在于, 所述冷箱(I)具有第一管路(4),所述原料气流经所述第一管路(4)时向冷箱(I)中的冷源放热,其中所述第一管路(4)具有位于所述冷箱(I)的外侧的外管段(5), 从流经所述外管段(5)中的原料气提取热量送入所述再沸器(3),以实施所述的从原料气中直接取出热量进行所述对液态产物的部分蒸发。
3.根据权利要求1所述的天然气提纯液化方法,其特征在于, 所述冷箱(I)还具有第二管路(6),所述第二管路(6)中通入有对流经所述冷箱(I)的原料气进行吸热的制冷剂, 从经过所述吸热的制冷剂中提取热量送入所述再沸器(3),以实施所述的从原料气中间接取出热量进行所述对液态产物的部分蒸发。
4.根据权利要求1所述的天然气提纯液化方法,其特征在于,还包括如下步骤: 所述液态产物送入再沸器(3)后,所得气相产物返回所述精馏塔(2),同时将获得的液相产物排出。
5.根据权利要求4所述的天然气提纯液化方法,其特征在于,还包括如下步骤: 将液相产物送回所述冷箱(I)进行冷却后经由第一节流阀(71)节流至常压排出。
6.根据权利要求5所述的天然气提纯液化方法,其特征在于, 在送回所述冷箱(I)进行冷却之前的所述液相产物为0.31-2.0lMPa压力下的饱和液相产品。
7.根据权利要求1所述的天然气提纯液化方法,其特征在于,还包括如下步骤: 在所述的将冷却后的原料气送入精馏塔(2)进行提纯分离之前,利用第二节流阀(72)对冷却后的原料气进行所述的节流至中间压力,所述冷却后的原料气被节流到0.3?2Mpa压力范围中。
8.根据权利要求1所述的天然气提纯液化方法,其特征在于, 在所述原料气送入所述冷箱(I)进行冷却之前,利用第一压缩机(81)和第一水冷器(91)依次对所述原料气进行压缩和水冷。
9.根据权利要求3所述的天然气提纯液化方法,其特征在于, 在所述制冷剂通入所述冷箱(I)之前,利用第二压缩机(82 )和第二水冷器(92 )依次对所述制冷剂进行压缩和水冷。
10.根据权利要求1所述的天然气提纯液化方法,其特征在于,还包括将所述精馏塔(2)中分离出的气态产物排出的步骤。
【文档编号】F25J1/02GK103673502SQ201310671576
【公开日】2014年3月26日 申请日期:2013年12月10日 优先权日:2013年12月10日
【发明者】林文胜, 李金来, 胡敏斐, 张 林 申请人:新奥科技发展有限公司, 上海交通大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1