使用非共沸混合致冷剂的制冷空调器控制信息检测装置的制作方法

文档序号:4792624阅读:164来源:国知局
专利名称:使用非共沸混合致冷剂的制冷空调器控制信息检测装置的制作方法
技术领域
本发明涉及一种使用由高沸点组分和低沸点组分组成之非共沸混合致冷剂的制冷空调器控制信息检测装置。具体地说,本发明涉及一种即使循环致冷剂的组分(下称循环组分)已变成不同于最初充入致冷剂的另外一种致冷剂组分也能以较高的可靠性有效地操纵制冷空调器的控制信息检测装置。
图48为一方框图,表示譬如以公开号NO6546/86(特开昭61/6546)出版的日本未决专利申请中所揭示以普通型使用非共沸混合致冷剂的制冷空调器结构。该图中,参考数码1表示压缩机,数码2表示冷凝器,数码3表示采用调节阀的减压装置,数码4表示蒸发器,而数码5表示收集器。这些单元由其间的管道串接起来,构成一个完整的制冷空调器。这种制冷空调器使用由高沸点组分和低沸点组分组成的非共沸混合致冷剂为其中的致冷剂。
下面将描述它的工作过程。在如上述构成之制冷空调器中,由冷凝器2将由压缩机1压缩为高温高压状态的致冷剂气体冷凝成液体。再由减压装置3将被液化的致冷剂减压成为蒸汽和液体两相的低压致冷剂,并流入蒸发器4。致冷剂被蒸发器4所蒸发,储存在收集器5中。收集器5中的气态致冷剂回到压缩机1,再次受到压缩并送入冷凝器2。在这种装置中,收集器5通过储存剩余的致冷剂,防止处于液态的致冷剂回到压缩机1,而这点是在制冷空调器的工作条件或者负荷情况处于规定条件下的同时已然显示出来的。
众所周知,这样的使用非共沸混合致冷剂作为其中致冷剂的制冷空调器的目的在于,其价值为可以获得该致冷剂的较低蒸发温度或较高冷凝温度,而这是采用单一型致冷剂所不能得到的,而且还能改善它的循环效率。由于已为通常所广泛使用的比如“R12”或者“R22”之类的冷凝剂(二者均为“美国采暖、制冷及空气调节工程师学会(ASHRAE)”标准)是导致地球臭氧层破坏的原因,因此非共沸混合致冷剂被建议作为代用品。
由于通常的使用非共沸混合致冷剂的制冷空调器有如上面所述之结构,所以若该制冷空调器的工作条件或者负荷情况恒定不变,则通过其制冷周期循环的致冷剂循环组分就不变,因而其制冷循环是高效率的。但是,如果工作条件或者负荷情况变化了,特别是,如果收集器5中所存致冷剂的量发生变化,则致冷剂的循环组分就要变化。因此,就需要根据变化的致冷剂循环组分控制制冷周期,也就是通过控制压缩机1的转数,或者控制减压装置3调节阀的放开程度,调节致冷剂的流量。由于普通制冷空调器没有检测致冷剂循环组分的设备,所以有一个问题,即它不能根据其中致冷剂的循环组分保持最佳的调节。进而,它的另一个问题即,由于当因制冷循环运行过程中致冷剂泄漏或因充填致冷剂时的操作错误而使循环组分改变时,它不能检测其中致冷剂循环组分的这种不正常现象,以致不能以较高的安全性和可靠性运行。
鉴于前面所述者,本发明的目的在于提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置,这种以简单结构组成的装置,即使由于空调器工作条件或者负荷情况变化使循环组分改变,或者即使由于在其运行过程中致冷剂泄漏或在充填致冷剂时操作错误使循环组分改变,它都能通过计算来自其中带组分计算单元的本装置之温度探测器和压力检测器的信号而准确地检测本空调器制冷循环中致冷剂的循环组分。
本发明的另一目的在于提供一种使用非共沸混合致冷剂的制冷空调器之控制信息检测装置,即使由于该空调器的工作条件或者负荷情况变化使循环组分发生变化,或者即使由于其运行过程中致冷剂泄漏,或充填致冷剂时操作错误而使循环组分发生变化,该装置都能通过计算来自其中带组分计算单元的本装置的多个温度探测器和一个压力检测器的信号,准确地检测在整个运行制冷循环中始终处于最佳状态的空调器的制冷循环中的致冷剂循环组分。
本发明的再一目的在于提供一种使用非共沸混合致冷剂的制冷空调器的控制信息检测装置,即使由于空调器工作条件或者负荷情况变化使得循环组分发生改变,或者即使由于它运行过程中致冷剂泄漏,或充填致冷剂时操作错误而使循环组分发生改变,本装置也能分别通过测定收集器中致冷剂温度和压力,或者以本装置的温度探测器和压力检测器测定收集器与冷凝器进气管之间致冷剂温度和压力,并通过用其中的组分计算单元计算来自这些探测器的信号,准确地检测空调器制冷循环中致冷剂的循环组分。
本发明的又一目的在于提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置,即使由于其中工作条件或者负荷情况改变使得循环组分发生变化,或者即使由于在其运行过程中致冷剂泄漏,或在充填致冷剂时操作错误使循环组分发生变化,本装置也能通过提供收集器中检测液面高度用的液面检测器,而准确地检测在空调器的制冷循环中致冷剂的循环组分。
本发明的再一目的在于提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置,即使由于空调器工作条件或者负荷情况改变使循环组分发生变化,或者即使由于其运行过程中致冷剂泄漏,或在充填致冷剂时操作错误而使循环组分发生变化,本装置都能通过以一旁通管连接其第一换热器的管道和压缩机的进气管,以及通过给该旁通管提供一温度探测器和一压力检测器,再通过以本装置的组分计算单元计算来自这些探测器的信号,准确地检测在空调器的制冷循环中致冷剂的循环组分。
本发明的再一目的在于提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置,该装置可以通过在其旁通管上形成换热区段检测空调器的控制信息,并防止它的能量损失。
本发明的再一目的在于提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置,该装置可以通过其旁通管的高压侧和低压侧之间交换热量检测控制信息并形成空调器紧凑的方式。
本发明的再一目的在于提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置,即使由于空调器工作条件或者负荷情况改变化使得循环组分发生变化,或者即使由于在其运行过程中致冷剂泄漏,或在充填致冷剂时操作错误而使循环组分发生变化,本装置也能通过以其中组分计算单元计算来自该装置分别用以检测低压侧致冷剂之温度和压力的多个温度探测器和一个压力检测器的信号,在空调器的制冷循环中准确地检测致冷剂的循环组分。
本发明的再一目的在于提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置,该装置通过装备一个比较运算装置,以便在循环组分超出预定范围时产生一个报警信号,在空调器的制冷循环中准确地检测致冷剂循环组分的变化,并使之能够以较高的可靠性安全地操纵该空调器;这里所述的循环组分变化是由于其运行过程中致冷剂泄漏,或充填致冷剂时错误操作所已然发生的。
按照本发明的第一方面,为达到上述各发明目的,提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置;该装置包括第一温度探测器,用以检测空调器之蒸发器入口处致冷剂的温度;包括压力检测器,用以检测蒸发器入口处致冷剂的压力;还包括组分计算单元,用以根据分别由第一温度探测器和压力检测器测得到的信号计算整个制冷周期循环着的致冷剂组分。
如上所述,按照本发明第一方面的控制信息检测装置,在制冷循环中,将蒸发器入口处的压力和温度输入组分计算单元。如果组分计算单元在假定流入蒸发器之致冷剂的干燥度为规定值的条件下计算致冷剂的组分,那么,以简单结构组成的本装置就能根据这种致冷剂组分测定致冷剂循环组分的变化,以确定对空调器之压缩机、减压装置等的控制值。因而,即使循环组分发生变化,也能将空调器控制在其最佳状况中。
按照本发明的第二方面,提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置;该装置包括第一温度探测器,用以检测空调器的蒸发器入口处的致冷剂温度;包括压力检测器,用以检测蒸发器入口处的致冷剂压力;包括第二温度探测器,用以检测其中冷凝器出口处的致冷剂温度;还包括组分计算单元,用以根据分别由第一温度探测器、压力检测器和第二温度探测器测得的信号计算整个制冷周期循环着的致冷剂组分。
如上所述,按照本发明第二方面的控制信息检测装置,检测蒸发器入口处的致冷剂温度及压力,和冷凝器出口处的致冷剂温度,并由组分计算单元计算这些检测到的值,以输出算出的值。因此,本装置可以根据致冷剂的循环组分确定对制冷空调器的压缩机、减压装置等的控制值。从而,即使循环组分发生变化,也能将空调器控制在其最佳状况中。
按照本发明的第三方面,提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置,该装置包括一个比较运算装置,用以在由其中组分计算单元算出的致冷剂组分超出预定范围时产生一个报警信号;还包括由比较运算装置产生的报警信号控制的报警装置。
如上所述,在本发明第三方面的控制信息检测装置中,当组分计算单元测得的致冷剂组分超出预定范围时,比较运算装置就产生一个报警信号,同时报警装置就根据比较运算装置产生的报警信号工作。因而,一旦致冷剂组分超出规定范围,马上就能知道这一事实。
按照本发明的第四方面,提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置;该装置包括一个温度探测器,用以检测空调器之收集器中的致冷剂温度,或者空调器的收集器与冷凝器进气管之间的致冷剂温度;包括一个压力检测器,用以检测收集器中致冷剂的压力,或收集器与进气管之间的致冷剂压力;还包括一个组分计算单元,用以根据分别由温度探测器和压力检测器测得的信号计算整个制冷周期循环着的致冷剂的组分。
如上所述,按照本发明第四方面的控制信息检测装置,分别由其中的温度探测器和压力检测器检测收集器中的致冷剂温度和压力,或者收集器与冷凝器进气管之间的致冷剂温度和压力。如果组分计算单元在假设流入空调器之蒸发器的致冷剂干燥度为规定值的情况下计算致冷剂的组分,那么,以简单结构组成的本装置就可以测定致冷剂循环组分的变化,以便根据循环组分确定对空调器之压缩机、减压装置等的控制值。因而,即使循环组分发生变化,也能将空调器控制在其最佳状况中。
按照本发明的第五方面,提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置;该装置包括一个液面探测器,用以检测空调器之收集器中的液面高度;还包括一个组分计算单元,用以根据液面探测器测得的信号计算整个其制冷周期循环着的致冷剂组分。
如上所述,按照本发明第五方面的控制信息检测装置利用其中液面探测器将测得的信号输入组分计算单元的情况下检测液面高度。如果组分计算单元利用液面高度与致冷剂循环组分之间的关系式计算致冷剂的组分,这些关系式事先已被研究过,那么,即使致冷剂的循环组分发生变化,也能以简单结构的控制信息检测装置将空调器控制在其最佳状况中。
按照本发明的第六方面,提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置,所述空调器有一旁通管,它以第二减压装置将其第一换热器与其第一减压装置之间的管与压缩机进气管连在一起;第二减压装置在被其连接的二管之间。该控制信息检测装置分别以第一温度探测器和一个压力检测器检测第二减压装置出口处的致冷剂温度和压力,并利用该装置的组分计算单元,根据分别由该温度探测器和压力检测器测得的信号计算整个空调器制冷周期循环着的致冷剂组分。
如上所述,按照本发明第六方面的控制信息检测装置通过配备第一温度探测器和压力检测器计算致冷剂的组分;所述二检测器在旁通管上,该旁通管以第二减压装置把第一换热器与第一减压装置之间的管与压缩机进气管连在一起;所述第二减压装置就在被其连接的二管之间。在这样的结构中,由于第二减压装置总处于低压两相状态中,所以在空气冷却情况下和空气加热情况下,都可以从利用同样的温度探测器和压力检测器测得的温度和压力值知道致冷剂的组分。
按照本发明的第七方面,提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置;所述空调器有一旁通管,它以第二减压装置将第一换热器和第一减压装置之间的管与压缩机的进气管连在一起;第二减压装置在被其连接的二管之间。该控制信息检测装置分别以第一温度探测器和一个压力检测器检测第二减压装置出口处的致冷剂温度和压力,并以第二温度探测器检测第二减压装置入口处的致冷剂温度。随之,该装置还以它的组分计算单元根据分别由第一温度探测器、压力检测器和第二温度探测器测得的信号计算整个空调器制冷周期循环着的致冷剂组分。
如上所述,按照本发明第七方面的控制信息检测装置通过在旁通管上配置第一、第二温度探测器和压力检测器计算致冷剂的组分,所述旁通管以第二减压装置将第一换热器和第一减压装置之间的管与压缩机的进气管连在一起;第二减压装置在被其连接的二管之间。在这样的结构中,由于第二减压装置总处于低压两相状态,所以在空气冷却的情况下和空气加热的情况下,都可以从利用同样的温度探测器和压力检测器测得的温度和压力值知道致冷剂的组分。
按照本发明的第八方面,提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置,所述空调器有一旁通管,该管设有换热区段,用以交换该旁通管和第一换热器与第一减压装置间管子之间的热量。
如上所述,按照本发明第八方面的控制信息检测装置可被用在制冷空调器中,它通过在旁通管上形成换热区段,以便把流入该旁通管的致冷剂的焓传给流入主管的致冷剂,从而能够防止能量损失。
按照本发明的第九方面,提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置,所述空调器有一旁通管,它以第二减压装置将从压缩机出口延伸到第一减压装置的高压侧与从第一减压装置延伸到压缩机入口的低压侧连在一起;第二减压装置在被其连接的两侧之间。该空调器还有一个冷却装置,用以冷却从该旁通管的高压一侧流入第二减压装置的非共沸混合致冷剂。该控制信息检测装置分别以其第一温度探测器和压力检测器检测靠近第二减压装置出口处的低压侧致冷剂的温度和压力。随之,该装置还以其组分计算单元,根据分别由第一温度探测器和压力检测器测得的信号计算整个空调器,制冷周期循环着的致冷剂的组分。
如上所述,按照本发明第九方面的控制信息检测装置,即使由于其工作条件或者负荷情况的变化使得致冷剂组分发生变化,或者即使由于在其运行过程中致冷剂泄漏,或充填致冷剂时操作错误,它都根据已经由该装置的温度探测器和压力检测器测得的信号计算整个空调器制冷周期循环着的致冷剂组分,以便精确地检测循环组分。
按照本发明的第十方面,提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置,给所述空调器配备有冷却装置,用以冷却自其旁通管的高压侧流向其第二减压装置的非共沸混合致冷剂。将此冷却装置构造成用以交换旁通管高压侧与低压侧之间的热量。
如上所述,按照本发明第十方面的控制信息检测装置,由于采用在其旁通管高压侧与低压侧之间交换热量,以冷却该旁通管的方法,它可被用于被构造成紧凑型的制冷空调器。
按照本发明的第十一方面,提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置。所述空调器有一旁通管,它以第二减压装置将从压缩机出口延伸至第一减压装置的高压侧与从第一减压装置延伸至压缩机入口的低压侧连接起来;第二减压装置在被其连接的两侧之间。该空调器还有一个冷却装置,用以冷却从旁通管高压侧流到第二减压装置的非共沸混合致冷剂。所述控制信息检测装置分别以其第一温度探测器和压力检测器检测第二减压装置出口处,靠近低压侧的致冷剂温度和压力,并以其第二温度探测器检测第二减压装置入口处,靠近高压侧的致冷剂温度。此后,该装置还以其组分计算单元,根据分别由第一和第二温度探测器以及压力检测器测得的信号计算整个空调器制冷周期循环着的致冷剂组分。
如上所述,按照本发明第十一方面的控制信息检测装置,即使由于其工作条件或者负荷情况的改变使得循环组分发生变化,或者即使由于其运行过程中致冷剂泄漏,或充填致冷剂时操作错误而使循环组分发生变化,它也以其组分计算单元,根据已经由第一、第二温度探测器和压力检测器测得的信号计算整个空调器制冷周期循环着的致冷剂的组分。以准确地检测该循环组分。
按照本发明的第十二方面,提供一种使用非沸致冷剂的制冷空调器控制信息检测装置。所述空调器有一旁通管,它以第二减压装置将从压缩机出口延伸至第一减压装置的高压侧与从第一减压装置延伸至压缩机入口的低压侧连接起来;第二减压装置在被其连接的两侧之间。该空调器还有一致冷装置,用以冷却从该旁通管的高压侧流入第二减压装置的非共沸混合致冷剂。该控制信息检测装置以三个或者更多的温度探测器检测靠近旁通管高压侧的致冷剂温度,还以压力检测器检测靠近旁通管高压侧的致冷剂压力。随之,该装置还以其组分计算单元,根据分别由三个或多个温度探测器以及压力检测器测得的信号计算整个空调器制冷周期循环着的致冷剂组分。
如上所述,按照本发明第十二方面的控制信息检测装置,即使由于空调器工作条件或负荷情况改变使得循环组分发生变化,或者即使由于在其运行过程中致冷剂泄漏,或充填致冷剂时操作错误而使循环组分发生变化,该装置也根据已经分别由三个或者多个温度探测器以及压力检测器测得之信号计算整个制冷周期循环着的致冷剂组分,以准确地检测该循环组分。
按照本发明的第十三方面,提供一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置。所述空调器有一旁通管,它以第二减压装置把从压缩机出口延伸至第一减压装置的高压侧与从第一减压装置延伸至压缩机入口的低压侧连接起来;第二减压装置在被其连接的两侧之间。该空调器还有换热区段,用以交换旁通管高压侧与低压侧之间的热量。该控制信息检测装置以三个或多个温度探测器检测靠近旁通管低压侧的致冷剂温度,并以其压力检测器检测靠近旁通管低压侧的致冷剂压力。随之,该装置还以其组分计算单元,根据分别由三个或多个温度探测器以及压力检测器测得的信号计算整个空调器制冷周期循环着的致冷剂的组分。
如上所述,按照本发明第十三方面的控制信息检测装置,即使由于空调器的工作条件或负荷情况改变使得循环组分发生变化,或者即使由于其运行过程中致冷剂泄漏,或充填致冷剂时操作错误而使循环组分发生变化,该装置也根据已经分别由三个或多个温度探测器以及压力检测器测得的信号计算循环组分,以准确地检测循环组分。
从以下的详细叙述,同时结合对各附图的阅读,将使本发明的上述目的和其它目的以及新的特点愈加充发地显现出来。不过,需要清楚地理解的是,这些附图仅只为了图示说明,并非打算作为对本发明的限制规定。


图1是表示一种使用非共沸混合致冷剂之制冷空调器的结构方框图,所述空调器被装以本发明第一种具体实施方式
(实施例1)的控制信息检测装置;图2是表示实施例1的组分计算单元的工作流程图;图3是采用表示压力和焓之间关系的曲线说明实施例1的组分计算单元工作的说明图;图4是采用非共沸混合致冷剂的温度与循环组分间的关系曲线说明实施例1的组分计算单元工作的说明图;图5是表示与实施例1有关的制冷空调器控制单元工作的流程图;图6是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第二种具体实施方式
(实施例2)的控制信息检测装置;图7是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第三种具体实施方式
(实施例3)的控制信息检测装置;图8是采用非共沸混合致冷剂的温度与循环组分间的关系曲线说明实施例3的组分计算单元工作的说明图;图9是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第四种具体实施方式
(实施例4)的控制信息检测装置;图10是采用收集器中致冷剂的液面高度与整个制冷周期循环着的致冷剂组分间的关系曲线说明实施例4的组分计算单元工作的说明图;图11是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第五种具体实施方式
(实施例5)的控制信息检测装置;图12是一种使用非共沸混合致冷剂的制冷空调器的控制程序图,该空调器被装以实施例5的控制信息检测装置;
图13是采用非共沸混合致冷剂的凝结压力与整个空调器制冷周期循环着的致冷剂组分间的关系曲线说明与实施例5有关的制冷空调器控制单元工作的说明图;图14是利用非共沸混合致冷剂的蒸发压力与整个空调器制冷周期循环着的致冷剂组分间的关系曲线说明与实施例5有关的制冷空调器控制单元工作的说明图;图15是利用非共沸混合致冷剂的饱和液体温度和压力与整个空调器制冷周期循环着的致冷剂组分之间的关系曲线说明与实施例5有关的制冷空调器控制单元工作的说明图;图16是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第六种具体实施方式
(实施例6)的控制信息检测装置;图17是一种使用非共沸混合致冷剂的制冷空调器的控制程序图,该空调器被装以实施例6的控制信息检测装置;图18是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第七种具体实施方式
(实施例7)的控制信息检测装置;图19是一种使用非共沸混合致冷剂的制冷空调器的控制程序图,该空调器被装以实施例7的控制信息检测装置;图20是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第八种具体实施方式
(实施例8)的控制信息检测装置;图21是一种使用非共沸混合致冷剂的制冷空调器的控制程序图,该空调器被装以实施例8的控制信息检测装置;
图22是表示本发明第九种具体实施方式
(实施例9)的一种使用非共沸混合致冷剂的制冷空调器控制信息检测装置的结构方框图;图23是利用表示压力与焓之间关系的曲线说明实施例9的组分计算单元工作的说明图;图24是利用非共沸混合致冷剂的温度与循环组分间的关系曲线说明实施例9的组分计算单元工作的说明图;图25是利用循环着的非共沸混合致冷剂的组分、饱和液体温度、以及压力之间的关系曲线说明实施例9的组分计算单元工作的说明图;图26是利用致冷剂温度与当时干燥度之间的关系曲线说明实施例9的组分计算单元工作的说明图;图27是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第十种具体实施方式
(实施例10)的控制信息检测装置;图28是利用表示压力与焓之间关系的曲线说明实施例10的组分计算单元工作的说明图;图29是表示实施例10的组分计算单元工作的流程图;图30是利用循环着的非共沸混合致冷剂的干燥度、温度以及压力之间的关系曲线说明实施例10的组分计算单元工作的说明图;图31是利用处于汽、液两相时非共沸混合致冷剂的干燥度X下的温度说明实施例10的组分计算单元工作的说明图;图32是利用处于汽、液两相对非共沸混合致冷剂的干燥度X下的温度,以及致冷剂的循环组分说明实施例10的组分计算单元工作的说明图;图33是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第十一种具体实施方式
(实施例11)的控制信息检测装置;图34是表示本发明第十二种具体实施方式
(实施例12)的使用非共沸混合致冷剂的制冷空调器控制信息检测装置的结构方框图;图35是表示本发明第十三种具体实施方式
(实施例13)的使用非共沸混合致冷剂的制冷空调器控制信息检测装置的结构方框图;图36是表示本发明第十四种具体实施方式
(实施例14)的使用非共沸混合致冷剂的制冷空调器控制信息检测装置的结构方框图;图37是利用在离双管换热器入口一定距离处非共沸混合致冷剂的温度说明实施例14的组分计算单元工作的说明图;图38是利用循环着的非共沸混合致冷剂组分的温度说明实施例14的组分计算单元工作的说明图;图39是表示本发明第十五种具体实施方式
(实施例15)的使用非共沸混合致冷剂的制冷空调器控制信息检测装置的结构方框图;图40是利用在离换热器入口一定距离处的非共沸混合致冷剂的温度说明实施例15的组分计算单元工作的说明图;图41是利用循环着的非共沸混合致冷剂组分的温度说明实施例15的组分计算单元工作的说明图42是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第十六种具体实施方式
(实施例16)的控制信息检测装置;图43是一种使用非共沸混合致冷剂的制冷空调器的控制方法图,该空调器被装以实施例16的控制信息检测装置;图44是利用非共沸混合致冷剂的凝结压力与循环组分之间的关系曲线说明实施例16的使用非共沸混合致冷剂的制冷空调器控制信息检测装置的组分计算单元工作的说明图;图45是利用非共沸混合致冷剂的蒸发压力与循环组分之间的关系曲线说明实施例16的使用非共沸混合致冷剂的制冷空调器控制信息检测装置的组分计算单元工作的说明图;图46是利用非共沸混合致冷剂的饱和液体温度以及压力与循环组分之间的关系曲线说明实施例16的使用非共沸混合致冷剂的制冷空调器控制信息检测装置的组分计算单元工作的说明图;图47是利用非共沸混合致冷剂的饱和蒸汽温度以及压力与循环组分之间的关系曲线说明实施例16的使用非共沸混合致冷剂的制冷空调器控制信息检测装置的组分计算单元工作的说明图;图48是表示一种普通型使用非共沸混合致冷剂的制冷空调器的结构方框图;现在参照附图详细描述本发明的优选实施例。实施例1图1是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第一种具体实施方式
的控制信息检测装置。图1中参考数码1表示压缩机,数码2表示冷凝器,数码3表示采用电动调节阀的减压装置,数码4表示蒸发器,数码5表示收集器。这些单元由其间的管道串接起来,组成一个制冷循环。减压装置3的电动调节阀的放开程度由控制单元21的输出信号控制,从而由本装置根据测得的控制信息控制空调器。譬如,在其制冷循环中充以由高沸点组分“R134a”和低沸点组分“R32”(二者均为“美国采暖、制冷及空气调节工程师集会”标准)组成的非共沸混合致冷剂。
蒸发器4的入口处分别装备有检测该处致冷剂温度T1的第一温度探测器11和检测该处致冷剂压力P1的第一压力检测器12。冷凝器2的出口处被装以第二温度探测器13,检测该处致冷剂的温度T2。由这些温度探测器11、压力检测器12和温度探测器13测得的信号分别被输入组分计算单元20。本实施例的控制信息检测装置包括第一和第二温度探测器11、13,第一压力检测器12,以及组分计算单元20。在压缩机1的卸载管上被装以第二压力检测器14,用以检测该处的致冷剂压力;将压力检测器14测器14测得的信号与温度探测器13测得的信号一起输入控制单元21。
组分计算单元20具有根据分别由温度探测器11、压力检测器12和温度探测器13测得的温度T1、压力P1和温度T2计算非共沸混合致冷剂的循环组分α的功能。将循环组分α的计算值输入控制单元21。控制单元21还具有如下功能根据循环组分α和由压力检测器14测得的压力P2值计算在凝结压力时的饱和液体温度TL的功能,根据饱和液体温度TL和由温度探测器13测得的温度T2值计算冷凝器2出口处过冷程度的功能,和控制减压装置3的电动调节阀放开程度,以使该过冷程度成为规定值的功能。
以下描述上述结构之本实施例的工作过程。已由压缩机1压缩成高温、高压的致冷剂气体被冷凝器2冷凝成液体;已液体的致冷利再由减压装置3被减压成具有低压的汽液两相的致冷剂,流入蒸发器4。该致冷剂由蒸发器4蒸发,并通过收集器5返回压缩机1。此后,致冷剂再受到压缩机1的压缩,以使被送入冷凝器2。与空调器的工作条件或者负荷情况处于一种特定情况的同时产生的过剩致冷剂被存入收集器5中。
以下结合图2所示的流程图、图3所示的压力与焓关系曲线图、以及图4所示的非共沸混合致冷剂的汽液平衡曲线图描述组分计算单元20的工作过程。图3中,实线A是整个制冷周期循环着的致冷剂组分α的饱和液体曲线,实线B是循环组分α的饱和蒸汽曲线,实线C是循环特性曲线,而长短交替的点划线是等温线。图4的横座标轴表示低沸点组分的重量比,其纵座标轴代表温度;其中虚线表示当蒸发器4入口处的压力为P1时饱和蒸汽的温度(x=1);其中长短交替的点划线表示饱和液体的温度(x=0);而其中的实线表示干燥度x(0<x<1)下的温度。
当组分计算单元20开始工作时,这时该单元20取得蒸发器4入口处的致冷剂温度T1和压力P1以及冷凝器2出口处的致冷剂温度T2,其中温度T1、T2和压力P1在步骤ST1时分别由温度探测器11、13和压力检测器12测得。随后,在步骤ST2时将制冷循环中的循环组分α假定为一个确定的值,并在步骤ST3根据这个假设值计算流入蒸发器4的致冷剂干燥度X。也就是说,由冷凝器2出口处的温度T2得到焓H,由蒸发器4入口处的压力P1得到在饱和液体曲线A的压力为P1时的焓HL,并根据下述公式关于被设为图3所示的循环组分α唯一地近似确定蒸发器4入口处的干燥度X。
X=(H-HL)/(HV-HL)其中HV表示饱和蒸汽曲线B与循环特性曲线C交点处的焓。实际上,事先已将干燥度X、温度T2和压力P1之间的关系曲线存入组分计算单元20中,而且就利用温度T2和压力P1的值计算干燥度X。此外,在步骤ST4由蒸发器4入口处的致冷剂干燥度X、温度T1和压力P1计算循环组分α*。也就是如图4所示那样,根据整个制冷周期循环着的致冷剂循环组分确定其干燥度为X的汽液两相排共沸致冷制的温度和压力。因此,可利用图4中实线所示的特性曲线计算循环组分α*。在步骤ST5,将循环组分α*与已被假设的循环组分α进行比较,像α一样得到该循环组分,它们二者是否相等。如果它们二者不相等,则组分计算单元20返回步骤ST2,以假设新的循环组分α值,该单元20继续上述计算,直至二者的值变为相等。
以下结合图5所示的流程图描述控制单元21的工作过程。
当控制单元21开始工作时,于步骤ST1分别由温度探测器13和压力检测器14测得冷凝器2出口处的温度T2和凝结压力P2。然后,控制单元21于步骤ST2由组分计算单元20取得由该单元20所算出的循环组分α,并在步骤ST3根据压力P2和循环组分α计算在凝结压力P2下的饱和液体温度TL。由于循环组分α被固定(见图3),所以此饱和液体温度TL关于P2唯一地被确定。在步骤ST4,控制单元21根据冷凝器2出口处的温度T2和饱和液体温度TL计算该出口处致冷剂的过冷度SC(SC=TL-T2)。之后,控制单元21于步骤ST5判断该过冷度是否与一预定值,比如5℃相符。若该过冷度与预定值相符,该控制单元21进行结束步。当该过冷度未被判定为与预定值相符时,该控制单元21进行步骤ST6,执行变换减压装置3的电动调节阀放开程度的过程。
将冷凝器2出口处的过冷度保持在一个适当的值,目的在于即使由于制冷空调器的工作条件或负荷情况改变使得制冷循环中的循环组分发生变化,或者即使由于空调器运行过程中致冷剂泄漏或充填致冷剂时操作错误而使循环组分发生变化,也能通过重复上述操作造成空调器的最佳运行。
本实施例中作为两组分体系的混合致冷剂也可以是多组分的体系,比如三组分体系,可得到类似的效果。
再者,本实施例中的控制单元21控制减压装置3的电动调节阀放开的程度,为的是即使循环组分在制冷循环中发生变化,也能使冷凝器2出口处的过冷度保持在一个常数值,不过这就可类似于前面提到的通过检测蒸发器4出口处的温度,并根据循环组分α和压力P1计算在蒸汽压为P1时的饱和蒸汽温度TV(见图3),而将蒸发器4出口处的过热度控制为常数值一样,可造成空调器的最佳运行过程。
此外,像上面所描述过的那样,即使循环组分在制冷周期中发生变化,控制单元21也能控制减压装置3的电动调节阀放开的程度为最佳值,不过,该控制单元21可根据循环组分控制压缩机1的数,得到类似的效果。实施例2图6是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第二种具体实施方式
的控制信息检测装置。本实施例装有第一温度探测器11,用以检测蒸发器4入口处的致冷剂温度T1,还装有用来检测该处致冷剂压力P1的第一压力检测器12。将温度探测器11及压力检测器12测得的信号分别输入组分计算单元20。冷凝器2的出口处装有第二温度探测器13,用以检测该处的致冷剂温度T2。本实施例的控制信息检测装置即由这些温度探测器11、13,压力检测器12以及组分计算单元20所组成。压缩机1的卸载管处装有第二压力检测器14,用以检测该管内的致冷剂压力。这些温度探测器13以及压力检测器14所测得的信号被输入控制单元21。
组分计算单元20有根据分别由温度探测器11及压力检测器12测得之温度T1和压力P1计算非共沸混合致冷剂的循环组分α的功能。将计算出的循环组分α值输入控制单元21。控制单元21具有以下功能根据循环组分α和压力检测器14所测得的压力P2计算凝结压力下的饱和液体温度TL的功能;根据饱和液体温度TL和由温度探测器13测得的温度T2计算冷凝器2出口处过冷度的功能;以及控制减压装置3的电动调节阀放开程度,以使该过冷度成为一规定值的功能。
以下描述本实施例的组发计算单元20的工作过程。组分计算单元20首先取得已分别由温度探测器11和压力检测器12测得的蒸发器4入口处的温度T1和压力P1。流入蒸发器4的致冷剂通常处于汽液两相状态,其干燥度为大约0.1至0.3。因此,通过假设干燥度是比如0.2,只根据温度T1和压力P1的信息,就足以能推定整个制冷周期循环着的致冷剂组分α。也就是说,可以利用图4中实线所示的特性曲线,从温度T1和压力P1计算循环组分α。
由于控制单元21的工作过程与实施例1的情况相类似,所以省去对它的描述。本实施例中,只由蒸发器4入口处的温度和压力即可测定制冷循环中致冷剂的循环组分,并使冷凝器2出口处的过冷度保持在一个合适的值,得以造成正常的最佳工作过程,而与循环组分的变化无关。
可将干燥度设定为除了大约0.1至0.3之一以外的值,即上述实施例中的设定值。
如上所述的结构使得能够简化组分计算单元20的计算,并以简单的结构做成控制信息检测装置,该装置具有类似于实施例1那些功能,成本也是低廉的。实施例3图7是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第三种具体实施方式
的控制信息检测装置。本实施例装有检测其收集器5中的致冷剂温度T1用的第一温度探测器11和用来检测收集器5听致冷剂压力P1的压力检测器12,并将分别由温度探测器11和压力检测器12测得的信号输入组分计算单元20。这个单元20具有根据分别由温度探测器11及压力检测器12测得的收集器5中的温度T1和压力P1计算非共沸混合致冷剂的循环组分α的功能。下面即将描述组分计算单元20的工作过程。本实施例的控制信息检测装置包括这些温度探测器11、压力检测器12和组分计算单元20。
组分计算单元20得到收集器5中致冷剂的温度T1和压力P1。流入收集器5中的致冷剂正常地是处于汽液两相状态,其干燥度是大约0.8至1.0。因此,可将此干燥度大致认为是比如0.9。既然如此,致冷剂的温度和压力就如图8所示那样,由整个制冷循环中所流过的非共沸混合致冷剂的循环组分所确定。因此,可以利用图8中实线所示的特性曲线,仅仅根据收集器5中的温度T1和压力P1计算循环组分α。
由于控制单元21的工作过程与实施例1的情况相类似,所以省去对它的描述。我们可以只根据收集器5中的温度和压力测定制冷循环中的致冷剂循环组分,并因此使组分计算单元20的计算被简化,这就使我们能够得到具有简单结构的控制信息检测装置,该装置具有类似于实施例1的那些功能,而且成本也与实施例2相类似地低廉。
本实施例测量收集器5中的温度和压力,但可将第一温度探测器11和压力检测器12装在收集器5与压缩机1的吸气管之间的位置。
可将干燥度X设定为除了大约0.8至1.0之一以外的一个值,即设定成如前述实施例中的值。实施例4图9是表示一个使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第四种具体实施方式
的控制信息检测装置。本实施例装有液面探测器15,用以检测其收集器5中的致冷剂液面高度;由该液面探测器15测得的信号被输入组分计算单元20。公知的液位计,比如超声液位计和电容型液位计均可被用做液面探测器15。组分计算单元20具有根据该液面探测器15测得的收集器5中致冷剂的液面高度h计算非共沸混合致冷剂的循环组分α的功能;以下将会描述这个单元20的工作过程的。本实施例的控制信息检测装置包括这些液面探测器15以及组分计算单元20等。
当组分计算单元20开始工作时,该单元20取得所述液面高度h值。采用非共沸混合致冷剂的制冷循环中,收集器中的致冷剂通常被分成含有较多高沸点组分的液相和含有较多低沸点组分的汽相,而且含有较多高沸点组分的液相被存于收集器中。因此,如果收集器中存在液态致冷剂,则整个制冷循环中循环着的致冷剂组分就有一种倾向,即具有很多低沸点组分(或者循环组分增加)。图10表示收集器中的液面高度h与循环组分α之间的关系曲线。收集器中的液面变得越高,或者收集器中液态致冷剂的量变得越大,则循环组分变得越大。可以从收集器中的液面高度h算出循环组分α,而该液面高度是由液面探测器15根据预先通过实验或类似方法得到的图15所示之关系曲线检测到的。
由于控制单元21的工作过程与实施例1的情况相类似,这里就省略对它的描述。本实施例仅根据收集器5中的致冷剂液面高度即可检测制冷循环中的循环组分,这就使我们能够得到具有简单结构的控制信息检测装置,而且尽管循环组分变化,也能保持冷凝器2出口处的过冷度为一合适的值,实现制冷空调器正常的最佳运行。
超声液位计或电容型液位计被用为上面所提到的实施例的液面探测器15,但是根据制冷循环中的工作条件或负荷情况计算制冷周期中的致冷剂过剩量,以测得收集器5中的液面高度,也能得到同样的效果。也就是说,可以从工作条件与致冷条件与致冷剂的过剩量间的关系曲线计算液面高度,而测得收集器5中的液面高度,所述关系曲线预先已通过实验等方法测得,而且情况是,比如在空气冷却工作的情况下不会产生过剩的致冷剂,而在空气加热工作的情况下会产生一定量的过剩致冷剂。此外,通过附加诸如在空气冷却或者空气加热工作时的室内空气温度和室外空气温度等信息,可使收集器中液面高度的检测精度得到改善。实施例5图11是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第五种具体实施方式
的控制信息检测装置。本实施例中,制冷空调器包括两个室内单元,它们与一个室外单元相连。图11中的参考数码30表示该室外单元,它包括压缩机1、四通阀31、室外换热器(第一换热器)32、室外风扇33和收集器5。压缩机1的卸载管侧壁装有第二压力检测器14。参考数码40a和40b(以下总称为40)分别表示一个室内单元,包括室内换转器(第二换热器)41a或41b(以下总称为41)和采用第一电动调节阀的第一减压装置3a或3b(以下总称为3)。第三换热器42a或42b(以下总称为42)和第四温度探测器43a和43b(以下总称为43)分别被装在室内换热器41的入口处和出口处。旁通管50用来把连接室外换热器32和室内单元40的减压装置3的管子与收集器5连在一起。该旁通管50被装在所述管子的中间位置处。由毛细管构成的第二减压装置51被装于旁通管50的中间部位。此外,在减压装置51的出口处,给旁通管50装以第一温度探测器11和第一压力检测器12,并在减压装置51的入口处给旁通管50装以第二温度探测器13。还装有一个室内风扇,不过图11中省去该图示。
参考数码20表示组分计算单元,来自第一温度探测器11、第一压力检测器12和第二温度探测器13的信号都输入此单元,以计算整个空调器制冷循环中循环着的致冷剂组分。控制信息检测装置包括这些第一及第二温度探测器11和13、第一压力检测器12和组分计算单元20在内。参考数码21表示控制单元,来自组分计算单元20的致冷剂循环组分信号和来自第一压力检测器12、第二压力检测器14、第三温度探测器42和第四温度探测器43的信号都被输入该单元中。控制单元21按输入信号根据致冷剂的循环组分计算压缩机1的转数、室外风扇33的转数,以及减压装置3的电动调节阀放开的程度,以便把指令分别传给压缩机1、室外风扇,以及减压装置3。压缩机1、室外风扇33以及减压装置3接收控制单元21传来的指令值,去控它们的转数和它们的电动调节阀放开的程度。参考数码22表示比较器,从组分计算单元20来的循环组分信号被输入该比较器,以便比较该循环组分是否在预定的范围内。将报警装置23接到比较器22上,当循环组分超出预定范围时,就地有报警信号被传给报警装置23。上面提到的控制信息检测装置还包括这些比较器22以及报警装置23,作为它的一部分。
以下结合图11和图12所示的控制框图描述如此结构的本实施例工作过程。组分计算单元20得到来自第一温度探测器11、第一压力检测器12和第二温度探测器13的信号,利用图3和图4所示的关系曲线计算减压装置51入口处致冷剂的干燥度X,用以计算制冷循环中的循环组分α。控制单元21根据此循环组分α分别计算压缩机1的最佳转数指令、室外风扇33的最佳转数指令,以及电动调节阀最佳放开程度的指令。
首先描述空调器的空气加热工作过程。在空气加热工作时,致冷剂按图11中实线箭头所示的方向循环,室内换热器41作为空气加热运行的冷凝器工作。控制压缩机1的转数,使得凝结压力与一期望值相符,这时,凝结温度TC变成比如50℃。如果将非共沸混合致冷剂的凝结温度TC规定为其饱和蒸汽温度与其饱和液体温度的平均值,那么在凝结温度TC变为50℃情况下,所期望的凝结压力PC的值就按照图13所示的循环组分α被唯一确定。所以,通过预先把图13所示的关系表达式存入控制单元21中,该单元21就可以利用从组分计算单元20传来的循环组分信号计算所期望的凝结压力值。另外,控制单元21还利用反馈控制,比如PID(比例、积分和微分调节)控制向压缩机1输出转数指令,根据由第二压力检测器14测得的值与所期望的凝结压力值之间的差,还计算对压缩机1转数的修正值。
控制室外风扇33的转数,使蒸发压力与一预期值相符,这时,蒸发温度Te变为比如0℃。如果将非共沸混合致冷剂的蒸发温度规定为其饱和蒸汽温度与其饱和液体温度的平均值,那么在蒸发温度Te为0℃情况下,所期望的蒸发压力Pe的值就按照图14所示的循环组分α唯一确定。所以,通过预先将图14所示的关系表达式存入控制单元21,该单元21就可以利用由组分计算单元20传来的循环组分信号,计算蒸发压力的期望值。另外,控制单元21利用诸如PID控制这样的反馈控制,对室外风扇33输出转数指令,根据由第一压力检测器12测得的压力与蒸发压力期望值之间的差,还计算对室外风扇33转数的修正值。
控制减压装置3的电动调节阀开启的程度,使室内换热器41出口处的过冷度成为一个预定的值,比如5℃。可将过冷度按换热器41中压力下的饱和液体温度与换热器41出口处温度之差而得到它。饱和液体的温度可做为如图15所示的压力及循环组分的函数被得到。所以,通过预先将图15所示的关系表达式存入控制单元21,该单元21就可以利用由组分计算单元20传来的循环组分信号、由第二压力检测器14送来的压力信号、以及由第三温度探测器42送来的温度信号计算饱和液体温度和换热器41出口处的过冷度。另外,控制单元21还利用诸如PID控制这样的反馈控制,对减压装置3输出电动调节阀开启程度的指令,根据该出口处过冷度与预定值(5℃)之间的差,计算对减压装置3的电动调节阀开启程度的修正值。
另一方面,在空气冷却工作时,致冷剂按照图11虚线箭头所示的方向循环,同时室内换热器41作为蒸发器工作于空气冷却的这行中。
控制压缩机1的转数,使蒸发器的压力与一期望值相符,这时,蒸发温度Te变为比如0℃。如果将非共沸混合致冷剂的蒸发温度规定为其饱和蒸汽温度与其饱和液体温度的平均值,那么在蒸发温度Te为0℃情况下所期望的蒸发压力Pe的值就按照图14所示的循环组分α被唯一确定。所以,通过预先将图14所示的关系表达式存入控制单元21,该单元21就可以利用由组分计算单元20传来的循环组分信号,计算所期望的蒸发压力值。另外,控制单元21利用诸如PID控制这样的反馈控制,对压缩机1输出转数指令,根据由第一压力检测器12测得的压力与期望的蒸发压力之间的差,还计算对压缩机1转数的修正值。
控制室外风扇33的转数,使凝结压力与一期望值相符,这时,凝结温度TC成为比如50℃。如果将非共沸混合致冷剂的凝结温度规定为其饱和蒸汽温度和其饱和液体温度的平均值,在凝结温度TC成为50℃情况下,所期望的凝结压力PC的值按照图13所示的循环组分α被唯一确定。所以,通过预先将图13所示的关系表达式存入控制单元21,该单元21就可利用从组分计算单元20传来的循环组分信号,计算所期望的凝结压力值。另外,控制单元21利用诸如PID控制这样的反馈控制,对室外风扇33输出转数指令,根据由第二压力检测器14测得的压力与凝结压力的期望值之间的差,还计算对室外内扇33转数的修正值。
控制减压装置3的电动调节阀开启程度,使室内换热器41出口处的过冷度成为一预定值,如5℃。过冷度可作为在换热器41的压力下的饱和蒸汽温度与换热器41出口处温度之差而被得到,而饱和蒸汽温度可类似于图15所示的饱和液体温度那样,作为压力和循环组分的函数而被得到。所以,通过预先将饱和蒸汽温度、压力以及循环组分之间的关系表达式存入控制单元21,该单元21就可利用从组分计算单元20传来的循环组分信号、从第一压力检测器12传来的压力信号、以及从第四温度探测器43传来的温度信号,计算饱和蒸汽温度和换热器41出口处的过冷度。另外,控制单元21利用诸如PID控制这样的反馈控制,对减压装置3输出电动调节阀开启程度指令,根据该开口处的过冷度与该预定值(5℃)之间的差,还计算对减压装置3的电动调节阀开启程度的修正值。
以下描述比较器22的工作过程。比较器22从组分计算单元20得到循环组分信号,判断循环组分是否在预先存储的适当循环组分范围内。若循环组分在此适当的循环组分范围内,则制冷空调器随此而继续工作。另一方面,如果由于在空调器运行过程中致冷剂泄漏而使循环组分发生变化,或者如果由于充填致冷剂时操作错误而使循环组分发生变化,则比较器22判断循环组分超出预先存储的适当循环组分范围,向报警装置23传送报警信号。收到报警信号的报警装置23发出预定时间的报警,警告操作者空调器的非共沸混合致冷剂的循环组分超出该适当值的范围。
如上所述,本实施例中,第二减压装置的下游侧总处在低压两相状态中,而与空气冷却或空气加热无关,因而在空气冷却的情况下以及空气加热的情况下,都可以用同样的检测器测量温度和压力,去计算致冷剂的组分。因此,没有必要分别备置专用于空气冷却或专用于空气加热的检测器,这就可使本装置的结构简单,而且即使循环组分发生变化,也能造成空调器惯有的最佳工作过程。
本实施例在空气加热的工作情况下,控制室外风扇33的转数,使第一压力检测器12测得的值与所期望的蒸发压力值相符,这个值由组分计算单元所控制,不过,通过在室外换热器32的入口处设置温度探测器并控制之,使得由此温度探测器测得的温度成为一预定值(如0℃),也可以得到同样的效果。
本实施例控制电动调节阀的开启程度,使室内换热器41出口处的过热度在空气冷却的工作情况下成为一个预定的值(比如5℃),不过,通过控制这些调节阀,使室内换热器41的入口与出口间的温度差成为一预定值(比如10℃),也就是说使由第三温度探测器和第四温度探测器测得的温度之间的差值成为该预定值,也可以得到同样的效果。
本实施例的制冷空调器有一个室外单元30和两个与该室外单元30连接的室内单元40,不过,通过只把一个室内单元或者三个或更多的室内单元与该室外单元相连,也能得到同样的效果。实施例6图16是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第六种具体实施方式
的控制信息检测装置;图17则是该空调器的控制框图。图11和图16中相同的参考数码表示同样的单元。在空气加热的工作情况下,致冷剂按照图16中实线箭头所示的方向循环;而在空气冷却的工作情况下,致冷剂按照图16中虚线箭头所示的方向循环。本实施例中,只有来自第一温度探测器11和第一压力检测器12的信号输入组分计算单元20中。通过假设流入旁通管50的减压装置51的致冷剂干燥度X在空气加热工作情况下为比如0.1,而在空气冷却工作情况下为比如0.2,组分计算单元20只根据来自第一温度探测器11和第一压力检测器12的信号计算循环组分。控制单元21以及比较器22的工作过程与实施例5情况一样。本控制信息检测装置包括这些温度探测器11、压力检测器12和组分计算单元20在内。
因此,本实施例控制信息检测装置的组分计算单元20中的计算类似于实施例2一样地被简化,并且以简单的结构、低廉的成本实现与实施例5相类似的装置。实施例7图18是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第七种具体实施方式
的控制信息检测装置;图19则是该空调器的控制框图。图11和图18中的相同参考数码表示同样的元件。在空气加热的工作情况下,致冷剂按照图18中实线箭头所示的方向循环;而在空气冷却的工作情况下,致冷剂按照图18中虚线箭号所示的方向循环。旁通管50装有采用电动调节阀的第二减压装置51,其开启程度受控制单元21控制。旁通管50的中间部分形成一段换热区段52,用以使其中的热量与连接室外换热器32和采用电动调节阀的第一减压装置3的管(主管)进行换热。由于该换热区段52把流入旁通管50的致冷剂的焓传给流入主管的致冷剂,所以这种焓就受到收集,以防能量损失。第五温度探测器16被装在换热区段52的出口处,由第五温度探测器16测得的信号被送给控制单元21。
由于只是控制装于旁通管50上的第二减压装置51的方法与本实施例控制单元21在实施例6中的工作情况不同,所以下面将描述控制该第二减压装置51的方法。控制减压装置51的电动调节阀的开启程度,使在旁通管50上形成的换热区段52入口与出口处的温度差成为一个规定值(如10℃)。这就是说,由均被装于旁通管50上的第一温度探测器11和第五温度探测器16分别测得的信号都被传至控制单元21,该单元利用诸如PID控制这样的反馈控制计算分别由第一温度探测器11和第五温度探测器16测得的信号之间的温度差,以便根据该温度差与规定值(如10℃)之间的差值得出对第二减压装置51的电动调节阀开启程度的修正值。然后,控制单元21对第二减压装置51输出电动调节阀开启程度的指令。通过这样的控制,从旁通管50流到收集器5的致冷剂总处在蒸汽状态。因此,它的能量就得到有效的利用,防止液体返回压缩机1去。
上面提到的实施例采用电动调节阀为第二减压装置51,不过也可以采用毛细管等。实施例8图20是表示一种使用非共沸混合致冷剂的制冷空调器的结构方框图,所述空调器被装以本发明第八种具体实施方式
的控制信息检测装置;图21是制冷空调器的控制框图。图18和图20中相同的参考数码表示同样的单元。在空气加热的工作情况下,致冷剂按照图20中实线箭头所示的方向循环,而在空气冷却的工作情况下,致冷剂按照图20中虚线箭头所示的方向循环。本实施例中,与实施例2和6相类似,只有来自第一温度探测器11和第一压力检测器12的信号输入组分计算单元20。通过假设流入旁通管50的第二减压装置51的致冷剂之干燥度X在空气加热的工作情况下是比如0.1,而在空气冷却的工作情况下是比如0.2,该单元20只根据来自第一温度探测器11和第一压力检测器12的信号计算致冷剂的循环组分。控制单元21以及比较器22的工作过程与实施例7的情况相同。
上面提到的实施例采用电动调节阀为第二减压装置51,不过也可以采用毛细管等。
实施例5至8的制冷空调器都包括收集器5,不过,收集器5并非必不可少的。如果不用收集器5,就把旁通管构造成以压缩机1的进气管与主管之间的第二减压装置51将二者连接起来。
实施例5至8的控制信息检测装置都包括比较器22,用以在循环组分超出预定范围时,把报警信号传给报警装置23,不过,这些比较器22以及报警装置23也并非必不可少的。
另外,实施例1至4的控制信息检测装置也可以包括上面提到的比较器22和报警装置23。所装的比较器22和报警装置23构成该装置的一部分。实施例9图22为一种用于按照本发明的第九实施例采用非共沸混合制冷剂的制冷空调器的控制一信息检测装置的结构的方框图。在图22中,参考数字1表示压缩机;数字2表示冷凝器;数字3表示使用诸如毛细管的减压装置;数字4表示蒸发器;数字5表示收集器。这些元件通过其间的管道串联,组成制冷循环。例如,该制冷循环中充有由一种高沸点物质”R134a”和一种低沸点物质”R32”组成的非共沸混合制冷剂。
参考数字61表示连接压缩机1的排放管和吸取管的旁通管;在旁通管61的中间部位设有由毛细管或类似元件组成的第二减压装置62。参考数字63表示作为冷却装置用于冷却从旁通管61的高压侧流入第二减压装置62的非共沸混合制冷剂的双管型换热器;换热器63将其热量与旁路管61的低压侧交换。在第二减压装置62出口处设有探测制冷剂温度的第一温度探测器11和探测制冷剂压力的第一压力检测器12。参考数字20表示组分计算单元,由第一温度探测器11和的第一压力探测器12探测到的信号输入其中。
组分计算单元20具有根据第二减压装置62出口温度和压力计算制冷空调器的制冷循环中非共沸混合制冷剂循环组分的功能,这些温度和压力分别由第一温度探测器11和第一压力检测器12探测得来。这些第一温度探测器11、第一压力检测器12、以及组分计算单元20组成本实施例的控制-信息检测装置。
下面将介绍其运行。被压缩机1压缩为高温高压的制冷剂气体被凝结器2凝结为液体,液化制冷剂被减压装置3减压为低压汽液两相制冷剂,再流入蒸发器4中。制冷剂被蒸发器4蒸发并通过收集器5返回压缩机1中。然后,制冷剂被压缩机1再次压缩,以送入凝器2。在空调器特定运行工况和负荷工况时间产生的过剩制冷剂被存储在收集器5中。收集器5内的制冷剂分离为富含高沸点物质的液态制冷剂和富含低沸点物质的汽态制冷剂;液态制冷剂存储在收集器5内。当收集器5内存在液态制冷剂时,在制冷循环内流动的制冷剂具有富含低沸点物质(或流动物质增加)的倾向。
由压缩机1排出的高压蒸汽制冷剂的一部分流入旁通管61在双管型换热器63的环状部位与低压制冷剂换热并被凝结为液体。液化制冷剂被第二减压装置62减压后以低压制冷剂状态流入双管型换热器63的内管,用来在环状部位与高压制冷剂换热并被蒸发。低压蒸汽制冷剂流入压缩机1的吸取管。图23以压力与焓的关系图表示旁通管61内制冷剂的状态转换。在图23中,”A”点表示非共沸混合制冷剂在双管型换热器63高压侧入口处的状态;”B”点表示制冷剂在换热器63高压侧出口处或第二减压装置62入口处的状态;”C”点表示制冷剂在换热器63低压侧入口处或第二减压装置62出口处的状态;”D”点表示制冷剂在换热器63低压侧出口处的状态。
由于换热器63被设计为在高压制冷剂与低压制冷剂间充分地换热,还由于等温线在液相区几乎是垂直的,如图23所示,因而”B”点代表的制冷剂在换热器63高压侧出口处的温度被冷却为接近由”C”点代表的制冷剂在换热器63低压侧入口处的温度。还有,由于通过第二减压装置62的制冷剂以等焓状态调节,几乎所有由”C”点代表的在换热器63低压侧入口处的制冷剂均为低压饱和液态。
下面将结合图24的汽-液平衡图介绍组分计算单元20。单元20通过第一温度探测器11和的第一压力检测器12获取第二减压装置62出口处低压饱和液态制冷剂的温度T1和压力P1。压力P1下非共沸混合制冷剂的饱和液体温度根据制冷循环中的循环组分或旁通管61内的环流组分而变化,如图24所示。循环组分以非共沸混合制冷剂中低沸点物质的重量比表示。结果,制冷循环中循环组分(可根据分别由第一温度探测器11和的第一压力检测器12探测到的温度T1和压力P1用图24所示的关系确定。图25表示饱和液体温度T1、压力P1和从图24所示的非共沸混合制冷剂的汽-液平衡图获得的循环组分α之间的关系。通过事先将这些关系记忆在组分计算单元20内,就可以根据温度T1和压力P1来计算循环组分α。例如,图25所示的关系可表示为如下公式。
α=(a·T12+b·T1+c)×(d·P12+e·P1+f)其中a,b,c,d,e,f分别为常数。
组分计算单元20利用上述公式计算循环组分α。
这种检测循环组分的方法涉及在换热器63低压侧入口处的饱和液态制冷剂,但是即使制冷剂在入口处由于换热器63换热不充分没有达到饱和液态而成为汽-液两相状态,其循环组分的检测精度也有充分保证。这就是如图26所示为什么非共沸混合制冷剂(例如由”R32”和”R134a”组成)的平衡温度变化相对于其汽-液两相状态的干燥度的变化小的原因。图26表示在500千帕压力下由重量分别为25%和75%的”R32”和”R134a”混合而成的非共沸混合制冷剂的平衡温度变化相对于其汽-液两相状态的干燥度X的关系图。就”R32”和”R134a”而言,饱和液态温度(X=0时的温度)与饱和汽态温度(X=1时的温度)之间相差约为6℃这样的较小值,相应地X为0.1时与饱和液态间的平衡温度差约为0.8℃这样的较小值。因而,即使在换热器63低压侧入口处制冷剂变为汽-液两相状态(其干燥度X约为0.1),制冷剂在汽-液两相状态的温度与制冷剂在饱和液态的温度差在本实施例的循环组分检测方法中变化很小,因而实际上这种循环组分检测方法的精度有充分保证。
本发明利用双管型换热器63作为一种高压侧制冷剂的冷却装置与低压侧制冷剂换热,然而通过高压侧管和低压侧管相接触来互相换热也可获得类似效果。
本实施例中为两种物质系统的混合制冷剂,可以是用来获得类似效果的多种物质系统,如三物质系统。
实施例10图27为一种采用非共沸混合制冷剂的制冷空调器结构的方框图,这种空调器设有其按照本发明的第十实施例的控制-信息检测装置。该实施例使用采用电气调节阀的第二减压装置120。在第二减压装置120的入口设有探测此处制冷剂温度的第二温度探测器13。组分计算单元20具有根据分别由第一温度探测器11、第一压力检测器12和第二温度探测器13探测到的温度和压力来计算第二减压装置120出口处制冷剂干燥度和制冷循环中非共沸混合制冷剂循环组分的功能。参考数字21表示第二减压装置120的控制单元,该单元21具有按照由第一温度探测器11探测到的减压装置120出口温度和由第二温度探测器13探测到的双管型换热器63低压侧出口温度来控制电气调节阀开度的功能。
下面将介绍其运行。由压缩机1排出的高压蒸汽制冷剂的一部分流入旁通管61,在双管型换热器63的环状部位与低压制冷剂换热并被凝结为液体。液体制冷剂被减压装置120减压后以低压汽液两相制冷剂状态流入换热器63的内管,其干燥度为X。然后,该两相制冷剂在环状部位与高压制冷剂换热并被蒸发。低压汽态制冷剂流入压缩机1的吸取管。图28以压力与焓的关系图表示旁通管61内制冷剂的状态转换。在图28中,”A”点表示非共沸混合制冷剂在双管型换热器63高压侧入口处的状态;”B”点表示制冷剂在换热器63高压侧出口处或第二减压装置62入口处的状态;”C”点表示制冷剂在换热器63低压侧入口处或第二减压装置62出口处的状态;”D”点表示制冷剂在换热器63低压侧出口处的状态。换热器63用来在高压制冷剂和低压制冷剂之间充分换热,使得在双管型换热器63的高压侧出口处,或在减压装置120入口处,以点”B”表示的制冷剂变为过冷状态。
下面将结合图29的流程图介绍组分计算单元20。单元20开始运行时,它获取减压装置120出口处制冷剂的温度T1和压力P1以及减压装置120入口处制冷剂的温度T2,其中温度T1、T2和压力P1分别由第一温度探测器11、第二温度探测器13和第一压力检测器12在步骤ST1探测到。然后,在步骤ST2假设制冷循环中循环组分α为一定值,在步骤ST3根据循环组分的假设值α、减压装置120入口处温度T2和减压装置120出口处的压力P1计算减压装置120出口处制冷剂的干燥度X。这就是说,因为通过减压装置120的制冷剂以等焓状态膨胀,因此减压装置120入口处温度T2、减压装置120出口处的压力P2和干燥度X之间存在如图30所示的关系。相应地,如果事先将上述关系按下面的关系公式(1)存储在组分计算单元20内,就可以按照公式(1)根据温度T2、压力P1和假设循环组分值α计算减压装置120出口处制冷剂干燥度X。
X=f1(T2,P1,α)..........(1)接着在步骤ST4根据减压装置120出口处制冷剂的温度T1和压力P1以及在步骤ST3获得的干燥度X计算循环组分值(’。即如图31所示,干度为X的汽液两相状态的非共沸混合制冷剂在压力P1下的温度随着制冷循环中循环组分或流过旁通管11的循环组分而变化。相应地,制冷循环中的循环组分(’可利用图31所示的特性根据减压装置120出口处制冷剂的温度T1和压力P1以及干燥度X计算出。图32表示从图31所示的关系得出的循环组分(与减压装置120出口处制冷剂的温度T1和压力P1以及干燥度X的关系。相应地,如果事先将图32表示的关系按下面的关系公式(2)存储在组分计算单元20内,就可以按照公式(2)根据减压装置120出口处温度T1、压力P1和干燥度X计算制冷剂循环组分值α’。
α’=f2(T1,P1,X)..........(2)在步骤ST5对循环组分α’和事先假设的循环组分α进行比较。如果两值相等,所求出的循环组分即为α。如果两值不相等,则在步骤ST6重新假设循环组分α。然后,组分计算单元20重新返回步骤ST3进行上述计算,这些步骤不断继续,直至循环组分α’和循环组分(相一致。
下面介绍控制单元21的运行。单元21控制减压装置120的电气调节阀的开度从而使换热器63高压侧出口处制冷剂的温度一定为过冷状态。这就是说,单元21获取由第一温度探测器11探测到的减压装置120出口处制冷剂的温度T1和由第二温度探测器13探测到的减压装置120入口处制冷剂的温度T2,然后计算其差值(或T2-T1)。单元21进一步计算具有诸如PID控制的反馈控制的减压装置120的电气调节阀的修正开度,以使温度差为一预定值(如10℃)或更低,并向减压装置120输出一开度指令。因此,换热器63高压侧出口处制冷剂一定为过冷状态,这可使流过旁通管61的制冷剂流的数量最小,从而使制冷循环中的能量损失最小。
由于本实施例的组分计算单元20通过计算减压装置120出口处制冷剂的干燥度来计算循环组分,因而即使为改变被换热器63交换的热量而改变了制冷循环的运行状态,仍可确保得出循环组分。还有,由于流过旁通管61的制冷剂流的数量是由减压装置120控制的,因而可确保换热器63高压侧出口处制冷剂为过冷状态、一定可得出循环组分、以及使流过旁通管61的制冷剂流的数量最小,从而使制冷循环中的能量损失最小。
实施例11图33为一种采用非共沸混合制冷剂的制冷空调器结构的方框图,这种空调器设有其按照本发明的第十一实施例的控制-信息检测设备。图33表示一种可通过切换一四通式阀门31来加热和冷却空气的热泵型制冷空调器。参考数字32表示在冷却空气时运行为冷凝器,而在加热空气时运行为蒸发器的室外换热器;数字41表示在冷却空气时运行为蒸发器,而在加热空气时运行为冷凝器的室内换热器。旁通管61、组分计算单元20、及控制单元21等的结构与实施例中的结构相同。
实施例10中介绍的检测循环组分的原理在利用主回路中第一减压装置3的出口处的温度和压力及其入口处的温度时是正确的,但是因为第一减压装置3内制冷剂流的方向在冷却空气和加热空气时是不同的,因此在减压装置3的出口和入口分别需要一对温度探测器和压力检测器用来分别在冷却空气和加热空气时探测循环组分。因而共需要四只探测器。但是本实施例的控制-信息检测装置无论在冷却空气或加热空气时,只利用第一温度探测器11、第一压力检测器12和旁通管61上的第二温度探测器13就总可以探测出循环组分。也就是说,本实施例可在冷却空气或加热空气时利用可降低成本的较少的探测器探测出循环组分。
实施例12图34为一种按照本发明的第十二实施例用于采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构的方框图。该实施例采用使用毛细管的第二减压装置62。组分计算单元20的运行与实施例9的类似,因而省略了对它的描述。该实施例通过使用比电气调节阀便宜的毛细管作为第二减压装置62,可以以便宜的成本检测非共沸混合制冷剂的循环组分。
实施例13图35为一种按照本发明的第十三实施例用于采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构的方框图。该实施例采用与周围空气换热以冷却旁通管61内的高压制冷剂的双管型换热器63。流进旁通管61的蒸汽制冷剂的热量通过换热器63与周围空气交换以凝结为液体。液化制冷剂被减压装置62减压为低压制冷剂并流入收集器5。双管型换热器63在其管表面设有高压制冷剂流入其中的散热片64以促进与周围空气的热交换。组分计算单元20的运行与实施例10的类似,因而省略了对它的描述。该实施例使用便宜的设有散热片64的管作为其制冷装置,因而它可以以便宜的成本检测非共沸混合制冷剂的循环组分。
实施例14图36为一种按照本发明的第十四实施例用于采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构的方框图。该实施例在双管型换热器63高压侧管道出口附近设有五只温度探测器65a,65b,65c,65d和65e。在旁通管61的入口处设有测量旁通管61的高压的压力探测器66。组分计算单元20具有根据分别由五只温度探测器65和压力检测器66探测到的温度和压力来计算制冷循环中非共沸混合制冷剂循环组分的功能。该实施例采用毛细管作为第二减压装置62。
下面介绍组分计算单元20的运行。流入双管型换热器63的高压蒸汽制冷剂与低温低压制冷剂换热并被凝结为液体。高压制冷剂的温度变化如图37所示。在换热器63高压侧入口处存在一过热蒸汽区,在其中间部位存在一两相区,而在其出口存在一过冷液体区。在图37上,由装在换热器63高压侧管道上的五只温度探测器65探测到的温度表示为Ta,Tb,Tc,Td和Te。因为两相区的制冷剂的潜热是变化的,所以其温度变化较小,因而所探测到的温度Ta,Tb和Tc的变化也较小。另一方面,因为过冷液体区制冷剂的显热是变化的,所以其温度变化大,因而所探测到的温度Td和Te的变化也较大。相应地,通过依次比较沿制冷剂流向的五只探测器中相邻温度探测器探测到的温度差,就可以将差值大幅度变化的那一点处的温度作为其饱和液体温度。例如如图37的示例,通过沿流向依次比较温度差(Ta-Tb),(Tb-Tc),(Tc-Td),(Td-Te),可确知温度差(Tc-Td)要大于温度差(Ta-Tb)和(Tb-Tc)。结果,温度Tc可被认为是饱和液体温度。
组分计算单元20依图38所示的饱和液体温度、压力和循环组分的关系,根据饱和液体温度Tc和由压力检测器66探测到的高压P来计算循环组分α。
实施例15图39为一种按照本发明的第十五实施例用于采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构的方框图。图39所示的该实施例采用通过将旁通管61的高压侧管和低压侧管互相接触组成的换热器作为其双管型换热器63。该实施例还利用毛细管作为其第二减压装置62。在换热器63低压侧出口附近设有五只温度探测器65a-65e。在旁通管61的出口处设有测量旁通管61的低压侧压力的压力探测器67。组分计算单元20具有根据分别由五只温度探测器65和压力探测器67探测到的温度和压力来计算制冷循环中非共沸混合制冷剂循环组分的功能。
下面介绍组分计算单元20的运行。流入换热器63的高压蒸汽制冷剂与低温低压制冷剂换热并被凝结为液体。液化制冷剂被减压装置62减压为两相低压制冷剂并流入换热器63。低压两相制冷剂在换热器63内被加热为过热蒸汽制冷剂,并流入压缩机1的吸取管内。低压制冷剂的温度变化如图40所示。在换热器63低压侧入口处存在一两相区,而在其出口存在一过热蒸汽区。在图40上,由装在换热器63低压侧管道上的五只温度探测器65探测到的温度表示为Ta,Tb,Tc,Td和Te。因为两相区的制冷剂的潜热是变化的,所以其温度变化较小,因而所探测到的温度Ta,Tb和Tc的变化也较小。另一方面,因为过热蒸汽区制冷剂的显热是变化的,所以其温度变化大,因而在过热区所探测到的温度Td和Te的变化也较大。相应地,通过依次比较沿制冷剂流向的五只探测器中相邻温度探测器探测到的温度差,就可以将差值大幅度变化的那一点处的温度作为其饱和液体温度。例如,如图40的示例,通过沿流向依次比较温度差(Ta-Tb),(Tb-Tc),(Tc-Td),(Td-Te),可确知温度差(Tc-Td)要大于温度差(Ta-Tb)和(Tb-Tc)。结果,温度Tc可被认为是饱和液体温度。
组分计算单元20依图41所示的饱和液体温度、压力和循环组分的关系,根据饱和液体温度Tc和由压力检测器67探测到的低压P来计算循环组分α。
实施例16图42为一种采用非共沸混合制冷剂的制冷空调器结构的方框图,这种空调器设有其按照本发明的第十六实施例的控制-信息检测装置。图42表示的制冷空调器由一室外单元和与室外单元相连的两室内单元组成。在该图中,参考数字30表示包括压缩机1、旁通管61、室外换热器62、室外风扇33和收集器5的室外单元。在压缩机1的排放侧管道上设有第二压力检测器66。参考数字40表示包括室内换热器41a和41b(以下统称为41)和采用第一电气调节阀的第一减压装置3a和3b(以下统称为3)的室内单元。第三换热器42a和42b(以下统称为42)和第四温度探测器43a和43b(以下统称为43)分别设在室内换热器41的入口和出口。参考数字61表示连接压缩机1的排放管与其吸取管的旁通管。在旁路管61的中间部位设有采用电气调节阀的第二减压装置120。参考数字63表示用来冷却从旁通管61的高压侧流入第二减压装置120的非共沸混合制冷剂的冷却装置。冷却装置63由一双管型换热器组成,用于与旁通管61的低压侧换热。此外,在第二减压装置120出口设有探测制冷剂温度的第一温度探测器11和探测制冷剂压力的第一压力检测器12。在第二减压装置120的入口设有探测此处制冷剂温度的第二温度探测器13。本实施例还设有室内风扇,但在图42中省略了。
组分计算单元20具有根据分别由温度探测器11、13和压力检测器12探测到的温度和压力来计算旁通管61内第二减压装置120出口处制冷剂干燥度和制冷循环中制冷剂循环组分的功能。
参考数字21表示一控制单元,来自组分计算单元20的循环组分信号和来自第一温度探测器11、第一压力检测器12、第二压力检测器66以及室内单元40上的第三温度探测器42和第四温度探测器43的信号均输入其中。控制单元21根据这些输入信号按照循环组分计算压缩机1的旋转次数、室外风扇33的旋转次数、室内单元40的第一减压装置3的电气调节阀的开度、以及旁通管61的第二减压装置120的电气调节阀的开度,并将指令分别传送给压缩机1、室外风扇33、第一减压装置3、以及第二减压装置120。压缩机1、室外风扇33、第一和第二减压装置3和120收到从控制单元21传送来的控制信号以控制其旋转次数或其电气调节阀的开度。
参考数字22表示一比较器,从组分计算单元20来的循环组分信号输入其中以比较循环组分是否在预定范围之内。当循环组分超出预定范围时,比较器22向与之相连的报警装置23发出报警信号。比较器22和报警装置23是本实施例的控制-信息检测装置的一部分。
下面将结合图42的方框图以及图43的控制方框图介绍如此构造的本实施例的运行。组分计算单元20从设在旁通管61上的第一温度探测器11、第一压力检测器12和第二温度探测器13获取信号,按照与实施例10类似的方法计算第二减压装置120出口处制冷剂的干燥度X以便计算制冷循环中循环组分(。控制单元21按照所计算出的循环组分(分别计算压缩机1的最佳旋转次数指令、风扇33的最佳旋转次数指令、第一减压装置3的最佳开度指令以及第二减压装置120的最佳开度指令。
首先介绍空调器加热空气的运行。在加热空气运行时,制冷剂的循环方向在图42中以实线箭头表示。在此情况下,室外换热器32运行为蒸发器,室内换热器40运行为加热空气的冷凝器。压缩机1的旋转次数是受控的,因而凝结压力保持为一期望值,在此压力下凝结温度Tc为50℃(举例)。如果非共沸混合制冷剂的凝结温度被定义为其饱和蒸汽温度和饱和液体温度的平均值,这一使凝结温度Tc为50℃的凝结压力Pc的期望值可如图44所示根据循环组分(唯一地确定。相应地,如果将图44表示的关系按下面的关系公式(3)存储在控制单元21内,控制单元21就可以按照公式(3)根据从组分计算单元20传送来的循环组分值(计算凝结压力Pc的期望值。
Pc=f3(α)……….(3)单元21利用诸如PID控制的反馈控制,根据第二压力检测器66探测到的压力P2与期望凝结压力Pc的差值进一步计算压缩机1的旋转次数的修正值并输出一旋转次数指令给压缩机1。
室外风扇33的旋转次数是受控的,因而蒸发压力保持为一期望值,在此压力下蒸发温度Te为0℃。如果非共沸混合制冷剂的蒸发温度被定义为其饱和蒸汽温度和饱和液体温度的平均值,这一使蒸发温度Te为0℃的蒸发压力Pe的期望值可如图45所示根据循环组分α唯一地确定。相应地,如果将图45表示的关系按下面的关系公式(4)存储在控制单元21内,控制单元21就可以按照公式(4)根据从成分计算单元20传送来的循环组分值α计算蒸发压力Pe的期望值。
Pe=f4(α)..........(4)单元21利用诸如PID控制的反馈控制,根据第一压力检测器12探测到的压力Pl与期望蒸发压力Pe的差值进一步计算室外风扇33的旋转次数的修正值并输出一旋转次数指令给室外风扇33。
第一减压装置3的电气调节阀的开度是受控的,因而在室内换热器40出口处的过冷程度为一预定值,例如5℃。可以将室内换热器40的压力下的饱和液体温度与换热器40出口处的温度的差值作为过冷程度,而饱和液体温度可按图46所示作为压力与循环组分的函数来得到。相应地,如果将图46表示的关系按下面的关系公式(5)存储在控制单元21内,控制单元21就可以按照表达式(5)根据从组分计算单元20传送来的循环组分信号、从第二压力检测器66传送来的压力信号P2、以及从第三温度探测器42传送来的温度信号T4计算饱和液体温度Tbub及室内换热器40出口处的过冷程度(Tbub-T4)。
Tbub=f5(P2,α)..........(5)单元21利用诸如PID控制的反馈控制,根据出口处的过冷程度与预定值(5℃)之间的差值进一步计算第一减压装置3的电气调节阀的开度的修正值并输出一电气调节阀的开度指令给减压装置3。
第二减压装置120的电气调节阀的开度是受控的,因而双管型换热器63高压侧出口处制冷剂一定为过冷状态。这就是说,控制单元21获取由第一温度探测器11探测到的减压装置120出口处制冷剂的温度T1和由第二温度探测器13探测到的减压装置120入口处制冷剂的温度T2,然后计算其差值(T2-T1)。控制单元21进一步计算具有诸如PID控制的反馈控制的减压装置120的电气调节阀的修正开度,以使温度差为一预定值(如10℃)或更低,并向减压装置120输出一开度指令。因此,换热器63高压侧出口处制冷剂一定为过冷状态,这可使流过旁通管61的制冷剂流的数量最小,从而使制冷循环中的能量损失最小。
另一方面,在冷却空气运行时,制冷剂的循环方向在图42中以虚线箭头表示。室外换热器32运行为冷凝器,室内换热器40运行为冷却空气的蒸发器。压缩机1的旋转次数是受控的,因而蒸发压力保持为一期望值,在此压力下蒸发温度Te为0℃(举例)。与空气加热运行类似,蒸发压力期望值Pe可按照关系公式(4)确定。相应地,控制单元21可以根据从组分计算单元20传送来的循环组分值(计算蒸发压力的期望值Pe。单元21利用诸如PID控制的反馈控制,根据第一压力检测器12探测到的压力P1与期望蒸发压力Pe的差值进一步计算压缩机1的旋转次数的修正值并输出一旋转次数指令给压缩机1。
室外风扇33的旋转次数是受控的,因而凝结压力保持为一期望值,在此压力下凝结温度Tc为50℃(举例)。与空气加热运行类似,凝结压力期望值Pc可按照关系公式(3)确定。相应地,控制单元21可以根据从组分计算单元20传送来的循环组分值(计算期望值Pc。单元21利用诸如PID控制的反馈控制,根据第一压力检测器66探测到的压力P2与期望凝结压力Pc的差值进一步计算室外风扇33的旋转次数的修正值并输出一旋转次数指令给室外风扇33。
第一减压装置3的电气调节阀的开度是受控的,因而在室内换热器40出口处的过热程度为一预定值,例如5℃。可以将室内换热器40的压力下的饱和蒸汽温度与换热器40出口处的温度的差值作为过热程度,而饱和蒸汽温度可按图47所示作为压力与循环组分的函数来得到。相应地,如果将图47表示的关系按下面的关系公式(6)存储在控制单元21内,控制单元21就可以按照表达式(6)根据从成分计算单元20传送来的循环组分α、从第一压力检测器12传送来的压力信号P1、以及从第四温度探测器43传送来的温度信号T5计算饱和蒸汽温度Tdew及室内换热器40出口处的过热程度(T5-Tdew)。
Tdew=f6(P1,()..........(6)单元21利用诸如PID控制的反馈控制,根据出口处的过冷程度与预定值(5℃)之间的差值进一步计算第一减压装置3的电气调节阀的开度的修正值并输出一电气调节阀的开度指令给第一减压装置3。
因为第二减压装置120的电气调节阀的开度的控制与空气加热运行时类似是受控的,因而省略了对它的描述。下面介绍比较器22的运行。比较器22从组分计算单元20输入循环组分信号以判断循环组分是否位于预先存储的适当的循环组分范围之内。如果循环组分位于预先存储的适当的循环组分范围之内,制冷空调器继续运行。此外,如果由于空调器运行时制冷剂泄漏而使循环组分改变,或者由于在制冷剂注入时的操作错误而使得循环组分改变,比较器22就判断出循环组分超出了预先存储的适当的循环组分范围,并向报警装置23发出报警信号。报警装置23收到报警信号后发出一预定时间的报警以提醒运行人员空调器的非共沸混合制冷剂的循环组分超出了预先存储的适当范围。
本实施例控制室外风扇33的旋转次数,因此由第一压力检测器12探测到的值符合由循环组分计算出的蒸发压力的期望值,但是通过在室外换热器32入口处装设温度探测器和进行控制以使由温度探测器探测到的温度为一预定值(例如0℃),也可获得类似的效果。
本实施例在作为空气冷却运行时控制第一减压装置3的电气阀的开度,因此在室内换热器40出口处的过热程度为一预定值(例如5℃)。但是通过控制使得室内换热器40入口处和出口处的温度差值为一预定值(例如10℃),也就是说使得由第四温度探测器43探测到的温度和由第三温度探测器42探测到的差值为一预定值,也可获得类似的效果。
本实施例的空调器有一室外单元30和与室外单元30相连的两室内单元40,但是室内单元40的数目并非限定为两个。通过与室外单元仅连接一个室内单元或连接三个或更多也可获得类似的效果。
从上述介绍中可以理解,根据本发明的第一方面,采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构是这样的将空调器制冷循环中蒸发器入口处制冷剂的温度和压力输入装置的组分计算单元,该单元根据流入蒸发器的制冷剂的干燥度为预定值这样的假定利用组分计算单元计算制冷剂的组分,结果该构造简单的装置就可检测出制冷剂的循环组分,根据制冷剂的循环组分就可确定空调器压缩机、减压装置等等的控制值。因而即使制冷剂的循环组分已经改变,空调器仍可被控制在最优工况之下。
另外,根据本发明的第二方面,采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构是这样的检测空调器蒸发器入口处制冷剂的温度和压力以及冷凝器出口处制冷剂的温度以便在装置的组分计算单元对其进行计算并输出,结果根据制冷剂的循环组分就可确定空调器压缩机、减压装置等等的控制值。因而即使制冷剂的循环组分已经改变,空调器仍可被控制在最优工况之下。
另外,根据本发明的第三方面,采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构是这样的在组分计算单元检测到的制冷剂循环组分超出预定范围时,装置的比较运行装置发出一报警信号,而装置的报警装置根据该比较运行装置发出的报警信号动作,结果当制冷剂组分超出预定范围时,操作人员可立即得知这一事实。
另外,根据本发明的第四方面,采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构是这样的利用装置的温度探测器和压力检测器分别探测空调器收集器中的制冷剂或收集器与其冷凝器吸取管之间的制冷剂的温度和压力,并利用其组分计算单元根据流入空调器蒸发器的制冷剂的干燥度为预定值这样的假定计算制冷剂的组分,结果该构造简单的装置就可检测出制冷剂的循环组分的改变,根据制冷剂的循环组分就可确定空调器压缩机、减压装置等等的控制值。因而即使制冷剂的循环组分已经改变,空调器仍可被控制在最优工况之下。
另外,根据本发明的第五方面,采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构是这样的利用装置的液体高度探测器探测到的空调器收集器内液体高度并将探测到的信号输入其成分计算单元以便按照前面阐述过的液体高度和循环组分间的关系通过组分计算单元计算制冷剂的组分,结果即使制冷剂的循环组分已经改变,通过该构造简单的控制装置仍可将空调器控制在最优工况之下。
另外,根据本发明的第六方面,采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构是这样的通过在用来连接空调器的第一换热器及其第一减压装置之间的管道与压缩机的吸取管(它们之间具有第二减压装置)的旁通管上提供第一温度探测器和一压力探测器来计算制冷剂的组分,结果在这样的结构下第二减压装置下游侧总为低压两相状态,因而根据在空气加热和空气冷却两种情况下由同样的温度探测器和压力检测器探测到的温度和压力就可知到制冷剂组分。
另外,根据本发明的第七方面,采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构是这样的通过在用来连接空调器的第一换热器及其第一减压装置之间的管道与压缩机的吸取管(它们之间具有第二减压装置)的旁通管上提供第一和第二温度探测器及一压力检测器来计算制冷剂的组分,结果在这样的结构下第二减压装置下游侧总为低压两相状态,因而根据在空气加热和空气冷却两种情况下由同样的温度探测器和压力检测器探测到的温度和压力就可知道制冷剂组分。
另外,根据本发明的第八方面,采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构是这样的通过在旁通管上形成一换热区来将流进空调器旁通管的制冷剂的焓传送到在主管道流动的制冷剂中,结果就可获得一种能够避免能量损失的用于制冷空调器的控制-信息检测装置。
另外,根据本发明的第九方面,采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构是这样的根据装置的温度探测器和压力检测器探测到的信号来计算空调器制冷循环中流通的制冷剂的组分,因此即使在由于空调器的运行工况或负荷工况的改变而使得循环组分改变,或者即使由于空调器运行时制冷剂泄漏或者由于在制冷剂注入时的操作错误而使得循环组分改变,该装置均可精确地探测出制冷循环中的循环组分。
另外,根据本发明的第十方面,采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构是这样的作为一种冷却旁通管的方法,在空调器的旁通管的高压侧和低压侧之间换热,因此可获得一种形状紧凑的制冷空调器的控制-信息检测装置。
另外,根据本发明的第十一方面,采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构是这样的根据装置的第一和第二温度探测器和压力检测器探测到的信号利用装置的组分计算单元来计算空调器制冷循环中流通的制冷剂的组分,因此即使在由于空调器的运行工况或负荷工况的改变而使得循环组分改变,或者即使由于空调器运行时制冷剂泄漏或者由于在制冷剂注入时的操作错误而使得循环组分改变,该装置均可精确地探测出制冷循环中的循环组分。
另外,根据本发明的第十二方面,采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构是这样的根据装置的分别用来探测空调器旁通管高压侧制冷剂的温度和压力的三只或更多的温度探测器及压力检测器探测到的信号来计算空调器制冷循环中流通的制冷剂的组分,因此即使在由于空调器的运行工况或负荷工况的改变而使得循环组分改变,或者即使由于空调器运行时制冷剂泄漏或者由于在制冷剂注入时的操作错误而使得循环组分改变,该装置均可精确地探测出制冷循环中的循环组分。
另外,根据本发明的第十三方面,采用非共沸混合制冷剂的制冷空调器的控制-信息检测装置的结构是这样的根据装置的分别用来探测空调器旁通管低压侧制冷剂的温度和压力的三只或更多的温度探测器及压力检测器探测到的信号来计算空调器制冷循环中流通的制冷剂的组分,因此即使在由于空调器的运行工况或负荷工况的改变而使得循环组分改变,或者即使由于空调器运行时制冷剂泄漏或者由于在制冷剂注入时的操作错误而使得循环组分改变,该装置均可精确地探测出制冷循环中的循环组分。
尽管介绍本发明的最佳实施例时使用了特定术语,但这样的介绍仅仅是解释性的,因此应理解为在不偏离下面的权利要求的精神或范围的情况下可以进行改变和变更。
权利要求
1.一种使用非共沸混合致冷剂为其致冷剂的制冷空调器控制信息检测装置,该空调器具有由连在一起的压缩机、冷凝器、减压装置和蒸发器组成的制冷循环;所述装置包括第一温度探测器,用以检测所述蒸发器入口处致冷剂的温度;压力检测器,用以检测蒸发器入口处致冷剂的压力;组分计算单元,用以根据由所述第一温度探测器和所述压力检测器分别测得的信号计算整个所述制冷循环中循环着的致冷剂组分。
2.一种如权利要求1所述的使用非共沸混合致冷剂的制冷空调器控制信息检测装置,它还包括第二温度探测器,用以检测所述冷凝器出口处的致冷剂温度,其特征在于所述组分计算单元根据分别由所述第一温度探测器、压力控制器和第二温度探测器测得的信号计算整个所述制冷循环中循环着的致冷剂组分。
3.一种如权利要求1所述的使用非共沸混合致冷剂的制冷空调器控制信息检测装置,该装置还包括比较运算装置,用于在从所述组分计算单元算出的致冷剂组分超预定范围时,产生一个报警信号;按照由所述比较运算装置产生的报警信号动作的报警装置。
4.一种使用非共沸混合致冷剂为其致冷剂的制冷空调器控制信息检测装置,该空调器具有由连在一起的压缩机、冷凝器、减压装置、蒸发器和收集器组成的制冷循环;所述装置包括温度探测器,用以检测所述收集器中致冷剂的温度或所述收集器与所述冷凝器进气管之间的致冷剂温度;压力检测器,用以检测所述收集器中致冷剂的压力或所述收集器与所述进气管之间的致冷剂压力;组分计算单元,用以根据分别由所述温度探测器和所述压力检测器测得的信号计算整个所述制冷循环中循环着的致冷剂组分。
5.一种如权利要求4所述的使用非共沸混合致冷剂的制冷空调器控制信息检测装置,该装置还包括比较运算装置,用于在由所述组分计算单元算出的致冷剂组分超出预定范围时产生一个报警信号,按照由所述比较运算装置产生的报警信号动作地报警装置。
6.一种使用非共沸混合致冷剂为其致冷剂的制冷空调器控制信息检测装置,该空调器具有由连在一起的压缩机、冷凝器、减压装置、蒸发器和收集器组成的制冷循环;所述装置包括液面探测器,用以检测所述收集器中的液面高度;组分计算单元,用以根据由所述液面探测器测得的信号计算整个所述制冷循环中循环着的致冷剂组分。
7.一种如权利要求6所述的使用非共沸混合致冷剂的制冷空调器控制信息检测装置,该装置还包括比较运算装置,用于在由所述组分计算单元算出的致冷剂组分超出预定范围时产生一个报警信号;按照由所述比较运算装置产生的报警信号动作的报警装置。
8.一种使用非共沸混合致冷剂为其致冷剂的制冷空调器控制信息检测装置,该空调器具有由连在一起的压缩机、四通阀、第一热换器、第一减压装置和第二热换器组成的制冷循环;该空调器还有一旁通管,用来以第二减压装置将所述第一热换器和所述第一减压装置之间的管与所述压缩机的进气管连在一起;第二减压装置在被其连接的二管之间;所述装置包括第一温度探测器,用以检测所述第二减压装置出口处致冷剂的温度;压力检测器,用以检测第二减压装置出口处的致冷剂压力;组分计算单元,用以根据分别由所述温度探测器和所述压力检测器测得的信号计算整个所述冷循环循环着的致冷剂组分。
9.一种如权利要求8所述的使用非共沸混合致冷剂的制冷空调器控制信息检测装置,还包括第二温度探测器,用以检测所述第二减压装置入口处的致冷剂温度,其特征在于所述组分计算单元根据分别由所述第一温度探测器、压力检测器和第二温度探测器测得的信号计算整个所述制冷循环中循环着的致冷剂组分。
10.一种如权利要求8所述的使用非共沸混合致冷剂的制冷空调器控制信息检测装置,其特征在于所述旁通管有一换热区段,用以在所述旁通管与所述第一热换器和第一减压装置间的管之间交换热量。
11.一种如权利要求8所述的使用非共沸混合致冷剂的制冷空调器控制信息检测装置,该装置还包括比较运算装置,用以在由所述组分计算单元算出的致冷剂组分超出预定范围时产生一个报警信号;按照由所述比较运算装置产生的报警信号动作的报警装置。
12.一种使用非共沸混合致冷剂为其致冷剂的制冷空调器控制信息检测装置,该空调器具有由连在一起的压缩机、冷凝器、第一减压装置和蒸发器组成的制冷循环;该空调器还有一旁通管,它以第二减压装置将从所述压缩机出口延伸到所述第一减压装置的高压侧与从所述第一减压装置延伸到所述压缩机入口的低压侧连在一起;该第二减压装置在被其连接的两侧之间;所述空调器还有一冷却装置,用以冷却从所述旁通管高压侧流入所述第二减压装置的非共沸混合致冷剂;所述装置包括第一温度探测器,用以检测靠近所述第二减压装置出口低压侧的致冷剂温度;压力检测器,用以检测靠近所述第二减压装置出口低压侧的致冷剂压力;组分计算单元,用以根据分别由所述温度探测器和所述压力检测器测得的信号计算整个所述制冷循环中循环着的致冷剂组分。
13.一种如权利要求11所述的使用非共沸混合致冷剂的制冷空调器控制信息检测装置,其特征在于将所述冷却装置构造成在所述旁通管高压侧与低压侧之间交换热量。
14.一种如权利要求12所述的使用非共沸混合致冷剂的制冷空调器控制信息检测装置,还包括第二温度探测器,用以控制靠近所述第二减压装置入口高压侧的致冷剂温度;其特征在于所述组分计算单元根据分别由所述第一温度探测器、压力检测器和第二温度探测器测得的信号计算整个所述制冷周期循环着的致冷剂组分。
15.一种如权利要求12所述的使用非共沸混合致冷剂的制冷空调器控制信息检测装置,该装置还包括比较运算装置,用以在由所述组分计算单元算出的致冷剂组分超出预定范围时产生一个报警信号;按照所述比较运算装置产生的报警信号动作的报警装置。
16.一种使用非共沸混合致冷剂为其致冷剂的制冷空调器控制信息检测装置,该空调器具有由连在一起的压缩机、冷凝器、第一减压装置和蒸发器组成的制冷循环;该空调器还有一旁通管,用来以第二减压装置将从所述压缩机出口延伸到所述第一减压装置的高压侧与从所述第一减压装置延伸到所述压缩机入口的低压侧连在一起;该第二减压装置在被其连接的两侧之间;该空调器还有一致冷装置,用以冷却从所述旁通管高压侧流向所述第二减压装置的非共沸混合致冷剂;所述装置包括三个或更多个温度探测器,用以检测靠近所述旁通管高压侧的致冷剂温度;压力探测器,用以检测靠近所述旁通管高压侧的致冷剂压力;组分计算单元,用以根据分别由所述各温度探测器和所述压力检测器测得的信号计算整个所述制冷循环中循环着的致冷剂组分。
17.一种如权利要求16所述的使用非共沸混合致冷剂的制冷空调器控制信号检测装置,其特征在于将所述冷却装置构造成在所述旁通管的高压侧与低压侧之间交换热量。
18.一种如权利要求16所述的使用非共沸混合致冷剂的制冷空调器控制信息检测装置,该装置还包括比较运算装置,用以在由所述组分计算单元算出的致冷剂组分超出预定范围时产生一个报警信号;按照由所述比较运算装置产生的报警信号动作的报警装置。
19.一种使用非共沸混合致冷剂为其致冷剂的制冷空调器控制信息检测装置,该空调器具有由连在一起的压缩机、冷凝器、第一减压装置和蒸发器组成的制冷循环;该空调器还有一旁通管,它以第二减压装置将从所述压缩机出口延伸到所述第一减压装置的高压侧与从所述第一减压装置延伸到所述压缩机入口的低压侧连在一起;该第二减压装置在被其连接的两侧之间所述空调器还有一换热区段,用以在所述旁通管高压侧与低压侧之间交换热量;所述装置包括三个或更多个温度探测器,用以检测靠近所述旁通管低压侧的致冷剂温度;压力检测器,用以检测靠近所述旁通管低压侧的致冷剂压力;组分计算单元,用以根据分别由所述各温度探测器和所述压力检测器测得的信号计算整个所述制冷循环中循环着的致冷剂组分。
20.一种如权利要求19所述的使用非共沸混合致冷剂的制冷空调器控制信息检测装置,该装置还包括比较运算装置,用以在由所述组分计算单元算出的致冷剂组分超出预定范围时产生一个报警信号;按照由所述比较运算装置产生的报警信号动作地报警装置。
全文摘要
一种使用非共沸致冷剂的制冷空调器的控制信息检测装置,在该空调器的制冷循环中被装以温度探测器和压力检测器,该制冷循环由连在一起的压缩机、冷凝器、减压装置和蒸发器构成,用以检测在制冷循环中循环的致冷剂温度和压力,以便由组分计算单元得出致冷剂的循环组分。因此,即使致冷剂的循环组分发生变化,也能有正常的最佳循环工作过程。
文档编号F25B9/00GK1121162SQ9510896
公开日1996年4月24日 申请日期1995年7月21日 优先权日1994年7月21日
发明者隅田嘉裕, 冈崎多佳志, 森木修, 河西智彦 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1