带内循环的多组分致冷剂冷却的制作方法

文档序号:4761544阅读:165来源:国知局
专利名称:带内循环的多组分致冷剂冷却的制作方法
技术领域
本发明一般涉及对产物流体的冷却,尤其涉及用于工业气体液化,其中使气体从环境温度冷却至深冷温度使之液化的场合。
流体冷却,如用于工业气体的液化,是许多操作中所采纳的一个重要步骤。在工业气体液化中,一般工业气体都是通过与致冷剂的间接热交换而进行液化的。这样的系统,尽管在较窄的环境温度范围内由室温致冷顺利,但在要求宽温度范围内的致冷时,例如从环境温度冷到深冷的温度,效率不高。曾已提到解决该效率差的一种方法,是采用多回路的液化流程,其中每一回路均用以降低工业气体的温度,直至达到所需深冷冷凝的温度。然而,此多回路的工业气体液化器在操作上更加复杂化了。
传统的单回路液化器系统不如多回路液化器复杂,但这种系统对致冷剂的选择上有非常严格的要求。解决这个不灵活性问题的一种方法是采用多组分致冷剂流体,代替传统应用于冷却或液化回路中的单组分致冷剂。然而,在传统单回路系统中,甚至采用多组分致冷剂也一样很难达到有效冷却和/或液化,特别在温度范围较宽时,例如在需要使工业气体从环境温度降到深冷温度,而进行液化时。
因此,本发明目的在于提供一种使用多组分致冷剂流体的改良方法,对流体进行冷却,例如实现对工业气体的液化。
根据此公开内容,对于那些本领域的技术人员显而易见,上述和其它目的是可按照本发明以下方法达到的一种冷却产物流体的方法,包括(A)、压缩包括至少两种挥发性不同的组分的多组分致冷剂流体;(B)、使该已压缩的多组分致冷剂流体部分冷凝,将所得部分冷凝了的多组分致冷剂流体分离为液体部分和剩余部分;(C)、使液体部分进行膨胀,形成致冷作用,并通过与产物流体进行间接热交换,汽化该已膨胀后的液体部分,产生被冷却后的产物流体;并(D)、进一步冷却至少若干剩余部分,使已进一步冷却后的剩余部分进行膨胀,形成致冷,并通过与已冷却后的产物流体进行间接热交换,加热该已膨胀后的剩余部分,产生进一步冷却后的产物流体。
这里所用术语“过冷”指的是冷却一种流体,使之温度低于在所存在压力下的液体的饱和温度。
这里所用术语“正常沸点”指的是在1个标准大气压下,即每平方英寸14.696磅(绝对)压力下的沸腾温度。
这里所用术语“间接热交换”指的是两流体彼此间无任何实体接触或混合,而使流体彼此进行热量交换的过程。
这里所用术语“膨胀”指的是进行压力降低的过程。
这里所用术语“涡轮膨胀”和“涡轮膨胀器”分别指的是高压流体经涡轮机使流体的压力和温度降低,并由此形成致冷作用的方法和装置。
这里所用术语“无毒”指的是按照允许合格暴露极限处理时不产生严重或长期危害的情况。
这里所用术语“难燃”指的是无闪点或者闪点非常高,至少600°K。
这里所用术语“无臭氧消耗”指的是零臭氧消耗势,即没有氯,溴或碘原子存在。
这里所用术语“可变负荷致冷剂”指的是含有两种或更多组分的混合物,其比例可使这些组分的液相在混合物的泡点和露点之间进行连续升温的变化。混合物的泡点是在给定压力下混合物全处于液相时的温度,但添加热量就引发形成与液相平衡的汽相。混合物的露点是在给定压力下混合物全处于汽相时的温度,但取出热量就会引发形成与汽相平衡的液相。因此,在混合物泡点与露点之间的温度区域是汽液相平衡共存的区域。在本发明的实施中,泡点与露点的温差对于可变负荷致冷剂至少为10°K,优选至少为20°K,最优选至少为50°K。
这里所用术语“碳氟烃”指的是下述物质四氟代甲烷(CF4)、全氟乙烷(C2F6)、全氟丙烷(C3F8)、全氟丁烷(C4F10)、全氟戊烷(C5F12)、全氟乙烯(C2F4)、全氟丙烯(C3F6)、全氟丁烯(C4F8)、全氟戊烯(C5F10)、六氟环丙烷(cyclo-C3F6)和八氟环丁烷(cyclo-C4F8)。
这里所用术语“氢碳氟烃”指的是下述物质三氟甲烷(CHF3)、五氟乙烷(C2HF5)、四氟乙烷(C2H2F4)、七氟丙烷(C3HF7)、六氟丙烷(C3H2F6)、五氟丙烷(C3H2F5)、四氟丙烷(C3H4F4)、九氟丁烷(C4HF9)、八氟丁烷(C4H2F8)、十一氟戊烷(C5HF11)、氟代甲烷(CH3F)、二氟甲烷(CH2F2)、氟代乙烷(C2H5F)、二氟乙烷(C2H4F2)、三氟乙烷(C2H3F3)、二氟乙烯(C2H2F2)、三氟乙烯(C2HF3)、氟乙烯(C2H3F)、五氟丙烯(C3HF5)、四氟丙烯(C3H2F4)、三氟丙烯(C3H3F3)、二氟丙烯(C3H4F2)、七氟丁烯(C4HF7)、六氟丁烯(C4H2F6)和九氟戊烯(C5HF9)。
这里所用术语“氟醚”指的是下述物质三氟甲氧-全氟甲烷(CF3-O-CF3)、二氟甲氧-全氟甲烷(CHF2-O-CF3)、一氟甲氧-全氟甲烷(CH2F-O-CF3)、二氟甲氧-二氟甲烷(CHF2-O-CHF2)、二氟甲氧-全氟乙烷(CHF2-O-C2F5)、二氟甲氧-1,2,2,2-四氟乙烷(CHF2-O-C2HF4)、二氟甲氧-1,1,2,2-四氟乙烷(CHF2-O-C2HF4)、全氟乙氧-氟代甲烷(C2F5-O-CH2F)、全氟甲氧-1,1,2-三氟乙烷(CF3-O-C2H2F3)、全氟甲氧-1,2,2-三氟乙烷(CF3-O-C2H2F3)、环-1,1,3,3-四氟丙醚(cyclo-C3H2F4-O-)、全氟甲氧-1,1,2,2-四氟乙烷(CF3-O-C2HF4)、环-1,1,2,3,3-五氟丙醚(cyclo-C3H2F5-O-)、全氟甲氧-全氟丙酮(CF3-O-CF2-O-CF3)、全氟甲氧-全氟乙烷(CF3-O-C2F5)、全氟甲氧-1,2,2,2-四氟乙烷(CF3-O-C2HF4)、全氟甲氧-2,2,2-三氟乙烷(CF3-O-C2H2F3)、环-全氟甲氧-全氟丙酮(cyclo-CF2-O-CF2-O-CF3-)和环-全氟丙醚(cyclo-C3F6-O-)。
这里所用术语“大气气体”指的是下述物质氮气(N2)、氩气(Ar)、氪气(Kr)、氙气(Xe)、氖气(Ne)、二氧化碳(CO2)、氧气(O2)和氦气(He)。
这里所用术语“低臭氧消耗”指的是臭氧消耗势低于0.15,如蒙特利尔普若托公约所限定,其中二氯氟甲烷(CCl2F2)的臭氧消耗势为1.0。
这里所用术语“工业气体”指的是氮气、氧气、氩气、氢气、氦气、二氧化碳、一氧化碳、甲烷和含有其中两种或更多的流体混合物。
这里所用术语“深冷温度”指的是在150°K及以下的温度。
这里所用术语“致冷作用”指的是能从低温系统向周围环境气氛导出热量的功能。


图1是本发明内循环冷却系统的一组优选实施方案的流程示意图。
图2是另一组本发明利用产物循环的内循环冷却系统优选实施方案流程示意图。
图3是另一组本发明利用多级压缩机的内循环冷却系统优选实施的流程示意图。
本发明一般包括一种混合致冷剂的应用,能在很大温度范围内,如从环境温度至深冷温度的范围内,有效进行致冷。此致冷作用可以有效地用于对要求温度范围宽的工业气体液化过程,无需采用复杂的多个致冷回路。
本发明的实施中,多组分致冷剂流体经部分冷凝,再将其分离为液体和蒸汽,液体包括多组分致冷剂流体中的大量的和优选最大量的挥发性最低的组分。不论有无过冷,液体都不延续至冷却回路的冷却支管末端,而是循环至压缩,从而将其致冷作用传递给产物流体,进行冷却。含多组分致冷剂流体中更易挥发组分的蒸汽,继续受到冷却,一般在回路冷却支管末端进行冷凝,而后用于将致冷作用传递给更冷温度的产物流体,因此提高了冷却回路的总效率。
现参阅附图,对本发明作更详细地说明。参考附图1,多组分致冷剂流体60,包括至少两种挥发性不同的组分,经压缩机30压缩至一般每平方英寸100至600磅(psia)(绝对)的压力范围。压缩可以是单级或多级的。压缩比,即压缩后的多组分致冷剂流体61对流体60的压力比值,优选在3-15的范围,最优选在5以上。经压缩的多组分致冷剂流体61在后冷却器5中经冷却取出压缩热,形成物流62。如果压缩机30属于油润滑压缩机,物流62可以通过分离器10,分离物流62中的油类,再经所示管线64及阀91和管线92循环到压缩机60中。
经压缩后的多组分致冷剂流体,通过如63所示管线,经热交换器1与进行加热的多组分致冷剂流体在热交换器1中进行间接热交换,而被部分冷凝,如以下详细描述,所得部分冷凝的多组分致冷剂流体51经相分离器11,分离为液体部分和剩余部分。液体部分86,包括多组分致冷剂流体中至少大部分和优选最大量或基本上全部沸点最高或挥发性最低的组分,通过阀门87膨胀,形成致冷作用,所得膨胀后的致冷载流(refrigeration bearing fluid)88进入致冷回路的返回或加热支管。然后进入物流89至热交换器1,进行汽化,尤其达到对产物流体的冷却,而后再进入物流90,返回压缩机30。
物流66中来自相分离器11的一些液体,可通过流量控制阀67,形成物流68,与来自相分离器11的蒸汽物流65合并,以形成剩余部分69,这部分可以全是蒸汽,或是两相物流。此剩余部分经过热交换器2与进行加热的多组分致冷剂流体间接热交换,使之冷却,优选使之部分冷凝,而所得冷却的剩余部分进行膨胀,形成致冷作用,然后与产物流体进行间接热交换而被加热,此时所处的温度比产物流体与内循环液体部分进行热交换时所处的温度更低。在图1说明的实施方案中,将热交换2出来的部分冷凝物流70,送入相分离器12,并分离为剩余蒸汽部分和剩余液体部分。剩余液体部分经过相分离器12进入管线81,再通过阀82进行膨胀,形成致冷,所得膨胀后的致冷载流83进入致冷回路的返回或加热支管。接着再进入物流84至热交换器1进行汽化,尤其达到对产物流体的冷却,然后从热交换器2进入物流85,与物流88合并,形成流体89返回压缩机30。
一些液体从相分离器12进入物流72,可通过流量控制阀73,形成物流74,并与来自相分离器12的蒸汽部分71合并,形成物流75,物流75可以全部是蒸汽或是两相物流。物流75经过热交换器3与进行加热的多组分致冷剂流体间接热交换,使之冷却和优选完全冷凝。所得物流76通过阀77进行膨胀,形成致冷,所得致冷载流78在致冷回路的加热支管中经热交换器4和3进行加热,并优选进行汽化,如所示的物流79和80。所得物流80与物流83合并,形成物流84,循环至压缩机。
产物流体93,可以是工业气体如氮气或氧气,经热交换器1与前述进行汽化的液体部分进行间接热交换,使之冷却。所得冷却后的产物流体94通过与剩余部分间接热交换,使之进一步冷却。在图1说明的实施方案中,进一步冷却是通过热交换器2、3、和4的线路实现的,如使用管线94、95、96和97所示,在线路97中形成进一步冷却后的产物流体。产物流体93优选是气态,而进一步冷却后的产物流体97则为液态。
图2说明本发明的另一实施方案,其中致冷剂流体的液体部分在进行膨胀前是过冷的。图2说明的实施方案也说明了压缩机不是油润滑的,因此不需要图1所说的油分离步骤的情况。
现参考图2,多组分致冷剂流体160,包括至少两种挥发性不同的组分,经压缩机130一般压缩至100至1000psia(绝对)的压力范围。压缩可以为一级或多级的。压缩比优选在3-15的范围,最优选在5以上。已被压缩后的多组分致冷剂物流161在后冷却器104中经冷却移出压缩热,形成两相物流162,此两相物流经分离器110分离为液体部分和剩余部分。液体部分164,含有多组分致冷剂流体中至少占大多数的和优选最大量或基本上所有的沸点最高或挥发性最低的组分,经热交换器101与进行加热的多组分致冷剂物流间接热交换,而被过冷,以下将有更充分描述。所得过冷的多组分致冷剂流体170经阀门171进行膨胀,形成致冷,所得已膨胀后的致冷载流172进入致冷回路的返回或加热支管。然后进入物流181至热交换器101,进行汽化,尤其是达到对产物流体的冷却,然后循环进入物流160至压缩机130。
剩余部分从相分离器110引出,作为蒸汽物流163,并经热交换器101,进行冷却和部分冷凝,形成两相物流165。物流165进入相分离器111,被分离为液体和蒸汽。剩余部分的液体部分从分离器111进入物流167至热交换器102,与进行加热的加热多组分致冷剂物流进行间接热交换,使之过冷。所得过冷物流173经阀门174进行膨胀,形成致冷,所得已膨胀的致冷载流175进入冷却回路的返回管线。然后经物流179进入热交换器102,进行汽化,尤其是,达到对产品物流的进一步冷却,然后经物流180和181进入热交换器101进一步热交换,再进入物流160循环至压缩机130。
剩余部分的蒸汽部分经分离器111进入流体166,至热交换器102,进行冷却,优选部分冷凝,形成物流168,物流168再经热交换器103进一步冷却,优选全部冷凝。所得的物流169,优选为所有液体,经阀门176进行膨胀,形成致冷,所得致冷载流177在冷却或致冷回路的加热支管中,通过热交换器103进行加热,优选至少部分汽化。所得物流178与物流175合并,形成前述物流179,而且如前所述,在循环进入物流160至压缩机130以前,要经热交换器102和101进一步加热和可能的汽化。
产物流体182,优选为一种工业气体,经压缩机145压缩,并在后致冷器146中进行冷却,移出压缩热,形成物流191,物流191是经热交换器101线路,与如前所述的进行汽化的液体部分进行间接热交换,加以冷却。所得冷却后的产物流体183与剩余部分间接热交换,进行进一步冷却。在图2说明的实施方案中,进一步冷却是通过热交换器102和103的线路实现的,如用管线184所示,形成进一步冷却的产物185,此产物经阀门186形成两相物流187。
物流187进入相分离器188,被分离为蒸汽和液流。从分离器188中抽出此液体物流189,作为经进一步冷却后的产物流体,送至使用现场及/或储藏。蒸汽流190从相分离器188引出,通过热交换器103、102和101加热,以帮助产物流体的冷却和进一步冷却,然后进入物流182,形成合并物流191,经热交换器101、102和103用于冷却和进一步冷却。
图3说明本发明的另一实施方案,其中在致冷回路中采用了单一热交换器和多台压缩机。另一方面,可采用多级压缩机代替图3说明的多台压缩机。现参考图3,多组分致冷剂流体220,包括至少两种挥发性不同的组分,经压缩机221压缩至第一级压力。经压缩的多组分流体222在后冷器223中经过冷却,移出压缩热,所形成的两相流224再进入相分离器205。
从相分离器205出来的液体进入物流225,经热交换器201使之过冷,形成物流226。物流226经阀门227,所得物流228再与物流260在致冷回路的加热支管中合并,形成物流261。从相分离器205分离出的蒸汽进入物流229,一部分230经热交换器201进行冷却和部分冷凝。所得两相物流231进入相分离器206,从相分离器206出来的液体进入物流232,经热交换器202使之过冷,形成流体233。物流233流经阀门231,所得物流232在致冷回路的加热支管中与物流258合并,形成物流259。从相分离器206分离出的蒸汽进入流体233,通过热交换器202进行冷却,所得物流234经热交换器203进一步进行冷却,形成物流235。物流235流经阀门236,所得物流237在致冷回路的加热支管中与物流256合并,形成物流257。
蒸汽物流229的剩余部分238经压缩机239进一步压缩至第二级压力,此压力高于第一级压力,所得物流240通过后冷却器241进行冷却,移出压缩热。所得物流242通过热交换器201进行冷却,所得物流242通过热交换器202进行冷却和部分冷凝。所得两相物流244进入分离器207,分离为液体部分和剩余部分。液体部分245,含有多组分致冷剂流体中至少大多数的和优选最大量或基本上所有的沸点最高或挥发性最低的组分,经热交换器203与进行加热的多组分致冷剂物流进行间接热交换,使之过冷,如以下将更充分描述。所得过冷致冷剂流体246通过阀门247进行膨胀,形成致冷,所得膨胀后的致冷载流248进入物流255,通过致冷回路的加热支管循环至压缩机221。
物流244的剩余部分从相分离器207抽出,作为蒸汽物流250,并流经热交换器203,而后作为物流251经热交换器204,进行冷却,优选进行完全冷凝。所得物流252,优选为所有液体,通过阀门253进行膨胀,形成致冷,所得致冷载流254经加热和汽化,尤其是,达到对产物流体进一步冷却。物流254与物流248,237,232和228合并,如前所述,并作为物流220循环至压缩机221。
产物流体210,优选为工业气体,通过热交换器201、202、203和204与多组分致冷剂流体的进行汽化及/或加热的部分进行间接热交换,使之冷却和进一步冷却,如前所述。将所得进一步冷却后的产物流体214送至使用现场及/或储存。优选地是,产物流体210为气态,经进一步冷却后的产物流体214为液态。
用于本发明实施中的多组分致冷剂流体,包括至少两种组分。致冷剂组分的选择取决于具体操作应用的致冷负荷与温度。适宜的组分将根据它们的正常沸点、潜热、可燃性、毒性及臭氧消耗势加以选择。
用于本发明实施的多组分致冷剂流体的一组优选实施方案,包括至少一种选自碳氟烃,氢碳氟烃和氟醚的组分和至少一种选自碳氟烃,氢碳氟烃,氟醚和大气气体的组分。
用于本发明实施的多组分致冷剂流体的另一组优选实施方案,包括至少两种选自碳氟烃,氢碳氟烃和氟醚的组分和至少一种大气气体。
用于实施本发明的多组分致冷剂流体的另一组优选实施方案,包括至少两种选自碳氟烃,氢碳氟烃和氟醚的组分和至少两种大气气体。
用于实施本发明多组分致冷剂流体的另一组优选实施方案,包括至少一种氟醚和至少一种选自碳氟烃,氢碳氟烃,氟醚和大气气体组分。
在一组优选的实施方案中,该多组分致冷剂流体仅由碳氟烃组成。另一组优选的实施方案中,该多组分致冷剂流体仅由碳氟烃和氢碳氟烃组成。在另一组优选实施方案中,该多组分致冷剂流体仅由碳氟烃和大气气体组成。在另一种优选实施方案中,该多组分致冷剂流体仅由碳氟烃、氢碳氟烃和氟醚组成。在另一组优选实施方案中,该多组分致冷剂流体仅由碳氟烃,氟醚和大气气体组成。
尽管用于本发明实施中的多组分致冷剂流体可以含有其它组分如氢氯碳氟烃及/或烃类,但优选地是,该多组分致冷剂流体不含有氢氯碳氟烃。在本发明另一组优选的实施方案中,该多组分致冷剂流体不含烃类,最优选地是,该多组分致冷剂流体既不含氢氯碳氟烃又不含烃类。最优选地是,该多组分致冷剂流体是无毒、难燃和无臭氧消耗的,并且最优选地是,该多组分致冷剂流体的每一组分或者为碳氟烃,氢碳氟烃,氟醚,或者为大气气体。
本发明特别有利应用于从环境温度有效冷至深冷温度的场合。表1-5列出了多组分致冷剂流体混合物用于实施本发明的优选实施例。表1-5所列出的浓度值均为摩尔百分数。
表1组分 浓度范围C5F125-25C4F100-15C3F8810-40C2F60-30CF410-50Ar 0-40N210-80Ne 0-10He 0-10表2组分 浓度范围C3H3F55-25
C4F100-15C3F810-40CHF30-30CF410-50Ar 0-40N210-80Ne 0-10He 0-10表3组分 浓度范围C3H3F55-25C3H2F60-15C2H2F45-20C2HF55-20C2F60-30CF410-50Ar 0-40N210-80Ne 0-10He 0-10表4组分 浓度范围CHF2-O-C2HF45-25C4F100-15CF3-O-CHF210-40CF3-O-CF30-20C2F60-30CF410-50Ar 0-40N210-80
Ne 0-10He 0-10表5组分 浓度范围C3H3F55-25C3H2F60-15CF3-O-CHF310-40CHF30-30CF40-25Ar0-40N210-80Ne0-10He0-10本发明特别适用于宽温度范围的致冷,特别是适用于涉及深冷的温度范围。本发明的一组优选实施方案中,致冷剂混合物中的每一组双或多组分都有一个不同于该致冷混合物中各其它组分的正常沸点,此正常沸点至少差异5°K,更优选至少10°K,最优选至少为20°K。这就提高了在宽温度范围的致冷效率,特别是涉及深冷温度范围的致冷效率。在本发明特别优选的实施方案中,该多组分致冷剂流体中沸点最高的组分的正常沸点比该多组分致冷剂流体中沸点最低的组分的正常沸点至少高50°K,优选至少高100°K,最优选至少高200°K。
用于组成本发明实施中该多组分致冷剂流体的组分和其浓度,要能形成一种可变负荷的多组分致冷剂流体,优选地是要保持在本发明方法的整个温度范围均具有可变负荷的特征。这就明显地提高了在如此宽的温度范围产生和利用致冷作用的效率。这样规定的组分优选组合的另外一好处在于,可利用它们形成无毒、难燃和低或无臭氧消耗的流体混合物。这就具备了另外一些优点,而优于通常有毒、易燃及/或消耗臭氧的传统致冷剂。
用于本发明实施的一种无毒、难燃和低或无臭氧消耗的优选可变负荷多组分致冷剂流体,包括选自以下的两种或更多组分C5F12、CHF2-O-C2HF4、C4HF9、C3H3F5、C2F5-O-CH2F、C3H2F6、CHF2-O-CHF2、C4F10、CF3-O-C2H2F3、C3HF7、CH2F-O-CF3、C2H2F4、CHF2-O-CF3、C3F8、C2HF5、CF3-O-CF3、C2F6、CHF3、CF4、O2、Ar、N2、Ne和He。尽管已经参照某些优选的实施方案对本发明详细进行了描述,但本领域技术人员都会承认,还有一些其它实施方案是在本发明精神和权利要求的范围内的。例如,为了形成致冷作用,可用于涡轮膨胀器代替用于说明实施方案中的一个或多个膨胀阀。
权利要求
1.一种冷却产物流体的方法,包括(A)、压缩包括至少两种挥发性不同的组分的多组分致冷剂流体;(B)、部分冷凝已压缩后的多组分致冷剂流体,分离所得部分冷凝的多组分致冷剂流体为液体部分和剩余部分;(C)、膨胀该液体部分,形成致冷,并通过与产物流体间接热交换,汽化该膨胀后的液体部分,形成冷却后的产物流体;并且(D)、进一步冷却至少某些剩余部分,膨胀该已进一步冷却后的剩余部分,形成致冷,并通过与已冷却后的产物流体的间接热交换,加热该已膨胀后的剩余部分,形成进一步冷却后的产物流体。
2.按照权利要求1的方法,其中在进行膨胀前使液体部分进行过冷。
3.按照权利要求1的方法,其中冷却剩余部分使剩余部分达到部分冷凝,将该部分冷凝的剩余部分分离为剩余蒸汽部分和剩余液体部分,使剩余的液体部分进行膨胀,形成致冷,并通过与已冷却后的产物流体进行间接热交换,使之汽化,产生进一步冷却的产物流体。
4.按照权利要求3的方法,其中冷凝该剩余的蒸汽部分,膨胀所得已冷凝了的剩余蒸汽部分,形成致冷,并且通过与进一步被冷却后的产物流体的间接热交换,汽化所得已冷凝了的剩余蒸汽部分。
5.按照权利要求1的方法,其中使已进一步冷却后的产物流体膨胀,通过与冷却产物流体进行间接热交换,加热膨胀过的进一步冷却后的产物的蒸汽部分。
6.按照权利要求1的方法,其中将多组分致冷剂流体压缩至第一压力,通过与产物流体进行间接热交换,加热一部分第一压力的流体,并在步骤(B)部分冷凝以前,将另一部分第一压力的流体进一步压缩至第二压力,第二压力高于所述第一压力。
7.按照权利要求1的方法,其中多组分致冷剂流体包括至少一种选自碳氟烃,氢碳氟烃和氟醚的组分和至少一种选自碳氟烃,氢碳氟烃,氟醚和大气气体的组分。
8.按照权利要求1的方法,其中多组分致冷剂流体包括至少两种选自碳氟烃、氢碳氟烃和氟醚的组分和至少一种大气气体。
9.按照权利要求1的方法,其中多组分致冷剂流体包括至少一种氟醚和至少一种选自碳氟烃、氢碳氟烃、氟醚和大气气体的组分。
10.按照权利要求1的方法,其中多组分致冷剂流体中沸点最高组分的正常沸点比多组分致冷剂流体中沸点最低组分的正常沸点至少高50°K。
全文摘要
一种冷却流体具体至深冷温度的系统,其中使多组分致冷剂流体进行部分冷凝,其液体用于形成致冷作用,经循环进入致冷回路加热支管的上游部分去冷却产物,其蒸汽,具有与液体不同的组成,用于在硬低温度下形成致冷对产物进一步进行冷却。
文档编号F25B9/00GK1263243SQ9912742
公开日2000年8月16日 申请日期1999年12月28日 优先权日1998年12月30日
发明者B·阿曼, W·J·奥尔斯泽夫斯基, J·A·韦伯, D·P·波纳奎斯特, A·阿查亚, J·H·洛雅 申请人:普拉塞尔技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1