一种污水处理的工艺参数的调整方法及装置的制作方法

文档序号:4821288阅读:117来源:国知局
专利名称:一种污水处理的工艺参数的调整方法及装置的制作方法
技术领域
本发明涉及废水处理技术,更具体的说,是涉及一种污水处理的工艺参数的调整方法及装置。
背景技术
活性污泥法是一种利用好氧生物处理废水的方法,此方法目前已被广泛的应用到城镇污水的处理工作中。活性污泥法处理废水的原理是,在有氧状态下利用活性污泥的代谢活动来处理废水;所述活性污泥由好氧微生物经过大量繁殖后所形成的微生物群体及一些无机物、未被分解的有机物和所述好氧微生物的分泌物组成;处理前,将空气或氧气通入活性污泥和废水的混合液中,经一定时间的搅拌后进入二沉池,得到沉淀的生物固体和经活性污泥处理后的废水。但是,在污水处理厂处理污水的实际运行中,污水处理厂的进水水质、水量及环境条件都是在不断变化的,这样,为了保证污水处理系统能够处于最佳的运行状态,就需要根据活性污泥中微生物的代谢规律对工艺参数进行调节控制。现有技术中,调整工艺参数是利用现有的活性污泥数学模型,如活性污泥I号模型,根据污水处理厂现有的进水和操作条件在所述活性污泥数学模型中的运行,预测出出水水质;当所述出水水质不符合要求时,操作人员根据技术经验及时的调整工艺参数。综上所述,现有技术中调整工艺参数是操作人员根据技术经验来调整的,这样的调整存在模糊性,无法精确定量,可能为无效或低效操作,进而导致污水处理厂运行效率低下,污水处理成本高。

发明内容
有鉴于此,本发明提供了一种污水处理的工艺参数调整的方法及装置,以克服现有技术中由于操作人员根据技术经验来调整工艺参数而导致的工艺参数的调整存在模糊性,无法精确定量的问题。为实现上述目的,本发明提供如下技术方案一种污水处理的工艺参数的调整方法,包括预处理过程采用活性污泥数学模型运行η组不同的工艺参数组合,得到对应于所述η组工艺参数组合的η个模拟出水水质,所述η为正整数且所述η不小于100 ;将模拟出水水质和与其对应的工艺参数组合作为样本建立误差反向传播模型;所述误差反向传播模型构建了模拟出水水质和工艺参数组合的函数关系; 调整过程误差反向传播模型接收用户输入的期望出水水质,并按照所述出水水质和工艺参数之间的函数关系,计算得到目标工艺参数组合;将所述目标工艺参数输入污水处理系统。
可选的,所述将模拟出水水质和与其对应的工艺参数组合作为样本建立误差反向传播模型,包括依据预设的原则选取由模拟出水水质和与其对应的工艺参数组合组成的样本,并将所述样本分为训练集和测试集;采用所述训练集中的样本建立原始误差反向传播模型;采用所述测试集中的样本来校验所述原始误差反向传播模型,得到误差反向传播模型。其中,所述预设的原则为将不同模拟出水水质的差值处于预设相近范围内的模拟出水水质对应的工艺参数进行比较,并选取工艺参数组合开销小的模拟出水水质和与其对应工艺参数组合为样本;和, 将没有与自身差值处于预设相近范围内的模拟出水水质和与其对应的工艺参数组合为样本。可选的,所述活性污泥数学模型为活性污泥I号模型、活性污泥2号模型、活性污泥3号模型或活性污泥2D模型。可选的,在将η组不同的工艺参数组合在活性污泥数学模型中运行前,还包括对活性污泥数学模型进行修正。其中,所述模拟出水水质和所述期望出水水质的检测指标包括出水化学需氧量值、氨根离子浓度、总氮浓度和总磷浓度。一种污水处理的工艺参数的调整装置,包括模拟处理模块,采用活性污泥数学模型运行η组不同的工艺参数组合,得到对应于所述η组工艺参数组合的η个模拟出水水质,所述η为正整数且所述η不小于100 ;模型建立模块,用于将模拟出水水质和与其对应的工艺参数组合作为样本建立误差反向传播模型;参数获取模块,用于控制误差反向传播模型接收用户输入的期望出水水质,并按照所述出水水质和工艺参数之间的函数关系,计算得到目标工艺参数组合;参数输入模块,用于将所述目标工艺参数输入污水处理系统。可选的,所述模型建立模块包括样本选取模块,用于依据预设的原则选取由模拟出水水质和与其对应的工艺参数组合组成的样本,并将所述样本分为训练集和测试集;原始模型建立模块,用于采用所述训练集中的样本建立原始误差反向传播模型;模型建立子模块,用于采用所述测试集中的样本来校验所述原始误差反向传播模型,得到误差反向传播模型。可选的,还包括模型修正模块,用于对所述活性污泥数学模型进行修正。经由上述的技术方案可知,与现有技术相比,本发明实施例公开了一种污水处理的工艺参数的调整方法及装置,所述方法首先进行预处理过程,即采用活性污泥数学模型运行不少于100组的工艺参数组合,得到对应的不少于100个的模拟出水水质,再以模拟出水水质和与其对应的工艺参数组合为样本建立误差反向传播模型,确定出水水质和工艺参数组合的函数关系;经过上述预处理过程后,误差反向传播模型接收用户输入的期望出水水质,并按照所述出水水质和工艺参数之间的函数关系,计算得到目标工艺参数组合,并将所述目标工艺参数输入污水处理系统。通过本发明实施例公开的污水处理的工艺参数的调整方法及装置,将活性污泥数学模型和人工智能算法中的误差反向传播算法结合使用,根据建立的模型和期望出水水质,得到精确定量的工艺参数组合,利用得到的工艺参数组合来处理废水,避免了无效或低效操作,进而能够提高污水处理厂的运行效率,降低污水处理成本。


为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。图I为本发明实施例公开的污水处理的工艺参数的调整方法流程图;图2为本发明实施例公开的建立污水处理误差反向传播模型原理示意3为本发明实施例公开的建立误差反向传播模型的流程示意图;图4为本发明实施例公开的污水处理的工艺参数的调整装置;图5为本发明实施例公开的模型建立模块的结构示意图。
具体实施例方式下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例一图I为本发明实施例公开的污水处理的工艺参数的调整方法流程图,参见图I所示,所述方法可以包括预处理过程和调整过程,步骤可以如下步骤101 :采用活性污泥数学模型运行η组不同的工艺参数组合,得到对应于所述η组工艺参数组合的η个模拟出水水质,所述η为正整数且所述η不小于100 ;其中,所述活性污泥数学模型包括活性污泥I号模型、活性污泥2号模型、活性污泥3号模型或活性污泥2D模型;上述四种模型为国际水协给出的常规活性污泥数学模型;所述模拟出水水质和所述期望出水水质的检测指标包括出水化学需氧量值、氨根离子浓度、总氮浓度和总磷浓度;一般情况下,污水处理厂的工艺参数是固定的,例如厌氧段水力停留时间是2小时,缺氧段水力停留时间是4小时;在选取不同的工艺参数组合中各个工艺参数时,可以在原有固定的工艺参数相近的范围内选取,以使得利用活性污泥数学模型运行出来的模拟出水水质不会和实际要求偏差太大;为了使得后续步骤中,利用得到的模拟出水水质和与其对应的工艺参数组合作为样本建立的误差反向传播模型更加精确,在步骤101中,应尽可能多是选取各个工艺参数在适当范围内的组合,本实施例中,工艺参数组合的个数不少于100 组;步骤102 :将模拟出水水质和与其对应的工艺参数组合作为样本建立误差反向传播模型;其中,所述误差反向传播模型构建了出水水质和工艺参数组合的函数关系;所述误差反向传播模型是利用机器学习方法中的人工神经网络的一种名为误差反向传播算法建立的,所述误差反向传播算法的过程可以概括为将计算值与实际值比较后,所得的误差反向传递回输入端,通过上述反向传递,将误差分摊给各层的节点,进而对每个单元逐个修正;在本实施例中,建立误差反向传播模型的过程可以参见图2,图2为本发明实施例公开的建立污水处理误差反向传播模型过程示意图,如图2所示,在误差反向传播模型的输入端输入模拟出水水质的各项指标,经函数计算至隐藏层,再经函数计算至输出层;在与所述 模拟出水水质对应的工艺参数比对后,将误差反向传输回隐藏层,再传输至输入层;根据传回的误差,逐一修正各个节点;重复上述过程,直到误差达到可接受的范围;在一个示意性的示例中,步骤102的具体步骤可以参见图3,图3为本发明实施例公开的建立误差反向传播模型的流程示意图,如图3所示,可以包括步骤301 :依据预设的原则选取由模拟出水水质和与其对应的工艺参数组合组成的样本,并将所述样本分为训练集和测试集;由于在实际情况中,不同的工艺参数组合在活性污泥数学模型中运行可能会输出相近指标的出水水质,这里可以选取比较优化的工艺参数组合,即选择工艺参数组合开销低的组合作为样本;例如两组工艺参数组合中除了好氧段水力停留时间分别是5小时和10小时,而其他的工艺参数均相同,那么就会选择好氧段水力停留时间为5小时的工艺参数组合来作为样本;步骤302 :采用所述训练集中的样本建立原始误差反向传播模型;所述训练集中的样本是用来建立原始误差反向传播模型的,为了保证建立的模型的准确性,训练集中的样本需要多一些,可以取所有样本中的4/5为训练集;在建立原始误差反向传播模型的过程中,涉及到各层节点间函数的选择,每个模型的函数都是不同的,需要根据数据的特点来分析选择;步骤303 :采用所述测试集中的样本来校验所述原始误差反向传播模型,得到误差反向传播模型;原始误差反向传播模型建立后,用测试集来验证模型,同样要求误差在可接受的范围中;当训练集和测试集的误差都处于可接受范围中时,误差反向传播模型就建立成功;上述步骤101和步骤102为本发明实施例公开的污水处理的工艺参数的调整方法的预处理过程,下面介绍发明实施例公开的污水处理的工艺参数的调整方法的调整过程,进入步骤103 ;步骤103 :误差反向传播模型接收用户输入的期望出水水质,并按照所述出水水质和工艺参数之间的函数关系,计算得到目标工艺参数组合;在误差反向传播模型建立成功后,用户可以逆向使用误差反向传播算法,将期望出水水质作为误差反向传播模型的输入端,从所述误差反向传播模型的输出端获取与所述期望出水水质对应的目标工艺参数组合;
步骤104 :将所述目标工艺参数输入污水处理系统;将获取的目标工艺参数投入污水处理厂处理污水的实际运行中。在其他的实施例中,在步骤101之前,还可以包括对活性污泥数学模型进行修正的步骤;对于国际水协给出的4种活性污泥数学模型,在实际的应用中,也可以根据实际情况对这些模型做一些修正,例如添加一些反应过程的计算、污水处理过程中某个产物量的计算等。本实施例中,所述污水处理的工艺参数的调整方法首先进行预处理过程,即采用活性污泥数学模型运行多组的 工艺参数组合,得到对应的多个的模拟出水水质,再确定出水水质和工艺参数组合的函数关系,建立对应于所述函数关系的误差反向传播模型;经过上述预处理过程后,误差反向传播模型接收用户输入的期望出水水质,并按照所述出水水质和工艺参数之间的函数关系,计算得到目标工艺参数组合,并将所述目标工艺参数输入污水处理系统。本发明实施例公开的污水处理的工艺参数的调整方法,将活性污泥数学模型和人工智能算法中的误差反向传播算法联用,根据建立的模型和期望出水水质,得到精确定量的工艺参数组合,利用得到的工艺参数组合来处理废水,避免了无效或低效操作,进而能够提高污水处理厂的运行效率,降低污水处理成本。上述本发明公开的实施例中详细描述了方法,对于本发明的方法可采用多种形式的装置实现,因此本发明还公开了一种装置,下面给出具体的实施例进行详细说明。实施例二图4为本发明实施例公开的污水处理的工艺参数的调整装置,参见图4所示,所述污水处理的工艺参数的调整装置40可以包括模拟处理模块401,用于采用活性污泥数学模型运行η组不同的工艺参数组合,得到对应于所述η组工艺参数组合的η个模拟出水水质,所述η为正整数且所述η不小于100 ;模型建立模块402,用于将模拟出水水质和与其对应的工艺参数组合作为样本建立误差反向传播模型;在一个示意性的示例中,所述模型建立模块402的具体结构可以参见图5,图5为本发明实施例公开的模型建立模块的结构示意图,如图5所示,所述模型建立模块402可以包括样本选取模块4021,用于依据预设的原则选取由模拟出水水质和与其对应的工艺参数组合组成的样本,并将所述样本分为训练集和测试集;所述预设的原则为将不同模拟出水水质的差值处于预设相近范围内的模拟出水水质对应的工艺参数进行比较,并选取工艺参数组合开销小的模拟出水水质和与其对应工艺参数组合为样本;和,将没有与自身差值处于预设相近范围内的模拟出水水质和与其对应的工艺参数组合为样本;原始模型建立模块4022,用于采用所述训练集中的样本建立原始误差反向传播模型;模型建立子模块4023,用于采用所述测试集中的样本来校验所述原始误差反向传播模型,得到误差反向传播模型;除了模拟处理模块401和模型建立模块402,污水处理的工艺参数的调整装置40还包括参数获取模块403,用于控制误差反向传播模型接收用户输入的期望出水水质,并按照所述出水水质和工艺参数之间的函数关系,计算得到目标工艺参数组合;参数输入模块404,用于将所述目标工艺参数输入污水处理系统。
在其他的实施例中,污水处理的工艺参数的调整装置还可以包括模型修正模块,用于在模拟处理模块运行之前,对所述活性污泥数学模型进行修正。本实施例中,所述污水处理的工艺参数的调整装置首先将多组工艺参数组合在活性污泥数学模型中运行,得到对应的多个模拟出水水质,进而根据模拟出水水质和与其对应的工艺参数组合为样本确定出水水质和工艺参数组合的函数关系,建立误差反向传播模型,再将期望出水水质作为所述误差反向传播模型的输入端,利用确定的函数关系,计算出目标工艺参数组合,并将所述目标工艺参数输入污水处理系统。通过本发明实施例公开的污水处理的工艺参数的调整装置,将活性污泥数学模型和人工智能算法中的误差反向传播算法联用,根据建立的模型和期望出水水质,得到精确定量的工艺参数组合,利用得到的工艺参数组合来处理废水,避免了无效或低效操作,进而能够提高污水处理厂的运行效率,降低污水处理成本。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。还需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固
有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在
包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明 将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
权利要求
1.一种污水处理的工艺参数的调整方法,其特征在于,包括 预处理过程 采用活性污泥数学模型运行η组不同的工艺参数组合,得到对应于所述η组工艺参数组合的η个模拟出水水质,所述η为正整数且所述η不小于100 ; 将模拟出水水质和与其对应的工艺参数组合作为样本建立误差反向传播模型;所述误差反向传播模型构建了模拟出水水质和工艺参数组合的函数关系; 调整过程 误差反向传播模型接收用户输入的期望出水水质,并按照所述出水水质和工艺参数之间的函数关系,计算得到目标工艺参数组合; 将所述目标工艺参数输入污水处理系统。
2.根据权利要求I所述方法,其特征在于,所述将模拟出水水质和与其对应的工艺参数组合作为样本建立误差反向传播模型,包括 依据预设的原则选取由模拟出水水质和与其对应的工艺参数组合组成的样本,并将所述样本分为训练集和测试集; 采用所述训练集中的样本建立原始误差反向传播模型; 采用所述测试集中的样本来校验所述原始误差反向传播模型,得到误差反向传播模型。
3.根据权利要求2所述的方法,其特征在于,所述预设的原则为 将不同模拟出水水质的差值处于预设相近范围内的模拟出水水质对应的工艺参数进行比较,并选取工艺参数组合开销小的模拟出水水质和与其对应工艺参数组合为样本;和,将没有与自身差值处于预设相近范围内的模拟出水水质和与其对应的工艺参数组合为样本。
4.根据权利要求I所述的方法,其特征在于,所述活性污泥数学模型为活性污泥I号模型、活性污泥2号模型、活性污泥3号模型或活性污泥2D模型。
5.根据权利要求I所述的方法,其特征在于,在将η组不同的工艺参数组合在活性污泥数学模型中运行前,还包括 对活性污泥数学模型进行修正。
6.根据权利要求I所述的方法,其特征在于,所述模拟出水水质和所述期望出水水质的检测指标包括出水化学需氧量值、氨根离子浓度、总氮浓度和总磷浓度。
7.一种污水处理的工艺参数的调整装置,其特征在于,包括 模拟处理模块,采用活性污泥数学模型运行η组不同的工艺参数组合,得到对应于所述η组工艺参数组合的η个模拟出水水质,所述η为正整数且所述η不小于100 ; 模型建立模块,用于将模拟出水水质和与其对应的工艺参数组合作为样本建立误差反向传播模型; 参数获取模块,用于控制误差反向传播模型接收用户输入的期望出水水质,并按照所述出水水质和工艺参数之间的函数关系,计算得到目标工艺参数组合; 参数输入模块,用于将所述目标工艺参数输入污水处理系统。
8.根据权利要求7所述的装置,其特征在于,所述模型建立模块包括 样本选取模块,用于依据预设的原则选取由模拟出水水质和与其对应的工艺参数组合组成的样本,并将所述样本分为训练集和测试集; 原始模型建立模块,用于采用所述训练集中的样本建立原始误差反向传播模型; 模型建立子模块,用于采用所述测试集中的样本来校验所述原始误差反向传播模型,得到误差反向传播模型。
9.根据权利要求7所述的装置,其特征在于,还包括 模型修正模块,用于对所述活性污泥数学模型进行修正。
全文摘要
本发明实施例公开了一种污水处理的工艺参数的调整方法及装置,所述方法首先进行采用活性污泥数学模型运行多组的工艺参数组合,得到对应的多个的模拟出水水质,再以模拟出水水质和与其对应的工艺参数组合为样本建立误差反向传播模型,确定出水水质和工艺参数组合的函数关系的预处理过程;再通过误差反向传播模型接收用户输入的期望出水水质,并按照确定的函数关系计算出目标工艺参数组合,将所述目标工艺参数输入污水处理系统。通过本发明实施例公开的污水处理的工艺参数的调整方法及装置,根据建立的模型和期望出水水质,就能够得到精确定量的工艺参数组合,利用得到的工艺参数组合来处理废水,避免了无效或低效操作,降低了污水处理成本。
文档编号C02F3/12GK102616927SQ20121008668
公开日2012年8月1日 申请日期2012年3月28日 优先权日2012年3月28日
发明者张睿, 曾建雄 申请人:中国科学技术大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1