从水中脱除五价砷的方法

文档序号:4867099阅读:1237来源:国知局
专利名称:从水中脱除五价砷的方法
技术领域
本发明涉及一种从水溶液中除去一种对环境有危害的污染物的方法。更具体地说,本发明涉及一种从含五价砷的水溶液中选择性的脱除砷的很有吸引力的方法。本发明还涉及一种在分离五价砷之前将三价砷转化为五价砷,以促进砷的去除的方法。
背景技术
根据1986年安全饮用水法规和对它的修正案,在美国饮用水中的砷被确定为一种首要污染物。在美国对于砷的最大污染物浓度(MCL)为十亿分之50(50ppb)的规定自1974年起一直有效。根据新近对于与使用有高浓度砷的饮用水的居民的健康危害有关的发现,美国环保署(EPA)建议将对砷的MCL从50ppb降低为2ppb。仅仅在美国就有超过12,000个公用供水事业设施不能满足所建议的这一更严格的砷含量标准。一项估计表明为满足2ppb的MCL建议所需的费用超过50亿美元/年。
目前还不知道美国私人拥有的不能满足对于砷的现行的50ppb或所建议的2ppb MCL的水井的数目。相信在美国的许多地区几千口私人水井所生产的饮用水对于依靠自产水生活的家庭具有潜在的因砷污染而导致的严重的健康危害性。
就地域而言,饮用水的高砷含量是一个全球性的问题。例如在西孟加拉和印度,估计目前有200,000人患砷诱发的皮肤疾病,他们中的一些人已发展到癌变前期的角化过度症。
已发现砷有几种氧化态。在水溶液中砷一般以正五氧化态(As+6,五价)存在,在较小程度上以正三氧化态(As+3,三价)存在。虽然缺少有重要意义的关于砷的阳离子化学的报告,但是人们知道对这两种氧化态都存在有机砷盐(例如K[As(C6H4O2)2])。
三价砷化合物的例子为卤化物(AsCl3,AsCl2+和AsF3)。卤化物很容易水解成亚砷酸(H3AsO3),或其酸式解离形式(HAsO32-)。其氧化物形式为As2O3。本文中将用本发明的方法从水溶液中分离出去的最大可能是呈H3AsO3的离子化形式的三价砷化合物统称为“三价砷”。
As°可被浓硝酸氧化成例如砷酸(可成H3AsO4·1/2H2O离析出来)的五价砷,它在溶液中是一种中等强度的氧化剂。它相应的卤化物也为人们所知(例如AsCl5,AsCl4+)。本文中将用本发明的方法从水溶液中分离出去的最大可能是呈H3AsO4的离子化形式的五价砷化合物统称为“五价砷”。
尽管三价砷的毒性要比五价砷大得多,在世界范围中对饮用水所做的调查通常给出的是总砷的含量,而对五价砷或三价砷所占的份额不加区分。不区分饮用水中砷的价态还会扰乱人们对于MCL值的合理规定,因为虽然2ppb水平的五价砷可能不会对健康造成有害的影响,但同样水平的三价砷就可能对健康有副作用。
当前急需一种能以一种有效的,经济的,而且对环境是安全可靠的方式从饮用水中除去砷,无论砷的氧化态为多少都能达到安全含量的工艺方法。要求这种工艺方法适应性强,而且充分有效,以便能满足发达国家大型城市供水工程和私人拥有的水井,以及不发达国家被污染的水源的处理要求。
在从饮用水中除去砷的现有技术中已介绍了许多种工艺方法。这些工艺技术包括共沉淀,氧化铝吸附和使用阴离子交换树脂的经典离子交换方法。在一篇由科罗拉多大学在Boulder编写的,题为“对于饮用水中砷的规定的符合程度和成本的国家评估”的报告(1997年1月)中,对于超过12种公认的方法就其脱砷效率和成本进行了评估。没有一种所述的被评估的方法能给出95%以上的脱砷效率,现有技术方法也无法提供对于私人水井处理或世界上无法得到可靠的电力供应的不发达地区所要求的使用的简易性。
此外,现有技术对于除砷问题也不能提供一种对环境安全可靠的终结处理。例如,用氢氧化铁就地进行沉淀在脱除某些种类的砷方面在一定程度上被认为是有效的方法。这种工艺仍然存在的问题是从水中过滤氧化铁/砷共沉淀物的机械问题,以及最终还是处置可能再浸沥到同一个或不同的水源中去的含砷淤泥的问题。对于明矾共沉淀,石灰沉淀或氧化铝吸附这些现有技术方法也可以提出差不多相同的批评。
使用阴离子树脂的经典离子交换方法有着脱砷效率差(90%),处理能力低(1500个床容积),以及当竞争离子如硫酸根的数量为50ppm或更高时处理能力和结合效率严重降低这些缺点。在用于多种硬质井水时,经典的离子交换介质有使用寿命差的缺点。据上述科罗拉多报告估计每年需要更换25%的这种传统树脂。
因此仍然需要一种能从水中脱除溶解砷的使用简便的吸附剂,其脱砷效率应超过95%,并且是稳定和可以重新使用的。
发明概述按照本发明,可以从水溶液中有效和经济地将五价砷脱除到低于2ppb的水平。正如本文所述,还可以在柱子中方便地将分离树脂再生,产生一种同等有效的再生的五价砷分离介质。此外,在本文中介绍了一种能从水溶液中有效和经济地除去三价砷的方法。还介绍了一种可被用于将三价砷转化为五价砷的氧化树脂。
本发明成功地利用了五价砷与一种含有许多C1-C4N-烷基吡啶鎓部分或基团的吸附介质的结合,并显示出这种吸附介质对于五价砷所具有的异乎寻常的高亲和力。建议使用的C1-C4N-烷基吡啶鎓基团具有以下的分子式
建议使用的降低水溶液中五价砷浓度的方法包括提供一个装有一种不溶于水的吸附介质的容器,这种吸附介质有许多作为吸附部位的以聚合的2-或4-乙烯基C1-C4N-烷基吡啶鎓部分,而最好是N-甲基吡啶鎓部分的形式存在的含吡啶基的部分。将一种初始五价砷总浓度超过大约2ppb的流入水溶液引入该容器,使它与不溶性的吸附介质接触。
将溶液与不溶性吸附介质的接触保持一段足够长的时间,使吸附部位与流入液中的五价砷结合,形成被介质结合的砷和一种含水混合液。随后将含水混合液作为一种流出液从容器中排出,该流出液所含的五价砷要低得多,至少低大约95%。
建议使用的降低水溶液中三价砷浓度的方法包括提供一个装有一种不溶于水的氧化介质的容器,这种氧化介质有许多与I3-络合作为氧化部位的以聚合的2-或4-乙烯基C1-C4N-烷基吡啶鎓部分,最好是N-甲基吡啶鎓部分的形式存在的含吡啶基的部分。将一种含有三价砷的流入水溶液引入该容器,使它与不溶性氧化介质接触。
将溶液与不溶性氧化介质的接触保持一段足够长的时间,使氧化部位与流入液中的三价砷反应,在被氧化的水溶液中形成五价砷。如前所述,通过与一种包含N-烷基吡啶鎓部分的吸附介质接触,使五价砷浓度降低。
好处在于被砷污染并经过本文所述方法处理的水在可接受的对砷含量所建议的环保安全指标(MCL=2ppb)的范围以内。具体地说,本发明出人意料和令人惊奇地显示出一种被用作为砷的吸附介质的不溶于水的含有聚合的C1-C4N-烷基吡啶鎓的聚合物树脂能从水中高效地分离出五价砷,使得在与吸附介质接触后水中的五价砷浓度小于大约2ppb。
本发明有一些好处和优点。
本发明的一个好处是本发明的吸附剂对于砷有很高的处理能力,使得一个体积的吸附剂可以处理几千个体积的水。
本发明的一个优点是本发明的方法显示出对于脱除五价砷的专一性,不会对显著改变可能会赋予水以所希望质量的其它天然存在元素的浓度。
本发明的另一个好处是它的方法对于脱砷有很好的效率,从而可以从处理过的水中脱除99%以上的五价砷。
本发明的另一个优点是在本发明方法中使用的吸附介质一经需要即可被有效地反提出所吸附的砷,使得被反提的砷的体积仅为所处理的水的体积的一个很小的份数(小于1/1000)。
本发明的另一个好处是在本发明方法中使用的吸附剂能被重复使用几百次,而不损失其处理能力或效率。
本发明的另一个优点是本发明方法所需的原料都可从市场上买到。
本发明的又一个好处是在本发明方法中使用的吸附剂在物理和化学上都很耐用,并能经受多次反提和再使用循环,而不溶解、破碎或起化学变化。
本发明的又一个优点是它的方法允许在世界上任何地区以任何规模对水进行快速、简单和经济的处理。
对于有经验的技术人员来说通过下面所公开的内容还可以清楚地看到本发明另外的好处和优点。
发明详述本发明涉及一种从还含有其它离子的水溶液中除去达到有害含量的五价和三价砷的方法。这样一种方法被用于降低水溶液中砷的含量。可以将砷以一种更浓缩的溶液形式从水溶液中回收,以便使用或进行安全处置。
一般来说,为了将饮用水中砷的浓度降至法律上可接受的水平,砷的MCL应该为或低于十亿分之50(ppb),最好是为或低于2ppb。
由此构想出降低含砷溶液中三价和五价砷浓度的各种方法。
根据一种降低五价砷浓度的方法,提供了一种也被称之为例如色谱柱或网袋的一种允许流动的装料器的容器,该容器装有一种有许多吸附部位的不溶于水的聚合物吸附介质,这些吸附部位是以聚合的2-或4-乙烯基C1-C4N-烷基吡啶鎓部分(将在下文中示出),最好是以N-甲基吡啶鎓部分的形式存在的含有吡啶基的部分。将在本文中也被称为负荷溶液或待处理溶液的一种含有害含量(超过大约2ppb)五价砷的流入水溶液引入该容器,使它与不溶性吸附介质接触。流入液的引入可通过人们熟知的用泵输送,靠重力流动,或简单的扩散方法来进行。将溶液与不溶性吸附介质的接触保持一段足够长的时间,使吸附部位得以结合流入溶液中的五价砷,形成被介质结合的五价砷和一种基本上没有五价砷的含水混合液。随后作为一种五价砷总浓度低于大约2ppb的流出液使该含水混合液排出或流出容器。
含砷水溶液一般由地下或地表水源,如水井提供。在一种优选的方法中,水溶液的初始五价砷浓度超过大约50ppb。自容器排出的流出液流的五价砷总浓度为大约0到2ppb。
建议使用的聚合物吸附介质含有许多吸附部位,它们是以聚合的2-或4-乙烯基C1-C4N-烷基吡啶鎓部分形式存在的聚合的含吡啶基部分,这种吸附介质具有以下的图示结构,其中聚合物主链被表示成“聚合物”。
优先选用聚合的4-乙烯基C1-C4N-烷基吡啶鎓部分(基团)。虽然C1-C4烷基,如甲基,乙基,异丙基,正丁基,2-丁基等均可被结合到聚合的吡啶鎓部分的氮原子上,但N-甲基是一种特别优选的C1-C4N-烷基部分。
本发明的聚合物吸附介质最好含有至少大约10mol%的以C1-C4N-烷基化吡啶鎓部分形式存在的聚合的单体。多达大约80%的吡啶基可以被烷基化,优先选用的是一种有大约60-80%烷基化吡啶基氮原子的吸附介质。这种吸附介质在市场上可以买到,是以商标PERFIXTM(Ntec Solutions,Inc.)或Reillex HPQ(ReillyIndustries,Inc.)出售的。
建议使用的吸附介质也是不溶于水的。正如人们所熟知的,可以通过使含吡啶基的单体与一种交联剂的共聚,也可以使用如苯乙烯或乙基苯乙烯的另一种共聚单体来获得这种水不溶性。二乙烯基苯是一种优选的交联剂,但也可以使用熟知的其它交联剂。然后可以使共聚物N-烷基化,以供在本文中使用。
可以从Reilly Industries,Inc.,Indianapolis,Indiana(Reilly)买到不溶于水的粒状和粉末状的含吡啶基的共聚物吸附介质的前驱体,如4-乙烯基吡啶,二乙烯基苯和乙基苯乙烯。这些介质是作为REILLEXTM402(粉末;4-乙烯基吡啶,乙基苯乙烯,二乙烯基苯),REILLEXTM402-I(颗粒;组分同上),REILLEXTMHP(珠粒;组分同上)和REILLEXTM425(珠粒;组分同上)出售的。这些介质在阴离子交换能力[大约8.8当量/公斤(eq/kg)到大约4.4eq/kg]和颗粒大小上也有所不同。可利用本领域熟悉的方法用C1-C4烷基卤化物使这些含吡啶基的吸附介质前驱体N-烷基化,以为本文所用。
例如不溶于水的以N-甲基化吡啶鎓基占优势的4-乙烯基吡啶,二乙烯基苯和乙基苯乙烯的珠粒状共聚物的吸附介质可以从Reilly以REILLEXTMHPQ(REILLEXTM425的一种N-甲基化变体;总交换容量大约4.6meq/g干物质;即强和弱离子交换容量)和从NTECSolutions,Inc.(Mount Prospect,Illinois,USA)以PERFIXTM吸附介质买到。在这些介质中,大约70%的吡啶基被N-甲基化(大约1-2摩尔当量N-甲基吡啶鎓离子/L介质)。本文中特别优先选用PERFIXTM吸附介质。在美国专利4,221,871,4,224,415,4,256,840和4,382,124中介绍了被优先选择用于实施本方法的树脂(吸附介质)的制造方法,本文将这些公开内容引为参考。
如果含水流入物流含有有害浓度的三价砷(超过大约2.0ppb),本发明提供一种将三价砷氧化为可以从该物流中除去的五价砷的方法。
建议使用的用于降低水溶液中三价砷浓度的方法包括提供一个装有一种不溶于水的氧化介质的容器,这种氧化介质是一种KI/I2溶液与聚合的2-或4-乙烯基C1-C4N-烷基吡啶鎓部分,最好是N-甲基吡啶鎓部分的反应产物,它们形成了氧化部位。如前所述,将一种初始三价砷总浓度超过大约2ppb的流入水溶液引入该容器,使之与不溶性氧化介质接触。
如对吸附介质所述的那样,在容器中提供一种建议使用的氧化介质。将流入水溶液与不溶性氧化介质的接触保持一段足够长的时间,使三价砷能基本上完全转化成五价砷,从而将三价砷的浓度降至检测极限。因此所得到的含水混合液就含有转化得到的以及本来就存在于流入液(原水)中的五价砷。
如前所述,通过与一种不溶性吸附介质,如PERFIXTM(N-甲基吡啶鎓)树脂的接触可以从这种含水物流中除去衍生的和固有的五价砷。
五价砷也可以结合到氧化介质中的吸附部位上。在一种实施方案中,可以将氧化介质和吸附介质混合到一起,从而形成一种能氧化三价砷和吸附五价砷的混床介质。
最好是以一种顺序方式提供吸附介质和氧化介质,从而在同一个或第二个容器中将新鲜的吸附介质提供给氧化介质“下游”的含水混合液。可以在同一个容器中分层提供氧化介质和吸附介质,使流入溶液首先遇到氧化介质,然后是吸附介质。按另一种方法,可以将与氧化介质接触后含五价砷的含水混合液引入装有吸附介质的第二个容器中。
可以如实例5中所述的那样,使前文所述的一种不溶性N-烷基化吸附介质与一种将可从市场上买到的碘化钾和碘溶液(例如Aldrich Chemical Co.,St.Louis,MO)混合后制得的三碘化钾溶液(KI/I2)反应,来制备一种建议使用的氧化介质。
本发明的一种优选的不溶性氧化介质是PERFIXTM(N-甲基吡啶鎓)树脂与三碘化钾(KI/I2)的反应产物。虽然不知道这种反应产物的确切结构,但它被认为是PERFIXTM(N-甲基吡啶鎓)树脂固有的N-甲基吡啶鎓基与I3-的一种1∶1的配合物。
本发明优选的不溶性氧化剂是暗褐色的。在使暗褐色不溶性氧化剂与含有三价砷的含水物流接触时,其特征的暗褐色消失,产生一种淡棕黄色的介质,这是原料PERFIXTM(N-甲基吡啶鎓)树脂的颜色。因此用本发明优选的不溶性氧化剂将三价砷转化成五价砷是一种自指示过程。
在优选的实施方案中,设想使含砷水溶液与吸附介质或氧化介质之间的接触在一个色谱柱或例如一个装有吸附颗粒的多孔塑料袋或网袋,如“茶叶袋”的流通容器中进行。因此这些介质最好成珠粒或颗粒形状。但是也注意到可以使用另外的物理形式,例如液体,粉末,膜,板或其它网状物的形式。
如前所述,一种不溶于水的聚合物吸附或氧化介质可以是固体或液体,这对于水净化领域中的技术人员应该是十分清楚的。还应当看到含C1-C4N-烷基吡啶鎓的部分本身不一定要形成聚合物主链的一部分,它也可被接枝到一种早先制成的聚合物上,然后最好被N-烷基化,形成一种有C1-C4N-烷基吡啶鎓部分吸附部位的吸附介质。因此,例如可使一种含硫聚合物与2-或4-乙烯基吡啶反应,形成聚合的硫代乙基吡啶基,然后可以用氯代甲烷或碘代甲烷等将其N-烷基化,形成一种优选的吸附或氧化介质。
虽然其它聚合的单体也可存在于一种聚合的吸附或氧化介质中,但这些其它单体和吸附介质都不应有其它的离子荷电官能团。然而正如在用一种优选的聚合的吸附或氧化介质时的情况一样,可以有未烷基化的聚合的2-或4-乙烯基吡啶。
将吸附介质与含五价砷的水溶液之间的接触保持一段足够长的时间,使五价砷被介质的含N-烷基吡啶鎓的吸附部位结合。这种结合通常是十分迅速的,一般采用的接触时间为几秒钟到几分钟。可以采用更长得多的接触时间,例如几个小时,而未观察到不良效果。
将氧化介质与含三价砷的水溶液之间的接触保持一段足够长的时间,使三碘化物能将三价砷氧化成五价砷。此反应是迅速的,并可通过观察由三碘化物配合物的暗褐色到用过的N-烷基化氧化介质的淡棕黄色的颜色变化来很方便地监视反应过程。
改变通过塔或允许流动容器的流量可以方便地控制接触时间。溶液被保持着与吸附或氧化介质接触的时间是“溶液停留时间”。
本方法对流量、温度和压力的使用范围主要由在实施本发明时所采用的设备和所使用的树脂的条件限制所决定。通常使用常温和常压。
用吸附介质处理过的水溶液基本上被耗尽了五价砷,直到超过了介质的吸附容量。通过分析检测流出液来指示超过介质的吸附容量。利用熟知的并可自市场上得到的Gutzeit胂再生检测方法可以方便地确定砷的存在。一个柱子可以处理含砷水溶液,直至砷分析指出五价砷正从介质中排出时为止。
五价砷与本发明的吸附树脂的结合效率远优于本领域离子交换树脂的砷结合效率。例如PERFIXTM显示了超过99%的五价砷结合效率。而事实上在五价砷和一种没有N-烷基基团的不溶性聚乙烯基吡啶聚合物之间则观察不到结合作用。
无意受理论的约束,但可以相信树脂对五价砷的结合效率源于除标准阴离子交换中离子-离子相互作用以外的一种相互作用。在同族元素锑和芳族分子的π-电子云之间的一种直接相互作用已被观察到,可以推断一种类似的相互作用对于所观察到的与五价砷的有效结合产生了影响。
吸附介质和氧化介质二者都可被人们熟知的用于再生阴离子交换型吸附介质的方法所再生。这些以质量作用为基础的方法一般是用一种强碱的中等浓度(例如1-4N的NaOH)的反提溶液,最好是为了提高其离子强度而将它与一种盐(例如1-4N的NaCl)混合而成的一种碱/盐溶液来洗涤该树脂,接着用一种有一个一价阴离子的强酸的中等浓度的溶液(例如1N的HCl)对树脂进行中和清洗。反提溶液从吸附介质中有效地除去被结合的五价砷,所以最终含砷水溶液的体积相对很小,从而降低了反提、处置和处理被污染的废水的成本。
使吸附介质与不含砷的水再平衡可以制得供再使用的吸附介质。使氧化介质与KI/I2溶液再平衡可以制得供再使用的氧化介质。进行吸附介质和氧化介质的再生时最好不要将任何一种介质从它自己的容器中排出。
已经发现可以反复地再生(例如再提取)、漂洗和再使用吸附介质,而树脂的五价砷结合能力却不发生显著的物理或化学衰减。所用的PERFIXTM(N-甲基吡啶鎓)树脂可承受100psi的操作压力和100℃的温度。背压升高通常表示吸附介质的物理衰变。
建议使用的五价砷吸附方法在大约15-90℃之间温度下成功地从被砷污染的水溶液中脱除了五价砷。该过程最好在大约20-70℃之间的温度下操作。
建议使用的三价砷氧化方法在大约15-90℃之间的温度下成功地氧化了被砷污染的水溶液中的三价砷。该过程最好在大约20-70℃之间的温度下操作。
本发明的五价砷吸附方法成功地从pH值在酸性到接近中性(大约pH 1到pH 7)范围中的水溶液中除去了五价砷。该方法最好是对pH值在大约4-7之间,尤其是在大约6-7之间的水溶液进行操作。在高于大约7的pH值的条件下,该方法开始损失其效率,而在大约14的pH值条件下(例如加入2.0N的NaOH),五价砷与吸附介质的结合效率非常低。
本方法能有效地减少初始五价砷浓度超过大约2ppb的水溶液中的砷污染物,已经发现可以将其五价砷浓度降至低于大约2ppb,更准确地说是降低到大约0-2ppb。
实例1从一种含水物流中脱除五价砷从制造商(Reilly Industries,Indianapolis,IN)处购得的Reillex HPQ树脂含有大约3.4meq/g的N-甲基吡啶官能团和大约1.2meq/g的吡啶官能团;这两种基团被结合到树脂的主链中,所说的结合是由乙烯基吡啶单体的共聚和随后用一种烷基卤化物进行的N-烷基化促成的。用二乙烯基苯进行Reillex HPQ树脂的交联,产生刚性多孔的,大小为18-50目的球粒。在用于本实例中以前,在一个大小适合的容器,如一个烧杯中通过搅拌将树脂(1个体积)和去离子水(2-3个体积)配成浆液。停止搅拌,使树脂沉到容器底部。在柱操作过程中不希望有较细微的颗粒(微粒),因为它们妨碍流动。因为微粒不像18-50目颗粒那样快地沉降,所以靠滗析可以很方便地从不搅拌的浆液中除去上层水和微粒。将此操作重复另外二或三次循环,或直到在配浆液,沉降和滗析操作中都不能发现微粒的存在为止。
然后每次用2个体积的2.0N的NaOH,去离子水,10%v/v的醋酸并最终用去离子水顺序对除去了微粒的树脂(1个体积)进行配浆液,沉降和滗析。加去离子水到经过调节的树脂中,直至得到一种大约50%v/v的树脂水混合物。或者也可以直接使用从Ntec Solutions,Inc.购得的PERFIXTM(N-甲基吡啶鎓)树脂,因为它们是作为一种去除了微粒并经过调节的树脂提供的。
将经过调节的树脂的50%的浆液倒入一个50cm×2.5cm的在底部装有一个粗孔的烧结玻璃保持板和一个控制通过柱子流量的底部活栓的实验室柱子。将树脂浆液加到柱子的顶部,直到沉降后得到100ml的树脂床(使水经过底部活栓流出,以得到所需体积的沉降后的树脂)。
在1.0L去离子水中溶解4.167g Na2HAsO4·7H2O,并通过仔细地逐滴加入浓盐酸,在加入每一滴后用pH计或pH色条监测得到的pH值,将所得到的溶液的pH值调至pH 6-7,由此配成一种浓缩的(1000ppm)五价砷标准溶液。将1个体积的1000ppm标准溶液与9体积去离子水混合,使1000ppm的五价砷标准溶液稀释成一种100ppm的五价砷标准溶液。配制100ppm的标准溶液用于考验树脂柱。
加入配制好的100ppm的五价砷标准溶液,同时用底部活栓将流量保持在10-20mL/min,由此来确定100ml体积的N-甲基吡啶鎓树脂处理五价砷的能力。以100mL(1个柱容积)的级分收集流经树脂床并流出柱子的五价砷标准溶液(流出液),并将其保存以进行砷的分析。用可从市场上购得的Gutzeit胂再生检测法定期分析(每10个柱容积后)流出液中的五价砷。这种砷检测方法可以检测到略小于0.100ppm的三价或五价砷(用其它熟知的方法和设备可以得到大约0.5ppb的砷检测极限)。将对树脂的流入液检测继续到从离开柱子的流出液中检测到0.100ppm的砷为止。
由此确定了在略多于120个床容积中99.9%的砷(12L的100ppm五价砷标准溶液或1200mg的五价砷)被床容积为100mL的PERFIXTM(N-甲基吡啶鎓)树脂所结合。以100ppm的含量进行五价砷的考核相当于比含量为100ppb的井水高1000倍的考核。因此本实例中所用的PERFIXTM(N-甲基吡啶鎓)树脂在用100ppb的含水物流考核时,在超过99%的五价砷脱除效率的条件下将显示出超过120,000柱容积的处理能力。这种处理能力要比现有技术中所述的经典离子交换树脂高2个数量级以上。
实例2反提被结合的五价砷和为再使用而再生PERFIXTM(N-甲基吡啶鎓)树脂对于在实例1中所述的被砷饱和的柱子,使100mL(1个柱容积)的一种由2N NaOH和2N NaCl组成的反提溶液流入和流经柱子,以大约10mL/min的速率逐滴收集,并作为反提流出液将其保存以供分析。以同样的方式加入第二个柱容积(CV)的反提液,并进行收集。在加入反提液的过程中,树脂的颜色由淡棕黄色变成暗褐色。逐次稀释每一个反提流出液,直至Gutzeit对砷的检测落入该检测的分析工作范围(0.100-3.0ppm)内,由此确定了超过95-99%的原来被结合的五价砷(1200mg)被2个柱容积的反提液洗脱出来了。
然后用2个柱容积的水洗涤树脂,接着用2个柱容积的10%的醋酸洗涤(于是PERFIXTM(N-甲基吡啶鎓)树脂的颜色回复为淡棕黄色),然后再用2个柱容积的水洗涤。对最终的洗涤液进行检测,发现它对砷存在的反应是阴性的(<0.100ppm)。洗涤后的树脂被认为是已经过调节并可随时再用的(参见实例3)。
高结合能力,高结合效率和高反提效率意想不到地结合于一身,导致了本方法的高浓缩倍数。可以将“浓缩倍数”定义为被引入并被耗尽砷的含砷水的体积与反提洗脱液体体积之比。在本实例和上一实例中,12L的含砷100ppm的溶液被浓缩成了200mL,因此浓缩倍数为60。用更有代表性的含100ppb砷的水考核时将得到60,000的浓缩倍数。
就所采用的终极的环境安全的处理方法而言,以这种方式浓缩一种有毒金属的能力提供了很大的节省,操作的灵活性和便利。例如,中和反提流出液,接着进行蒸发成为在处置以前进一步减少有毒废液体积的一种可行的选择。对于使用现有技术的经典的离子交换树脂,这个步骤就不是一种可行的选择,因为这些系统的反提流出液中的砷太稀,使得在处置以前蒸发这种流出液成为一项艰巨的任务。
即使用本发明所述的高效方法在从饮用水中除去砷的实践中,使一个柱系统运行到或超过其饱和极限也是既不实际又不慎重的。为避免摄入超过所建议的2ppb MCL的有毒的砷,要求在除砷过程中留有足够大的安全系数。建议即使本发明所公开的非常有效和有高处理能力的吸附过程也不应运行到超过对该系统所确定的处理能力的50-75%。
因此审慎的安全系数所强加的要求使现有技术所述的脱砷方法的缺点更为突出。反提和再调节未被砷饱和的树脂必定会使浓缩倍数降低一个等于柱利用率的百分数。利用建议使用的方法,从利用不充分的现场柱子收集被浓缩的反提洗脱液,用醋酸或盐酸将pH值调至6-7,再将调节了pH值的反提洗脱液加到另一个不是用来生产饮用水的PERFIXTM柱中,为废液浓缩的目的运行该柱子直到饱和,这样做既不困难又不会使成本过高。
总起来说,本实例表明利用一种“柱上”协议可以反提和再调节本发明的N-甲基吡啶鎓树脂,以供再用。为事实上完全脱除所结合的砷而使用的很小容积的反提液,使得有很高的浓缩倍数。本实例的反提洗脱液含高达6g/L的砷。这种浓缩的砷废液为供终极环境安全的处置选择而采取的二次处理方法提供了一种有实用价值的原料。
实例3再使用经反提和再调节的PERFIXTM(N-甲基吡啶鎓)树脂按照实例1配制五价砷标准溶液(100ppm),并将其加到由实例2反提和再调节的N-甲基吡啶鎓树脂柱(100mL PERFIXTM树脂)中。五价砷(100ppm)对柱子的考核持续到在柱的流出液中检测到砷(>0.100ppm)为止。经过反提和再调节的柱子对五价砷的处理能力是150柱容积或15g砷/L树脂。此结果比实例1中显示的处理能力(12g砷/L树脂)稍高一些。相信在本实例中树脂床沉降的程度较高,导致了色谱性能的加强。本实例说明PERFIXTM(N-甲基吡啶鎓)树脂可被反提,再调节和再用许多次,而不损失其性能。
实例4PERFIXTM(N-甲基吡啶鎓)树脂对三价砷的处理能力按实例1所述制备新鲜的PERFIXTM(N-甲基吡啶鎓)树脂(100mL),并加到一根色谱柱中。根据实例1所述在1L去离子水中溶解1.7359g NaAsO2(MW129.9),并用浓盐酸将所得到的溶液的pH值调节到6-7,由此配制成1000ppm的三价砷标准溶液。将1个容积的1000ppm三价砷标准液与9个容积的去离子水混合,使标准液进一步稀释。然后以10mL/min的流量用100ppm的三价砷标准液来考核装有100mL新鲜PERFIXTM(N-甲基吡啶鎓)树脂的柱子。
用Gutzeit胂再生检定进行流出液分析,表明不到1个柱容积(<100mL)的考核溶液通过该柱子就能检测到砷的强阳性反应。中断100ppm三价砷标准液的考核,用去离子水洗涤柱子和树脂,直到在柱子的流出液中检测不到砷(大约3个柱容积的洗涤液)。本实例说明N-甲基吡啶鎓树脂(PERFIXTM)对于三价砷实际上没有结合能力。
实例5制备PERFIXTM-I3-配合物;一种用于在柱上依需求将三价砷氧化成五价砷的不溶性树脂将如在实例1中被调节过的N-甲基吡啶鎓树脂(450mL)装在1个4L的烧杯中,在室温下借助一个顶装搅拌器将其与大约1L去离子水配成浆液。将总量为450mL的1N KI/I2溶液(KI和1N I2溶液,也称为KI3溶液或三碘化钾溶液,自Aldrich Chemical Co.,Milwaukee,WI购得)加到被连续搅拌的树脂浆液中。以100mL的增量加入暗褐色的KI/I2溶液,开始时上层水为暗褐色的,接着是树脂摄取I3-配合物,使上清液变成几乎无色,而树脂颜色则由淡棕黄色变成暗褐色。最后加入KI/I2溶液需要较长时间,使其能被树脂所吸附,这可根据上清液颜色消失的速率来判断。
最终加入1N KI/I2溶液后继续搅拌30min。结束后用一个多孔玻璃漏斗过滤树脂,顺序用5×1L去离子水进行配浆液,洗涤和过滤。所得到的暗褐色树脂最后被配成浆液,并且成与水的50%的浆液被倒入一个1L的塑料瓶中,贮存备用。
可以在室温下将所制备的树脂产品贮存许多星期,而不发生分解或失去氧化能力。由于在以上操作中形成的树脂产品为暗褐色,相信与N-甲基吡啶鎓树脂相结合的碘是成I3-存在的,它成为一种与PERFIXTM(N-甲基吡啶鎓)树脂的吡啶环的季氮原子的非常稳定的配合物而保存下来。比较起来,与含有尚未被烷基化的吡啶基的ReillexHP聚合物混合的购自Aldrich Chemical Co.的1N I2溶液则与这种树脂形成橙红色产物。相信与ReillexHP树脂的反应产物是一种树脂-I2配合物。
本领域普通的技术人员将会认识到以上制备的PERFIXTM(N-甲基吡啶鎓)树脂-I3-产品可以荷载不同数量的I3-。1.0当量I3-与1.0L含N-甲基吡啶鎓的树脂(PERFIXTM)的比例纯粹只是一种选择的问题,但是感觉到它提供了高氧化能力与产品的稳定性和成本间的一个合适的平衡。如实例6中所述,其它的负荷比对于发挥PERFIXTM-I3(N-甲基吡啶鎓-I3-)的即需氧化能力也是适用的。
实例6组合使用不溶性氧化树脂和PERFIXTM,从含水物流中除去三价砷将40mL如在实例5中制备的成50%浆液的暗褐色PERFIXTM-I3-(N-甲基吡啶鎓-I3-)树脂加到装有在实例4中使用的PERFIXTM(N-甲基吡啶鎓)树脂(它对于三价砷未显示出处理能力)的柱子的顶部。由此得到一根显示出明显不同颜色带(顶部暗褐色,底部淡棕黄色)的单根分段的柱子,一个“混合床”。
然后重复实例4,在室温(大约18℃)下,以大约10mL/h的流量用100ppm的三价砷标准液来考核分段的树脂柱。每通过柱子100mL(1个床容积的100/140)以后,就检测柱流出液中的砷含量。在供给柱子600mL三价砷标准液以后,在流出液中未检测到砷。
在用三价砷考核的过程中,暗褐色PERFIXTM-I3-(N-甲基吡啶鎓-I3-)树脂的顶部(大约1mm带高)回复为淡棕黄色,表明该树脂的I3-部分已经与进入的三价砷负荷物反应,并进一步说明PERFIXTM-I3-(N-甲基吡啶鎓-I3-)具有一种自指示功能。在柱中所装的任一种树脂被用尽之前终止这项实验。
本实例说明通过与PERFIXTM-I3-(N-甲基吡啶鎓-I3-)树脂简单的接触就使含水物流中的三价砷完全氧化成五价砷,而这样产生的五价砷又按照与实例1中所述完全相同的方式在分段柱子的下部从含水物流中被PERFIXTM(N-甲基吡啶鎓)树脂耗尽。因为能按需要发挥PERFIXTM-I3-(N-甲基吡啶鎓-I3-)树脂的氧化能力,并且利用了吸附树脂的自指示功能,所以没有必要由使用者精确地确定需使用的PERFIXTM-I3(N-甲基吡啶鎓-I3-)的确切数量或考核物流中三价砷的准确含量。只要PERFIXTM-I3-(N-甲基吡啶鎓-I3-)产品是暗褐色的,就依然有充分的氧化能力来承受更多的三价砷的考验。
本领域普通的技术人员将能够认识到由PERFIXTM-I3-(N-甲基吡啶鎓-I3-)的配合物引起的三价砷到五价砷的迅速转化说明可以以一种搅拌分批处理方式(松散的颗粒或“茶叶袋”),或在一根单独的仅装有PERFIXTM-I3-(N-甲基吡啶鎓-I3-)树脂的专用柱子中使用这种组合物。最好是将PERFIXTM-I3-(N-甲基吡啶鎓-I3-)树脂装在一个“可观察”的柱子中以其它结构形式来装填树脂,以发挥这种复合物的自指示功能的优点。
实例7利用PERFIXTM(N-甲基吡啶鎓)柱从一个新罕布什尔的井水试样中脱除砷水净化领域的技术人员会认识到由于有其它通常不明其性质和数量的溶解的竞争物,从野外井点得到的真实水样可能会对适当地去除一种目标污染物提出异常的挑战。对于砷来说由于这种金属三价和五价形式数量上的变化,这个问题可能格外麻烦。与一种假想的实验室考验不同,为了显示本发明对于一种实际的被砷污染的井水的实地考验的功效,对于一个从新罕布什尔州私人水源的井水试样进行了考核。
对新罕布什尔井水未进行预处理。由一个独立实验室(环境健康实验室,South Bend,Indiana)用仪器方法对这个试样所进行的分析表明砷的总含量为370μg/L(370ppb)。不知道其三价和五价砷的相对浓度。在这个满足新罕布什尔州私人住宅部分水需求的水井中砷含量远高于目前50ppb的MCL,几乎是建议的2.0ppb MCL的200倍。
使用与实例1,2和3中所述同样的装有经反提和再调节的N-甲基吡啶鎓PERFIXTM树脂的柱子,使500ml(5个柱容积)的井水样通过该柱,以置换存在于柱子和树脂空容积中的水。将这一初始试样弃置。使另外1L的井水通过该柱子,将其收集并送去用砷检测极限为0.5ppb量级的仪器进行独立分析。
如前所述,进柱前的井水含有370ppb,发现柱后的井水中仍然含有13.0ppb(96%的脱砷效率)。考虑到本文中其它使用实验室五价砷标准液的实例无一例外地显示出超过99%的脱砷效率。另外,尽管现有技术认为96%的脱砷效率是可接受的,但本实例中所得到的13ppb的残余砷含量仍超过了所建议的2.0ppb的EPA MCL。
相信在PERFIXTM(N-甲基吡啶鎓)树脂色谱柱后余留的13ppb的残余砷如果不是全部,也有绝大部分是实例4中所显示的PERFIXTM(N-甲基吡啶鎓)树脂没有任何结合能力的三价砷。以下的实例8将证实这种假设。
还发现在进装有PERFIXTM(N-甲基吡啶鎓)树脂的色谱柱之前,新罕布什尔井水试样有光散射性质(Tyndall)。不清楚水的光散射性是否是砷污染的结果。出人意料的是流出水的视觉质量有了很大改善,表现在它的闪亮清澈,说明无光散射。
实例8利用不溶性氧化树脂和N-甲基吡啶鎓从新罕布什尔井水样中脱除砷将大约25ml如在实例5中制备的成为在去离子水中的50%浆液的PERFIXTM-I3-(N-甲基吡啶鎓-I3-)配合物加到装在实例7中使用的柱中的树脂上。和在实例7中一样,使500ml(5个柱容积)的新罕布什尔井水通过装有PERFIXTM(N-甲基吡啶鎓)树脂和PERFIXTM-I3-(N-甲基吡啶鎓-I3-)配合物的分段柱。将这部分初始流出液收集,然后弃置。
使另外1L井水试样流过该分段树脂床,作为流出液将其收集,并送去进行独立的仪器分析。和以前一样,未处理的井水试样含有总量为大约370ppb的砷。在短暂流过PERFIXTM-I3-(N-甲基吡啶鎓-I3-)配合物,接着通过PERFIXTM以后,流出液的总砷含量为1.6ppb。这证实了实例7中余留的13ppb的残余砷大部分是三价的,所增加的PERFIXTM-I3-(N-甲基吡啶鎓-I3-)配合物柱的处理步骤将这种形式的砷氧化成五价砷,并被以前装在该柱底部的PERFIXTM(N-甲基吡啶鎓)树脂脱除。
本实例还说明本发明的方法提供的水能满足所建议的2.0ppb的MCL。在实例7中注意到的井水视在质量的改善在本实例中也实现了。
从以上所述可以看到在不偏离本发明新颖概念的精神实质和范围的情况下,可以进行许多修改和变更。应该认识到未试图或不应试图对所提出的特殊实例做任何限制。意图使所附权利要求公开的内容将所有这些变更包括在这些权利要求的范围中。
权利要求
1.一种从水溶液中脱除五价砷的方法,包括以下步骤(a)提供一个装有一种不溶于水的聚合物吸附介质的容器,所说吸附介质有许多作为以聚合的C1-C4N-烷基吡啶鎓部分形式存在的含吡啶基的部分的吸附部位;(b)将一种初始五价砷浓度超过大约2ppb的流入水溶液引入该容器,与不溶性吸附介质接触;(c)将所说溶液与所说不溶性吸附介质的接触保持一段足够长的时间,使流入液中的所说五价砷结合到所说吸附部位上,形成一种被介质结合的砷和一种含水混合液;以及(d)将该含水混合液作为一种最终五价砷浓度为大约0-2ppb的流出液排出该容器。
2.权利要求1的方法,其中该流入液的初始五价砷浓度超过50ppb。
3.权利要求1的方法,其中所说聚合的2-或4-乙烯基C1-C4N-烷基吡啶鎓部分占聚合物吸附介质的大约10-80mol%。
4.权利要求3的方法,其中所说聚合的2-或4-乙烯基C1-C4N-烷基吡啶鎓部分占聚合物吸附介质的大约60-80mol%。
5.权利要求1的方法,其中所说聚合物吸附介质的所说C1-C4N-烷基吡啶鎓部分是N-甲基吡啶鎓部分。
6.权利要求1的方法,还包括以下步骤(e)通过使所说聚合物吸附介质与一种强碱水溶液接触,并使所说接触保持一段足够长的时间,形成一种含砷的含水反提溶液,从所说聚合物吸附介质中除去砷;以及(f)回收所说含砷的含水反提溶液。
7.一种从水溶液中脱除五价砷的方法,包括以下步骤(a)提供一个装有一种有大约10-80mol%的作为吸附部位的聚合的C1-C4N-烷基吡啶鎓部分的不溶于水的聚合物吸附介质的容器;(b)将一种被五价砷污染的初始五价砷浓度高于大约2ppb的流入水溶液引入该容器,与吸附部位接触;(c)将所说溶液与所说吸附介质的接触保持一段足够长的时间,使所说吸附部位与流入液中的五价砷结合,形成被介质结合的砷和一种含水混合液;以及(d)将所说含水混合液作为一种最终砷浓度为大约0-2ppb的流出液排出该容器。
8.一种将三价砷氧化为五价砷的方法,包括以下步骤(a)提供一个装有一种不溶于水的聚合物氧化介质的容器,所说氧化介质有许多作为以聚合的C1-C4N-烷基吡啶鎓部分形式存在的含吡啶基的部分与一种KI/I2溶液的反应产物的氧化部位;(b)将一种含有三价砷的流入水溶液引入该容器,与不溶性氧化介质接触;以及(c)将所说溶液与所说不溶介质的接触保持一段足够长的时间,使流入液中所说三价砷与所说氧化部位反应,形成五价砷。
9.一种从水溶液中脱除三价砷的方法,包括以下步骤(a)提供一个装有一种不溶于水的聚合物氧化介质的容器,所说氧化介质有许多作为以聚合的C1-C4N-烷基吡啶鎓部分存在的含吡啶基的部分与一种KI/I2溶液的反应产物的氧化部位;(b)将一种含有三价砷的流入水溶液引入该容器,与不溶性氧化介质接触;(c)将所说溶液与所说不溶性介质的接触保持一段足够长的时间,使流入液中的所说三价砷与所说氧化部位反应,在一种流入的含五价砷的水溶液中形成五价砷;(d)提供一个装有一种不溶于水的聚合物吸附介质的容器,所说吸附介质有许多作为以聚合的C1-C4N-烷基吡啶鎓部分形式存在的含吡啶基的部分的吸附部位;(e)将一种初始五价砷浓度超过大约2ppb的流入的含五价砷的水溶液引入该容器,与不溶性吸附介质接触;(f)将所说溶液与所说不溶性吸附介质的接触保持一段足够长的时间,使流入液中的所说五价砷结合到所说吸附部位上,形成一种被介质结合的砷和一种含水混合液;以及(g)将含水混合液作为一种三价和五价砷的最终浓度为大约0-2ppb的流出液排出该容器。
10.一种由一种含C1-C4N-烷基吡啶鎓的聚合物与一种KI/I2的溶液反应形成的不溶于水的介质。
全文摘要
公开了一种利用含有N-烷基吡啶鎓的吸附介质从水溶液中分离五价砷的方法。还公开了一种氧化介质和将三价砷氧化成五价砷,并除去所形成的五价砷的方法。
文档编号C02F1/56GK1262665SQ98806952
公开日2000年8月9日 申请日期1998年5月11日 优先权日1997年5月12日
发明者P·K·史密斯, E·P·伯格曼 申请人:阿芬尼提有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1