离子交换再生系统的制作方法

文档序号:5024018阅读:438来源:国知局
专利名称:离子交换再生系统的制作方法
技术领域
本发明涉及从废水中回收金属的技术,尤其涉及一种离子交换再生系统。
技术背景在水处理技术中,常用离子交换树脂法处理电镀废水,其简略过程是,镀 镍生产过程中镀件先在回收槽浸洗,然后在漂洗槽进行清洗。回收槽中含有较 高浓度的从镀镍槽带出的镍离子,这些镍离子随镀件带入漂洗槽,漂洗槽中废 水可被抽至一镀镍废水回收设备,镍离子被其中的离子交换树脂吸附回收,再 将回收金属后的废水重新回用,作为清洗水。传统离子交换法回收镀镍废水设备同时具备吸附和再生两个功能,废水的 吸附与再生在同一设备中完成。再生的过程至少涉及到6个工艺步骤的转换,和十多个阀门的切换,传统 的再生过程主要通过操作人员的视觉观察、粗略的pH试纸测试或凭经验来控 制工序转换和延续时间。这种方式很难获得满意的再生效果。再生过程的复杂 性难以为缺乏训练的人员所能掌握,尤其是人员流动频繁的企业更是难以保持 再生的基本效果。不理想的再生结果带来诸多问题,如再生洗脱液浓度过低而 增加资源化成本、再生剂和用水消耗量提高而增加生产成本、再生不彻底影响 下次使用效果等等。再者,在整个离子交换设备中再生部分涉及的技术和硬件配置的复杂程度 以及投资远大于吸附部分。而设备运行中废水吸附过程占据了绝大部分时间, 复杂的再生功能的使用时间一般不超过整个运行周期的5%,其余时间功能闲 置,再生部分的利用率低。鉴于以上问题,目前有企业提出将废水的吸附系统设在电镀企业内,而将 再生系统独立设置并集中回收和再生多个企业的金属镍,以最大限度发挥再生 系统的效率。然而由于传统回收设备中的再生部分的再生效果并不理想、操作仍然复杂,有必要进行改进,以满足集中再生的需要。 发明内容本发明所要解决的技术问题是提供一种离子交换再生系统,其执行自动化 的处理流程,简化人员操作,并提升再生效果。本发明为解决上述技术问题而采用的技术方案是提供一种离子交换再生 系统,包括 一套再生剂储存装置,包括分别用以提供的各种再生剂的储存槽; 一组进料控制阀, 一一对应地设在所述各储存槽的出口管路上,根据控制信号 选择其中至少一控制阀打开; 一再生连接口,通过管路与该组进料控制阀连接, 以流入经该组进料控制阀选择的再生剂; 一交换器组件,包括至少一可拆卸地连接 于该再生连接口的交换器; 一洗脱液储存槽; 一组出料控制阀,通过管路连接于该 交换器的出口 ,其至少包括一可选择交换器出口的液体流入该洗脱液储存槽的洗脱 液出料阀; 一冲洗装置,通过管路连接至该交换器,以提供冲洗该交换器的水;以 及一控制装置,连接该组进料控制阀、出料控制阀及冲洗装置,根据再生工序控制 该组进料控制阀、出料控制阀及冲洗装置的动作。上述的离子交换再生系统中,该再生剂储存装置至少包括酸液槽、碱液槽以 及纯水槽,而该组进料控制阀至少包括进酸阀、进碱阀及进水阀,其一一对应地 设于酸液槽、碱液槽以及纯水槽的出口管路,并电连接于该控制装置。上述的离子交换再生系统中,该再生剂储存装置还包括套用液槽,而该组进 料控制阀还包括进套用液阀,该套用液阀电连接至该控制装置。上述的离子交换再生系统中,该组出料控制阀还包括一回用碱回流阀,该回 用碱回流阀电连接至该控制装置,并根据其控制信号选择交换器出口的液体流入对 应的碱液槽。上述的离子交换再生系统中,该组出料控制阀还包括一套用液回流阀,该套 用液回流阀电连接至该控制装置,并根据其控制信号选择交换器出口的液体流入该 套用液槽。上述的离子交换再生系统还可包括一 pH值传感器,设在该交换器的出口管路 上且电连接至该控制装置,该控制装置根据该pH值传感器所检测的pH值控制再 生工序转换点。上述的离子交换再生系统中还可包括一电导率传感器,设在该交换器的出口 管路上且电连接至该控制装置,该控制装置根据该电导率值传感器所检测的电导率 值控制再生工序转换点。上述的离子交换再生系统中,该冲洗装置包括依次连接的一水槽、 一反冲洗 泵以及一反冲洗阀,该反冲洗阀通过管路连接至该交换器组件的交换器,且该反冲 洗泵以及反冲洗阀电连接至该控制装置。本发明由于采用以上技术方案,使之与现有技术相比,具有如下显著优点1、 集中再生系统综合应用在线仪表测量、化工自动化和计算机控制技术, 使再生过程自动化,设备操作简化。2、 优化设计和控制离子交换再生过程中的工艺转换点,可以取得比传统 再生设备更好的再生效果、更高的运行效率和更低的成本,最大程度地提高镀 镍废水资源化效益。3、 应用本发明只要简单地将再生系统与饱和交换器连接起来就可为数十 家企业的镀镍废水回收提供饱和树脂的再生服务,使镀镍废水回收的社会化和 专业化成为可能。


为让本发明的上述目的、特征和优点能更明显易懂,以下结合附图对本发 明的具体实施方式
作详细说明,其中图1是本发明的离子交换再生系统示意图。图2是本发明的离子交换再生系统的工作流程示意图。
具体实施方式
请参照图l所示,本发明的离子交换再生系统大体包括 一套用以提供再 生所需的各类再生剂的储存装置1、 一组进料控制阀组2、 一交换器组件3、 一组出料控制阀组4、 一洗脱液储存槽6、以及控制装置14。具体地说,再生剂 储存装置1进一步分为套用液槽101、酸液槽102、碱液槽103以及纯水槽104, 其中套用剂槽中存有前一次再生回流的镍含量低于一定标准的套用溶液。酸液 槽102、碱液槽103以及纯水槽104分别储存酸液、碱液和纯水,酸液例如是硫酸(H2S04)或盐酸(HC1),浓度是1.5-4.0 N (当量浓度);碱液例如是氢 氧化钠(NaOH),其浓度是1.0-3.5N。然而酸液和碱液的种类、浓度均可依据 实际需要而定,并不作为本发明的限制。此外,仍可根据需要设置其他的再生 剂储存槽。再生剂储存装置1的各槽均具有一连接出口管路的出液口,进料控 制阀组2包括进套用液阔21、进酸阀22、进碱阀23以及进纯水阀24, 一一对 应地与上述套用液槽101、酸液槽102、碱液槽103以及纯水槽104的出口管 路连接。这些控制阀21 24受控于控制装置14,而选择其中一种溶液流向一 进料泵IO所在的管路。进料泵IO之后依次是再生连接口 11和交换器组件3。交换器组件3中设 有待再生的饱和交换器31,其中含有可吸附镍的交换树脂。饱和交换器31在 镀镍生产线旁运行的镀镍废水离子交换吸附单元经过使用后,其中的树脂被镍 所饱和,替换下来的饱和交换器31送至本发明的离子交换再生系统,先通过 再生连接口 11将饱和交换器31和本再生系统连接起来,连接的方式可以是单 个交换器31与连接口 11连接,也可在其后依次连接更多交换器。再生连接口 ll是一种简便装、卸的活接头,可以与饱和交换器接口完全匹配,快速完成两 者的连接。饱和交换器31进口处连接第一排放阀32和排水口 33。饱和交换器 31出口处设置一第二排放阀5,并设有pH值传感器12和电导率传感器13。一自来水槽7的出口依次连接反冲洗泵8和反冲洗阀9,组成反冲装置, 通过管路连接至饱和交换器31的出口处。出料控制阀组4连接在饱和交换器31的出口管路上,它是由套用液回流 阀41、回用碱回流阀42、以及洗脱液出料阀43组成,其中套用液回流阀41 通过管路连接至套用液槽101,回用碱回流阀42通过管路连接至碱液槽103, 而洗脱液出料阀43通过管路连接一洗脱液储存槽6。在本发明实施例中选用耐腐蚀的气动隔膜阀构成控制阀组2和4,进料泵 IO为耐腐蚀磁力泵,所有管路和阀门均选用耐腐蚀的UPVC材料。控制装置14作为本系统的核心,起到控制再生过程的作用,控制装置14 中的控制部分例如是以计算机结合可编程控制器(PLC)的方式构建,并配置 pH和电导率监控仪表,以及电气控制元器件。控制装置14通过信号线15连接 pH值传感器12和电导率传感器13,通过控制线16连接到进料控制阀组2、出料控制阀组4、第二排放阀5、反冲洗泵8和反冲洗阀9。控制装置14可以接 受从pH传感器12和电导率传感器13发出的信号,据此通过控制线16发出控 制指令按程序启、闭自动阀门和泵,实现再生过程中各工序间的自动转换,最 终完成树脂的再生。
下面结合本再生系统的工作过程来说明控制装置14的控制原理。 在图2所示的再生系统工作过程中,步骤S201 S208表示再生工艺流程, 而步骤S211 S217表示再生系统控制装置14的转换控制流程。在步骤S201 中,进行反洗,即反冲洗泵8和反冲洗阀9被控制装置14开启,而交换器组 件3中的排放阀32也被自来水由管道从交换器31的底部进入,逆流经过树脂 层,将交换器31中的机械杂质由排水口 33排出。步骤S211执行完成步骤S201 至S202的工序转换,此工序转换例如是由时间程序控制,典型的时间是在10 20分钟范围内,即经过此时间后控制装置14发出控制信号结束步骤S201。随 后进入步骤S202,自来水从交换器31的上部进入,正向清洗树脂,以保证树 脂处于清洁状态。步骤S212执行完成步骤S202至S203的工序转换,此工序 转换同样可由时间程序控制,典型的时间是在10 20分钟之间。
接着是套用液再生步骤S203,套用液是指前一次再生剩下的洗脱液,其中 酸的含量高,镍的含量低,作为再生产品不符合要求,但可在下一次再生时重 复利用。因此在本发明中,套用液被回收储存于套用液槽101。再生时,套用 液阀21被打开(其他阀门22 24仍关闭),其中的套用液由管道进入交换器 中,套用液中的酸起到对树脂的再生作用,酸中的氢离子(H+)将树脂中的镍 离子(Ni2+)交换下来,进入溶液中,而套用液中的原有的镍离子不发生反应 依然留在溶液中,有利于提高再生洗脱液的镍离子浓度。洗脱液经洗脱液出料 阀43进入洗脱液储存槽6中。在此过程中,由步骤S213进行转换点的控制。 在一个实施例中,可由时间程序单独控制步骤S203的结束点,典型的时间设 置是20分钟。在另一个实施例中,也可由交换器31出口管路上的pH值(由 pH传感器12测得)来确定步骤S203的结束点,典型的pH设置点在2.5 3.5 之间,即当pH值由较高值降低至一介于前述范围之间的设置点时,结束步骤 S203。因为低于该pH值以后的洗脱液中酸的含量越来越高,而镍的含量越来 越低。较佳地,是由时间程序和pH值共同控制。若步骤S203到达设置时间,则切换到下一工序;或者若pH降低到设置点,则转化到下一工序,两种控制
方式以先满足控制条件为准。
然后进行酸再生步骤S204,其中酸液阀22被打开(而其他阀21、 23、 24 关闭),新配的酸进入交换器31,对树脂进行比套用液再生步骤S203更为彻 底的再生,并获得镍离子浓度高的再生洗脱液。洗脱液经洗脱液出料阀43进 入洗脱液储存槽6中。酸再生步骤S204的结束点可由pH值控制(S214),典型 的pH设置点在1 3.5的范围内。此后排出液中镍离子浓度开始下降,酸的浓 度上升,当检测到pH值低于此范围时,可以将排出液经套用液回流阀41及相 应的管道回流至套用液储存槽101,作为在下一次套用液再生步骤S203时套用 (回用),以节约再生成本和减少废水处理负荷。套用液回流的结束点可用时 间程序控制。
之后,进入纯水洗步骤S205,打开纯水阀24,用纯水槽104中的纯水对 交换器31中的树脂进行清洗,洗去树脂层内残余的酸。此步骤的结束点可由 pH值控制(S215),典型的pH控制范围为4 5,即控制交换器出口的pH值恢 复到前述范围。
随后,进入碱转型步骤S206,打开碱液阀23,使碱液(如NaOH)进入交 换器31中,氢氧根离子与树脂上的氢离子中和生成水,而碱液中的金属阳离 子(如Na+)则吸附于树脂,从而将交换器31的树脂由氢型转为钠型。转型期 间的排出液中含有未参与反应的碱,可以通过回用碱回流阀42返回碱液槽103 回用。步骤S206的结束点由时间控制(S216),典型的时间设定范围为20 30分钟。
在此之后,再进行纯水洗步骤S207,用纯水对交换器31中的树脂进行清 洗,洗去树脂层内残余的碱,其结束点由电导率控制(S217),典型的控制范 围50 100y S/cm,达到此范围后再生完成(S208),交换器31可重新用于镍 离子吸附回收。
同时,进入洗脱液储存槽6的含有高浓度的镍离子的再生洗脱液作为生产 镍产品的原料回收利用。
再生过程中除洗脱液、回用套用和回用的水之外,其他的水通过自动排放 阀5排入废水处理系统。因此,本发明的再生系统与传统的离子交换设备中的再生部分相比,其效 果主要体现在
1、 集中再生系统综合应用在线仪表测量、化工自动化和计算机控制技术, 使再生过程自动化,设备操作简化。
2、 优化设计和控制离子交换再生过程中的工艺转换点,可以取得比传统 再生设备更好的再生效果、更高的运行效率和更低的成本,最大程度地提高镀 镍废水资源化效益。
3、 应用本发明只要简单地将再生系统与饱和交换器连接起来就可为数十 家企业的镀镍废水回收提供饱和树脂的再生服务,使镀镍废水回收的社会化和 专业化成为可能。
虽然本发明已以较佳实施例揭示如上,然其并非用以限定本发明,任何本 领域技术人员,在不脱离本发明的精神和范围内,当可作些许的修改和完善, 因此本发明的保护范围当以权利要求书所界定的为准。
权利要求
1.离子交换再生系统,其特征在于包括一套再生剂储存装置,包括分别用以提供的各种再生剂的储存槽;一组进料控制阀,一一对应地设在所述各储存槽的出口管路上,根据控制信号选择其中至少一控制阀打开;一再生连接口,通过管路与该组进料控制阀连接,以流入经该组进料控制阀选择的再生剂;一交换器组件,包括至少一可拆卸地连接于该再生连接口的交换器;一洗脱液储存槽;一组出料控制阀,通过管路连接于该交换器的出口,其至少包括一可选择交换器出口的液体流入该洗脱液储存槽的洗脱液出料阀;一冲洗装置,通过管路连接至该交换器,以提供冲洗该交换器的水;一控制装置,连接该组进料控制阀、出料控制阀及冲洗装置,根据再生工序控制该组进料控制阀、出料控制阀及冲洗装置的动作。
2. 如权利要求1所述的离子交换再生系统,其特征在于,该再生剂储存装置 至少包括酸液槽、碱液槽以及纯水槽,而该组进料控制阀至少包括进酸阀、进碱 阀及进水阀,其一一对应地设于酸液槽、碱液槽以及纯水槽的出口管路,并电连 接于该控制装置。
3. 如权利要求2所述的离子交换再生系统,其特征在于,该再生剂储存装置 还包括套用液槽,而该组进料控制阀还包括进套用液阀,该进套用液阀设于该套 用液槽的出口管路,并电连接于该控制装置。
4. 如权利要求2所述的离子交换再生系统,其特征在于,该组出料控制阀还 包括一回用碱回流阀,该回用碱回流阀电连接至该控制装置,并根据其控制信号选 择交换器出口的液体回流入对应的碱液槽。
5. 如权利要求3所述的离子交换再生系统,其特征在于,该组出料控制阀还 包括一套用液回流阀,该套用液回流阀电连接至该控制装置,并根据其控制信号选 择交换器出口的液体流入该套用液槽。
6. 如权利要求1所述的离子交换再生系统,其特征在于,还包括一pH值传感器,设在该交换器的出口管路上且电连接至该控制装置,该控制装置根据该pH 值传感器所检测的pH值控制再生工序转换点。
7. 如权利要求l所述的离子交换再生系统,其特征在于,还包括一电导率传感器,设在该交换器的出口管路上且电连接至该控制装置,该控制装置根据该电导 率值传感器所检测的电导率值控制再生工序转换点。
8. 如权利要求1所述的离子交换再生系统,其特征在于,该冲洗装置包括依次连接的一水槽、 一反冲洗泵以及一反冲洗阀,该反冲洗阀通过管路连接至该交换 器组件的交换器,且该反冲洗泵以及反冲洗阀电连接至该控制装置。
全文摘要
本发明涉及一种用于进行自动离子交换再生的离子交换再生系统,通过设置一系列再生流程所需的储存槽、管路、阀门、传感器,并通过一控制装置根据再生工序控制这些各种阀门、传感器的动作,来实现再生流程的自动进行,并简化设备操作。此外,此系统有利于进行离子交换再生过程中的工艺转换点优化设计和控制。
文档编号B01J49/00GK101254477SQ200710172088
公开日2008年9月3日 申请日期2007年12月11日 优先权日2007年12月11日
发明者丹 付, 王维平 申请人:上海轻工业研究所有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1