同时生产电能、热能形式的能量和氢气的方法和设备的制作方法

文档序号:4991100阅读:213来源:国知局
专利名称:同时生产电能、热能形式的能量和氢气的方法和设备的制作方法
同时生产电能、热能形式的能量和氢气的方法和设备 本发明涉及基于合成气和/或天然气的同时生产电能、热能形式的能量和氢气的方法和设备,所述合成气和/或天然气转而可以衍生自许多主要能源。
背景技术
世界上对电力、热和氢的需求在可预见的未来将是基于气体、液体或固体化石燃料。因此国际上对全球变暖的关注将逐渐集中在碳捕集与封存(CCS)。因此开发环境友好、成本和能量有效的技术(包括CCS问题处理)是不可避免的。在这方面的主要挑战之一是超重油和浙青的回收和提质。因为化石能源需求的同时全球增加和常规资源的减少,油品工业将转向非常规来源。在这方面应提及的是,全世界堆积大于40000亿桶的超重油(EHO)和浙青。从例如焦油砂将这些资源进行回收和提质是非常耗能且对环境具有强烈影响的方法。
在焦油砂工业中天然气至今为止主要用于产生蒸汽(例如用于SAGD (蒸汽辅助重力泄油))、电力和产生用于提质处理的氢气。然而对长期天然气成本和供给的顾虑激发经营者对于未来项目考虑基于气化的能量生产。商业浙青提质方法产生高硫石油焦浙青质副产物,其通常为堆料。可将这些机会燃料(如果必要,以及煤和/或浙青的未处理的部分)气化以产生氢气、电力和蒸汽,因此潜在地消除对贵重天然气的需要。第一个这样的基于气化的系统是在加拿大的Alberta,当前处于建造进展阶段。Opti-Nexen Canada, Inc.所拥有的Long Lake项目是完全整合的由浙青质残余物的气化供以燃料的浙青抽提和提质设施。(G. Ordorica-Garcia等,Energy ProcediaI(2009) 3977-3984: CO2Capture Retrofit Options for a Gasification-basedIntegrated Bitumen Extraction and Upgrading Facility)。气化单兀提供提质所需的氢气和用于在联产设备中产生功率(power)和蒸汽的合成气燃料,从而产生几乎完全能量自足的操作。然而,天然气和/或合成气的使用导致大量CO2释放到大气中,从而促成全球变暖。至今为止,CCS技术在油砂工业中的应用主要涉及生产氢气和电能的设备,因为它们是CO2的最大点源。将来整合的基于气化的设备(生产合成气、蒸汽、电力和氢气(用于提质))还必将遇到CCS挑战。在这样的情形中,如果CO2捕集基于当今可利用的技术,则这将对资金和操作费用、以及设备性能(特别是如果需要加以改造时)具有很大影响。Lackner等就“Hydrogen Production From Carbonaceous Material,,申请了方法和设备专利,即WO 01/42132A1。所述设备在气化容器中进行煤的加氢气化。该工艺阶段之后接着是在碳酸化容器中使用氧化钙碳酸化反应驱动的由甲烷和水产生氢气。这种工艺通常称作通过吸附强化水蒸气甲烷重整(SE-SMR)产生氢气。在该气化步骤(Lackner等)中用氢气将煤(或合成气)加氢以产生主要由甲烷组成的气态反应产物。将这种气态反应产物输送到碳酸化容器,于此使其与水和氧化钙反应以产生氢气和固体碳酸钙以及从产物气体料流除去二氧化碳。Lackner等的方法没有例如为SAGD提供额外的热。因此该方法缺乏许多有关应用所需要的通用性。此外在SE-SMR-过程中捕集该方法系统的所有C02。在需要大量外部热量兼以必需量的氢气和电能的应用中,例如在焦油砂工业中,这可能不是成本有效的。公布WO 2004/025767 (Vik等)公开了由含烃流产生电的设备。根据一个实施方案,SOFC用于产生电。该方法涉及燃料重整以产生氢气然后将其与其它组分分离以使用纯氢气作为去往燃料电池的进料。可以将重整期间产生的CO2进行捕集用于后续使用或储存。Vik等的方法是针对其中不需要过量热并且其中联产电和氢的高效率是唯一主要目的的应用。因此需要集中在能量优化、CO2-捕集和地下储存或使用(例如E0R)的新技术,优选颠覆性(game change)技术。 目的因此本发明的目的是提供允许成本和能量有效地持续从重油和浙青回收和生产能量以及以工业规模从生物质和有机废物持续生产能量的方法。随之而来的目的为上述提供了设备,该设备提供有效的二氧化碳捕集和封存并且允许高度通用性地生产以电、氢气和热形式的能量。在该方面“通用性(versatility)”应理解为这些能量形式的量的比率可以在宽范围内通过本发明方法中参数的简单改变而改变。

发明内容
上述提及的目的通过如权利要求I所限定的根据本发明的方法得以实现。根据另一个方面,本发明涉及如权利要求16所限定的用于实施该方法的设备。从属权利要求公开了本发明的优选实施方案。通常应注意的是,当提及“燃料电池”、“S0FC”或“至少一个燃料电池或S0FC”时,在工业情形中可以是许多燃料电池堆叠体。虽然“天然气”一般是指采收自地下地层的富甲烷气体,但是在上下文中此处给出的“天然气”意欲涵盖任何富甲烷气体而与其来源无关。应注意的是,术语“一次S0FC”并不必须意味着在根据本发明的方法或设备中涉及另一个SOFC。另一个(二次)SOFC的存在是本发明的可选特征。此外应注意的是,CO2的成本有效捕集是本发明技术具有的主要优点并且在当今环境状况中CO2捕集明显包括在基于本发明的任何工业设备中。然而,因为环境状况随时间却可以改变,并且因为在具有或不具有CO2捕集情况下该创新性方法是有益的,所以该特征关于所言的SOFC单元仍是任选的特征。本发明的技术代表这种颠覆性技术并将为上述给出的目的作出主要贡献。本发明的概念都是基于两个主要“组成部分”;I. SOFC热电联产(CHP)设备,(直接)基于合成气或天然气。2.具有整合的基于合成气(CO变换反应)或基于天然气(SE-SMR反应;吸附强化水蒸气甲烷重整)的CO2捕集(固体CO2吸收剂(例如CaO))的氢气生产单元。这两个组成部分为以下提供热气化单元(产生合成气),用于SAGD的蒸汽,氢气生产单元(CO2吸收剂的再生)和提质装置(upgrader),用于总生产设施内部使用和向地区电网出售的电,以及用于提质装置(将浙青由SAGD提质为合成原油或更为精制的产品)的氢气。可以按两种或三种不同方式捕集CO2 ;a)直接从SOFC堆叠体(通过在纯氧中燃烧“补燃器(afterburner)”气体,能量效率仅降低2-3%),b)通过由合成气制备氢气。在后种情形中,通过整合在CO变换反应中的CO2吸收剂(例如CaO)捕集C02。在再生反应(CaCO3煅烧为CaO和CO2 (用于储存或使用))中释放纯C02。在该情况下氢气部分用于进料到SOFC用于产生热和电而部分用于提质装置。 c)通过a)和b)的组合捕集C02。实际上这可能是优选的最为成本有效的解决方案。下面参考附图
描述本发明的不同实施方案,其中图Ia-C是本发明原理的示意图,不受应用限制,图2a是本发明原理的示意图,主要能量源为天然气,图2b显示了图2a所示方法的变化形式,图2c显示了图2a所示方法的另一个变化形式,图2d显示了图2a所示方法的又一个变化形式,图3a是本发明在一个应用中的示意性图解,其中重油/浙青是主要能量源,图3b显示了图3a的分布式变化形式,图4是本发明在一个应用中的示意性图解,其中生物质是主要能量源,图5是本发明在另一个应用中的示意性图解,其中生物质是主要能量源。图Ia-C总体上描述了在整合的成本和能量有效的CO2捕集情况下灵活生产三种能量组分即电、热和氢气的原理。图Ia显示了将含碳燃料进料到气化单元,用来自设备的热加热,其中将所述装料转化为合成气。在纯化后根据有关需求,将合成气分成第一和第二进料气体流。这二者之比由相关应用且特别由在内部和外部对氢气的要求所确定。将第一进料气体流导向燃料电池以产生电和热。本领域技术人员可容易地知道应当将空气进料到燃料电池(SOFC)的一个电极并同时将燃料进料到另一个电极。CO2也产生于燃料电池中并以下文更为充分描述的方式被捕集。值得注意的是,根据本发明方法,CO2捕集仅使效率降低2-3%,相比之下较为常规方法降低5-10%。CO2的后续使用或处置不是本发明的一部分。将第二进料气体流导向生成氢气的反应器系统,该反应器系统在本实施方案中由两个串联的反应器表示。在这两个反应器的第一个中,将将合成气的CO部分通过与水和催化剂/吸收剂系统的反应转化为氢气。在所示实施方案中,催化剂/吸收剂是CaO,使CaO反应得到CaCO3从而吸收反应中生成的任何C02。第二步骤是吸收剂再生步骤,吸收剂通过释放CO2而转化回到CaO。无需多说,由此释放的CO2应该保持隔离用于随后使用。生成氢气的反应器系统的再生步骤典型地在比氢气生产步骤更高的温度和/或在更低的压力下进行。净反应可以写作
Ca0+C0+H20=CaC03+H2 (氢气生产步骤)CaCO3=CaCHCO2 (吸收剂再生步骤)C0+H20=H2+C02 (总过程)在氢气生产单元中,在反应器(反应器I)中通过CO变换反应产生氢气,其中在一个处理步骤中,CO2被CO2-吸收剂(由CaO例示)捕集从而产生几乎纯的氢气(95%+)(对于大多数工业目的,可以不需要氢气的进一步提质)。在再生反应器(反应器2)中于高温下(T=850-900°C )进行吸收剂的再生,其中释放出纯的CO2用于储存或使用。将再生的吸收剂移回到氢气生产单元。两个反应器(I和2)即氢气生产反应器和再生反应器可以由两个流化床反应器组成,其中一个反应器专用于氢气生产(反应器I)而另一个反应器专用于CO2吸收剂的再生(反应器2)。关注图lb。作为替代方案,生成氢气的反应器系统的两个反应器可以是两个并联反应器(固定床反应器)而不是两个串联反应器(流化床反应器)。两个串联反应器的使用允许在每个反应器中实现连续生产和恒定稳态条件,而且要求必须将固体在所述反应器之间循环。如果反应器并联运行,它们分别以生产模式和吸收剂再生模式间歇地(intermittingly)使用。温度以及可能还有压力将必须来回地改变,但是避免了使固体材料循环的需要。根据图lb,在反应器I和反应器2之间不存在吸收剂的转移。替代地,这些反应器间歇运行。在一个时段内反应器I用于氢气生产而吸收剂在反应器2中进行再生。在接下来的时段内则情况反过来。生成氢气的反应器系统的两个步骤均需要热,并且用SOFC中生成的热进行加热。来自SOFC的热还用于加热气化单元。如果在外部或内部对氢气的需求存在暂时下降,则可以快速改变第一和第二进料气体流之间的比率。作为一种选择,在(至少一个)燃料电池中还可以使用所产生的氢气的一部分来产生热和电。将燃料电池的CO2捕集设置成通过在纯氧中燃烧来自燃料电池的阳极废气中的剩余部分燃料来进行。因此废气仅含有CO2和水蒸气。后者可通过冷凝或其它干燥方法除去,从而使废气流中剩下纯co2。氧气可通过使用氧气泵(电化学驱动氧气转移透过膜)或受空气废气和燃料废气之间的分压梯度驱动的氧气转移膜获得。如图Ia和图Ib的左侧所示,从设备分配出过量能量用于外部消费。其还显示出将过量的能量从氢气生产反应器转移到气化单元。图Ic显示了相当类似于图Ib的实施方案,唯一区别是SOFC将所有热提供给气化单元,而将来自生成氢气的反应器的过量热输送到外部。图2a显示了类似于图I的实施方案,但是其中设备的主要能量源是天然气,主要是甲烷,且因此其中气化单元用设置成将甲烷转化为合成气的重整器单元替换。图2a的所有其它特征类似于图I。当从天然气开始时,则获得富氢合成气。将热从SOFC供给到生成氢气的反应器系统的再生反应器,供给到重整单元以及用于外部输送。来自重整器单元的过量热也可以输送到外部。图2b显示了图2a的实施方案,其中不同单元之间的热传输稍微不同而方法原理保持相同意义,即方法中内部所需的热由燃料电池产生。此处将来自生成氢气的反应器系统(其生产反应器)的过量热供给到重整单元。图2c显示了根据本发明方法的又一个变化形式,其中天然气是主要能量源。然而,在该情况下,将天然气照原样进料到生成氢气的反应器系统而将重整器单元设置成仅将第一进料气体流转化为合成气。再次将来自燃料电池的热用于加热重整器单元和生成氢气的反应器系统的吸收剂再生部分。产生氢气所需的热可以仅由暖热的再生的吸收剂和放热的吸收剂反应供给。图2d显示了根据本发明方法的又一个变化形式,其中天然气是主要能量源。此处将天然气照原样进料到燃料电池和生成氢气的反应器系统。因此,根据该变化形式的方法中不涉及合成气。热传输通常是相同的,但是在该情况下不涉及重整器单元,至少在所述设备附近不涉及。左边显示了用于外部用途的过量能量的组分。在2a_2d中所示的所有变化形式中,生成氢气的反应器系统可以是以稳态运行的流化床反应器或间歇地运行的固定床反应器。在所有变化形式中,来自SOFC的CO2直接从堆叠体捕集并同时来自生成氢气的反应器系统的CO2被吸收剂捕集和在再生单元中释放出。在上文给出了本发明的核心内容的同时,在下文描述一些相关应用。 存在许多工业情况,或整合的产业群(industry cluster),其中需要灵活的成本量和能量有效的热、电力和氢气生产。在这样的情形中,主要挑战是同时获得成本和能量有效的CO2捕集。本发明满足这种挑战。石油精炼厂以及焦油砂工业中整合的生产和提质设备是该方面明显情形的实例。除涉及化石能源(和原料)生产的应用外,还存在的所关注的应用与不同生物源的燃料/原料的使用有关。为对此加以说明,下面参照附图3-5给出三个不同的可能方案(或实例)。这些方案都基于在具有整合的CO2捕集情况下以灵活的量生产和使用电、热和氢气,其可以就任何目的或需要进行定制。然而,应该指出本发明的方案仅为实例,使用本发明所遵循的可能性、组合和灵活度,对于整合的产业群,或者对于其中若干工厂情况“关联”在一起的情况(其中来自一个工厂设施(set up)或应用的废料可以为另一个提供具有有关价值的原料),给出几乎“无限制”的选择。图3a显示了虽然非常示意性但是更为完整的应用系统,由重油/浙青或焦油砂(此后缩写为浙青)作为主要能量源开始。如本领域技术人员会知道的是,将浙青带到地面存在挑战,以及需要热(可能为蒸汽形式)以从地下回收浙青。一种这样的方法称作SAGD(蒸汽辅助重力泄油)。将所回收的浙青在提质单元中进行提质并将中间产物石油焦加入气化单元(如图I中的一种)以获得合成气。因此,在该情形中,在获得待进料到燃料电池的气体之前需要有三个需求能量步骤。该方法的核心内容依然相同并且所提及的内部步骤所需要的热由(至少一个)燃料电池提供。用于提质单元的氢由生成氢气的反应器系统提供。该系统描述了所涉及能量组分的一个较为复杂的用途(也在内部),因此说明了该系统的优点是关于其内在能力是通用的,所述内在能力是就一个和相同应用而言,根据有关应用或甚至根据随时间而改变的需要而内在地适应或改变能量组分之间的比率。应注意的是,根据该实施方案/应用,本发明允许由相当廉价的原料可持续地生产能量。焦油砂方案的一种可能的形式可以使分配的热、电和氢气生产量就井口注射(SAGD)和产业群中的需要而定制作出。用于分配单元的合成气由中心设备供给(图3a)。分配单元的氢气生产(如果需要)可以是有限的或者是少的(例如10-0%)。氢气可用于原位提质(如例如在WO 2008/058400 Al C atalytic down-hoIe upgrading of heavy oilsand bitumen中),用于给发电专用SOFC-堆叠体供以燃料或者在管线系统中输送到中心设备内的提质装置。应注意,在所形成的石油焦没有以足以使工艺运行的量生成的情形中,可以将其与其它含碳燃料,例如煤、未处理的浙青、生物质或甚至天然气合并。图3b类似于图3a,但是不包括整个“图”。图3b所描述的要点是根据有关需要可以将设备的各部分(子设备)分配到局部位置(site),而其它部分,具体是提质单元、气化单元和纯化单元(图3b中未示)可以分别设置在中心位置并且服务于任意数目的所分配的子设备例如图3b中所示的设备。图4描述了具有整合的“生物炼厂”方案的独立生物能量设备。图4显示了根据本发明的联合生产电力、热和氢气的设备如何能够提供用于区域 (district)加热(和如果需要时用于热解设备)所必需的热,用于总的生物能量/生物炼厂位置的电,以及用于提质目的(生产有机化学品和生物柴油)、生产生物甲醇和用于将氢气供给到运输部门的氢气。所捕集的CO2可以用于生产生物甲醇,为运输部门或任何其它合适用途提供CO2中性燃料。合成气和固体碳以及必需的生物质为能量、氢气生产系统供以燃料。生物质还可以是用于热解设备的原料。捕集所有的生物CO2,如果以可持续的方式使用,或者如果将其储存则给出双倍“附加益处(bonus) ”。在图4最左边三栏中进行的单独过程未被详细解释,这是因为它们本身不是本发明的一部分。在本上下文中重要的是根据本发明的方法如何通过提供所需合适量的上文若干次提及的三种形式的能量而使这些过程紧密相互作用。图5描述了整合在生物气生产设备中的独立能量和氢气生产系统。图5显不了根据本发明的联合生产电力、热和氢气的设备,如何基于来自生物气和/或来自独立能量和氢气生产系统的CO2,可以提供用于有机废物/污泥的初始加热、用于干燥目的和其它原位(on the site)应用必需的热,用于总生物气生产位置(包括从生物气捕集CO2的必需电能)和用于地区电网出售的电,以及用于生产生物甲醇的氢气。生物甲烷(来自生物气)可以用于氢气生产。然而,如果将CO2从生物气分离出来用于生产车辆级甲烷,则这种甲烷将最有可能直接用于运输部门。用于能量氢气生产设备的燃料或合成气可由合适的生物质制备。再次地,捕集所有的生物CO2,如果使用或储存则给出双倍“附加益处”。又再次地,该图左手边的单独过程在此未被详细解释,这是因为它们本身不是本发明的一部分。在本上下文中受关注的部分是根据本发明的方法适应需要能量的工艺单元的这种复杂系统的能力,从而提供可持续的每个过程所需形式的能量输送。根据本发明的基于气化整合的浙青抽提和提质设施的总生产设备可因此实现为任何重油/浙青方案定制的必需量的热、电和氢气的最佳组合。总过程在具有非常能量有效的整合CO2捕集情况下还基于来自气化的石油焦/提质残余物(或未处理的浙青)的合成气而能量自足。此外应注意,总系统的灵活性或通用性还适用于其中煤、生物质和有机废物,或用于该事项的任何其它含碳材料构成主要能量源的应用。在本发明的一些优选实施方案中,含碳气体是合成气。在其它优选实施方案中,含碳气体是天然气或其它富甲烷气体。合成气和/或天然气可以衍生自任何来源,但是优选至少部分由重油、浙青或其它含碳燃料的回收和提质得到,其中提质所需的热至少部分由至少一个SOFC提供。所提及的提质通常涉及气化。取决于生成氢气的反应器系统中所用吸收剂的类型,通常将水随进料气体一起进料到该反应器系统中,尽管在加入该反应器系统之前没有将这两种所需之物合并或混合。生成氢气的反应器系统的再生 反应器所需的热一般至少部分由至少一个SOFC提供。在一些实施方案中,合成气至少部分衍生自生物质,或者其可以通过将天然气重整制得。在一些实施方案中,含碳气体是富含甲烷(“天然气”)的气体,该气体衍生自生物质和有机废物来源中的一种或多种。在一些实施方案中加入到一次SOFC的那部分天然气可以首先被重整为合成气。为了获得该方法的所需通用性,第一进料气体流和第二进料气体流之间的比率根据有关应用中对氢气的需要来决定。生成氢气的反应器系统选自a)包含两个并联反应器的反应器系统,每个反应器分别以生产模式和吸收剂再生模式间歇地操作,和b)包含两个串联反应器的反应器系统,第一反应器以生产模式连续地操作,第二反应器以吸收剂再生模式连续地操作。生成氢气的反应器系统的生产模式中的温度典型地维持在500-650°C。吸收剂再生模式中的温度典型地维持在800-950°C。吸收剂再生模式中的压力维持在比生产模式中的压力更低的水平。在本发明的优选形式中,通过与单独氢气生产单元(基于作为进料的合成气)组合的直接以合成气为燃料的“热电联产”(CHP) SOFC设备来输送必需的热、电力和氢气。在氢气生产单元中用CO2-吸收剂(例如CaO)捕集CO2,而来自CHP-SOFC的CO2通过能量和成本有效的后燃烧方法进行捕集。(可选的形式是用氢气为SOFC-堆叠体专用部分提供燃料或进料)。定量实施例通过如下显示,下表说明了本发明方法的通用性,
权利要求
1.一种由含碳气体同时生产电能、氢气和热能形式的能量的方法,其特征在于包括 .1.将含碳气体原料连续地分成第一进料气体流和第二进料气体流, ii.将第一进料气体流加入一次SOFC中以产生电、热和CO2, iii.将另一进料气体流加入生成氢气的反应器系统中以产生氢气和CO2, iv.任选地将所生成的氢气的至少一部分加入二次SOFC中以产生电和热,从而减少净生成的氢气, V.将至少一个SOFC中产生的热至少部分地供给到所述生成氢气的反应器系统, vi.任选地通过在纯氧中燃烧“补燃器”气体来捕集一次SOFC中生成的CO2并对废气进行干燥, vii.通过使用吸收剂捕集所述生成氢气的反应器系统中生成的C02。
2.如权利要求I中所要求的方法,其特征在于所述含碳气体是合成气。
3.如权利要求2中所要求的方法,其特征在于所述合成气至少部分由重油、浙青或其它含碳燃料的回收和提质得到,其中提质所需的热至少部分由至少一个SOFC提供。
4.如权利要求3中所要求的方法,其特征在于对来自提质的其余产物进行气化。
5.如权利要求3中所要求的方法,其特征在于将水随其它进料气体流一起进料到所述生成氢气的反应器。
6.如权利要求2中所要求的方法,其特征在于所述合成气至少部分衍生自生物质。
7.如权利要求2中所要求的方法,其特征在于所述合成气通过将天然气重整进行制备,重整所需的热至少部分由至少一个SOFC提供。
8.如权利要求I中所要求的方法,其特征在于所述含碳气体是富含甲烷的气体且优选是天然气。
9.如权利要求7或8中所要求的方法,其特征在于所述气体衍生自生物质和有机废物来源中的至少一种。
10.如权利要求7中所要求的方法,其特征在于首先将加入到一次SOFC的那部分天然气重整为合成气,重整所需的热至少部分由至少一个SOFC提供。
11.如前述权利要求中任一项所要求的方法,其特征在于第一进料气体流和第二进料气体流之间的比率根据有关应用中对氢气的需要确定。
12.如权利要求I中所要求的方法,其特征在于所述生成氢气的反应器系统选自a)包含两个并联反应器的反应器系统,每个反应器分别以生产模式和吸收剂再生模式间歇地操作,和b)包含两个串联反应器的反应器系统,第一反应器以生产模式连续地操作,第二反应器以吸收剂再生模式连续地操作。
13.如权利要求12中所要求的方法,其特征在于生产模式中的温度维持在500-650°C。
14.如权利要求12中所要求的方法,其特征在于吸收剂再生模式中的温度维持在800-950。。。
15.如权利要求12中所要求的方法,其特征在于吸收剂再生模式中的压力维持在比生产模式中的压力更低的水平。
16.由含碳气体同时生产电能、氢气和热能形式的能量的设备,其特征在于包括 -供给含碳气体的装置, -将含碳气体分成相对量可变的两个部分的装置,-设置成接收选自合成气和天然气的气体以产生电、热和CO2的S0FC,-即刻捕集SOFC中生成的CO2的装置,-与SOFC并联设置的生成氢气的反应器系统,-在内部和外部分配SOFC产生的热的装置, -在内部和外部分配SOFC产生的电的装置,-分配所产生的氢气的装置,-处理所捕集的CO2的装置,-任选的设置成接收氢气以产生电和热的另一个S0FC。
全文摘要
由含碳气体可持续地同时生产电能、氢气和热能形式的能量的方法和设备,所述方法包括i.将含碳气体原料连续地分成第一进料气体流和第二进料气体流,ii.将第一进料气体流加入一次SOFC中以产生电、热和CO2,iii.将另一进料气体流加入生成氢气的反应器系统中以产生氢气和CO2,iv.至少部分地用至少一个SOFC中产生的热加热所述生成氢气的系统,v.任选地通过在纯氧中燃烧“补燃器”气体来捕集一次SOFC中生成的CO2和对废气进行干燥,vi.通过使用吸收剂捕集所述生成氢气的反应器系统中生成的CO2。
文档编号B01D53/62GK102762493SQ201080061706
公开日2012年10月31日 申请日期2010年11月3日 优先权日2009年12月22日
发明者A·威克, A·拉黑姆 申请人:Zeg动力股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1