氟化催化剂载体和催化剂系统的制作方法

文档序号:12505959阅读:416来源:国知局
氟化催化剂载体和催化剂系统的制作方法与工艺

许多含有单位点催化剂的催化剂组合物已用于制备聚烯烃,以良好聚合速率产生相对均质的共聚物。与传统的齐格勒-纳塔催化剂(Ziegler-Natta catalyst)组合物相比,单位点催化剂组合物(如茂金属催化剂)是其中各催化剂粒子含有一个或仅几个类型的聚合位点的催化性化合物。

为了用单位点催化剂系统获得可接受和经济上可行的聚合活性,通常需要大量活化剂(如甲基铝氧烷(“MAO”))。此类活化剂通常昂贵并且产生用于聚合的活性单位点催化剂所需的大量活化剂已成为将用于产生聚烯烃的单位点催化剂商业化的实质障碍。



技术实现要素:

本文所描述的一个示例性实施例提供一种制造催化剂载体的方法。所述方法包括形成载体材料与氟化物供体的混合物。将所述混合物添加到流体化床反应器中。将所述混合物流体化以形成流体化床同时维持分配板中的压降与所述流体化床中的压降的大于约7%的比。煅烧所述混合物以分解所述氟化物供体,形成氟化载体。

本文中描述的另一示例性实施例提供一种催化剂系统。所述催化剂系统包括催化剂化合物、氟化载体以及铝氧烷化合物。通过以下产生氟化载体:在流体化床反应器中在足以分解氟化物供体化合物的温度下加热催化剂载体和氟化物供体化合物,同时维持分配板中的压降与流体化床中的压降的大于约7%的比。铝氧烷以每克载体约10mmol或更少的量存在。

附图说明

本发明技术的优势通过参看以下详细描述和附图更好地理解,在附图中:

图1为可在实施例中使用的催化剂活化系统的简化工艺流程图;

图2为可在实施例中使用的另一催化剂活化器的简化工艺流程图;

图3为显示原始Siral 40的床膨胀对流体化气体的流速(SGV)的图;

图4为显示经供应商在550℃下煅烧三个小时的Siralox 40/480的床膨胀对SGV的图;

图5为显示在600℃下煅烧之后含有约5.3%氟的Siral 40的床膨胀的图;

图6显示具有有限过滤器表面积的反应器的操作参数的标记为实例4的图,所述有限过滤表面积限制可馈送到约0.23ft./sec的最大SGV流体化气体;

图7显示过滤器表面积比图6中高2.5倍的反应器的操作参数的标记为实例5的图,所述过滤器表面积不将SGV流体化气体的最大流速限制为低于0.40ft./sec的所需目标;

标记为实例2的图8为在整个操作中利用0.10ft./sec的14英寸直径的流体化床活化器中测量的床温度差距的图;

标记为实例4的图9为在操作的早期部分中利用0.10ft./sec流体化气体速度SGV,随后高达0.23ft/sec.SGV的40英寸直径的流体化床活化器中测量的床温度差距的图;及

标记为实例5的图10为在操作的早期部分中利用0.10ft./sec流体化气体速度SGV,随后高达0.40ft./sec.SGV的40英寸直径的流体化床活化器中测量的床温度差距的图。

为简单和清楚说明起见,图1和2中显示的元件不一定按比例绘制。举例来说,为清楚起见,一些元件的尺寸相对于其它元件可以放大。另外,在认为适当时可在图式中重复参考编号以指示对应或类似元件。

具体实施方式

已发现当含氧化铝载体已经氟化时,通过增加单位点催化剂化合物中过渡金属组分的浓度获得较高水平的催化剂生产率。催化剂系统可包括呈每克载体约10mmol或更少的量的活化剂,例如一种或多种铝氧烷。还发现当载体为已经氟化的含氧化铝载体时,使用少量活化剂,即,每克载体约4mmol或更少,获得较高水平的催化剂生产率。

然而,按比例扩大氟化氧化铝的生产引起流动、过滤器堵塞、和形成碎石和碎屑的问题。因此,需要在生产程序期间不堵塞过滤器的大规模生产程序。已经鉴定减少排气过滤器堵塞并且降低系统由于载体和氟化剂的流体化特征的较大差异而变得分离的机率的活化程序(包括温度分布和气体速度)。

然而,最近通过用氟化物来源(如六氟硅酸铵(本文中称为AHF))煅烧氧化铝-二氧化硅载体将氟化氧化铝载体按比例扩大也已引起显著碎屑和碎石形成。碎屑含有较高含量的氟化物并且引起输送最终材料,例如从流体化床反应器中去除材料的困难。此外,相信碎屑形成促使最终产物的块体中的F含量比预期低。

已经鉴定预期减少碎屑形成的数种方法。这些包括反应器的设计和配置。其它方法包括将AHF浸渍到应引起AHF的更均匀分配的载体的孔中。AHF还可在添加到活化剂中之前与载体预先混合。在一些实施例中,氟化可在多个步骤中进行。举例来说,可添加一半AHF并且用载体煅烧,接着添加剩余AHF并且随后第二煅烧。除这些程序以外,可在活化中使用较小尺寸的AHF粒子。

聚合系统的概述

首先,可注意到任何数目的催化剂系统可与目前系统的实施例一起使用。举例来说,本文中描述的技术通常指单位点催化剂,然而,这些技术适用于任何数目的离散阳离子有机金属催化剂化合物,包括茂金属催化剂和非茂金属催化剂。一些为单位点催化剂,而其它具有双位点或多个位点。此可包括例如单位点茂金属化合物,如双(正丁基,甲基环戊二烯基)锆Cl2;双位点茂金属化合物,如双(正丙基环戊二烯基)铪(CH3)2;以及非茂金属催化剂,如[(2,3,4,5,6Me5C6N)CH2CH2]2NHZrBn2。因此,任何对单位点催化剂的提及不限于那些类型的催化剂,但可包括任何数目的其它催化剂,如本文所描述。

如果单位点催化剂与氟化载体一起使用,那么以催化剂系统的总重量计,单位点催化剂化合物的过渡金属组分可以在约0.2wt%、约0.5wt%或约0.7wt%的低值到约1wt%、约2wt%、约2.5wt%、约3wt%、约3.5wt%或约4wt%的高值范围内的量存在。至少部分取决于具体过渡金属组分,单位点催化剂的过渡金属组分的量可变化。举例来说,如果过渡金属组分为Hf,那么以催化剂系统的总重量计,过渡金属组分可以约0.6wt%或更多、约0.7wt%或更多、约0.8wt%或更多、约0.85wt%或更多、约0.9wt%或更多、约0.95wt%或更多、约1wt%或更多、约1.05wt%或更多、约1.1wt%或更多、约1.15wt%或更多、约1.2wt%或更多、约1.25wt%或更多或约1.3wt%或更多的量存在于单位点催化剂化合物中。在另一实例中,如果过渡金属组分为Zr,那么以催化剂系统的总重量计,过渡金属组分可以在约0.2wt%、约0.25wt%、约0.3wt%或约0.35wt%的低值到约0.4wt%、约0.8wt%、约1wt%、约1.2wt%或约1.5wt%的高值范围内的量存在于单位点催化剂化合物中。出于本发明的目的,术语“催化剂系统”总的来说是指一种或多种单位点催化剂化合物、活化剂以及载体。

当载体为氟化含氧化铝载体时,增加单位点催化剂化合物的过渡金属组分的量增加催化剂生产率。因而,使用氟化含氧化铝载体允许通过增加单位点催化剂化合物的过渡金属组分的浓度来增加催化剂生产率。举例来说,当使用氟化载体时,与使用未氟化含氧化铝载体和较低浓度的单位点催化剂系统的过渡金属组分的相同催化剂系统相比,通过增加单位点催化剂化合物的过渡金属组分的量,催化剂系统的催化剂生产率可增加约50%、约60%、约70%、约80%、约90%、约100%、约110%、约120%、约130%或更多。换句话说,对于两种类似催化剂系统,例如大体上类似活化剂浓度,两者都包括相同的氟化含氧化铝载体和相同单位点催化剂化合物,催化剂生产率可通过增加单位点催化剂化合物的过渡金属组分的量而增加。

单位点催化剂化合物、活化剂以及载体可以任何次序或顺序组合在一起以产生催化剂系统。催化剂系统制备的次序或顺序对催化剂生产率具有可忽略的影响或不具有影响。举例来说,一种或多种单位点催化剂化合物和活化剂可组合以产生催化剂/活化剂混合物,并且载体和催化剂/活化剂混合物可随后独立地添加到聚合反应器中。载体、单位点催化剂化合物以及活化剂可组合并且以单一催化剂系统形式引入到聚合反应器中。或者,单位点催化剂化合物和活化剂可首先组合产生催化剂/活化剂混合物并且随后可将载体添加到催化剂/活化剂混合物中产生催化剂系统。或者,单位点催化剂化合物和活化剂可组合产生催化剂/活化剂混合物并且随后可将催化剂/活化剂混合物添加到载体中产生催化剂系统。或者,载体和活化剂可首先组合产生活化剂/载体混合物并且随后可将单位点催化剂化合物添加到活化剂/载体混合物中产生催化剂系统。单位点催化剂化合物可在引入到聚合反应器中之前添加到活化剂/载体混合物中或单位点催化剂化合物和活化剂/载体混合物可独立地引入到聚合反应器中并且在其中组合。

可使用一种或多种稀释剂或载剂促进催化剂系统的任何两种或更多种组分的组合。举例来说,单位点催化剂化合物和活化剂可在甲苯或另一非反应性烃或烃混合物存在下组合在一起以提供催化剂/活化剂混合物。除了甲苯之外,其它适合的稀释剂可包括(但不限于)乙苯、二甲苯、戊烷、己烷、庚烷、辛烷、其它烃或其任何组合。随后可向催化剂/活化剂混合物中添加干燥的或与甲苯混合的载体,或可向载体中添加催化剂/活化剂混合物。

活化剂可为铝氧烷,如甲基铝氧烷(“MAO”)、改性的甲基铝氧烷(“MMAO”)或其组合。铝氧烷的量可基于铝氧烷中所含有的铝(Al)的量确定。铝氧烷可以在每克载体约0.1mmol的低值到约10mmol范围内的量存在于催化剂系统中。

载体

如本文所用,术语“载体(support)”和“载剂(carrier)”可互换地使用并且是指任何载体材料,包括多孔载体材料,如滑石、无机氧化物以及无机氯化物。可经氟化的其它无机材料可用作载体。

一种或多种单位点催化剂化合物可连同活化剂一起负载在相同或单独载体上,或活化剂可以未负载的形式使用,或可沉积于与单位点催化剂化合物不同的载体上,或其任何组合。此可通过所属领域中常用的任何技术来实现。在所属领域中存在各种用于负载单位点催化剂化合物的其它方法。举例来说,单位点催化剂化合物可含有如例如美国专利第5,473,202号和第5,770,755号中所描述的聚合物结合配体。单位点催化剂化合物可如例如美国专利第5,648,310号中所描述喷雾干燥。可如EP 0 802 203中所描述使与单位点催化剂化合物一起使用的载体官能化,或如美国专利第5,688,880号中所描述选择至少一个取代基或离去基。

载体可为或包括一种或多种无机氧化物。载体可为包括第2、3、4、5、13或14族元素的一种或多种金属氧化物的无机氧化物。举例来说,无机氧化物可包括(但不限于)氧化铝、二氧化硅、二氧化钛、氧化锆、氧化硼、氧化锌、氧化镁或其任何组合。无机氧化物的说明性组合可包括(但不限于)氧化铝-二氧化硅、二氧化硅-二氧化钛、氧化铝-二氧化硅-二氧化钛、氧化铝-氧化锆、氧化铝-二氧化钛等。载体可为或包括氧化铝、二氧化硅或其组合。

可使用包括具有各氧化物相对于彼此的任何比率或量的两种或更多种无机氧化物的载体。举例来说,氧化铝-二氧化硅催化剂载体以氧化铝和二氧化硅的总量计,可包括约1wt%氧化铝到约99wt%氧化铝。在一个或多个实施例中,氧化铝-二氧化硅催化剂载体以氧化铝和二氧化硅的总量计,可具有在约2wt%、约5wt%、约15wt%或约25wt%的低值到约50wt%、约60wt%、约70wt%或约90wt%的高值范围内的氧化铝浓度。举例来说,氧化铝-二氧化硅催化剂载体的氧化铝浓度可为约20wt%、约25wt%、约30wt%、约35wt%、约40wt%、约45wt%、约50wt%、约55wt%、约60wt%、约70wt%、约80wt%或约90wt%。在另一实例中,以载体的重量计,载体的铝浓度可在约2wt%、约3wt%、约4wt%或约5wt%的低值到约10wt%、约20wt%、约30wt%、约40wt%或约45wt%的高值范围内。在另一实例中,以载体的重量计,载体的铝浓度可在约2wt%到约12wt%、约3wt%到约10wt%、约4wt%到约8wt%或约3wt%到约7wt%范围内。在另一实例中,以载体的重量计,载体的铝浓度可在约20wt%、约23wt%或约25wt%的低值到约35wt%、约40wt%或约45wt%的高值范围内。

适合的商业上可获得的二氧化硅载体可包括(但不限于)可购自PQ公司(PQ Corporation)的ES757、ES70以及ES70W。适合的商业上可获得的二氧化硅-氧化铝载体可包括(但不限于)可购自PQ公司的ES757、ES70以及ES70W,各具有以提供约2到约10wt%Al的量添加的铝化合物;及可购自的1、5、10、20、28M、30、40以及40/480。

可使用任何适合的方法制备混合无机氧化物催化剂载体。举例来说,二氧化硅催化剂载体可与一种或多种铝化合物混合、掺合、接触或以其它方式组合产生二氧化硅载体与铝化合物的混合物。二氧化硅催化剂载体可与一种或多种铝化合物在水和/或醇溶液中混合并且干燥产生二氧化硅载体与铝化合物的混合物。适合的醇可包括(但不限于)具有1到5个碳原子的醇和其混合物或组合。举例来说,醇可为或包括甲醇、乙醇、丙-1-醇、丙-2-醇等。适合的铝化合物可包括(但不限于)单乙酸铝((HO)2AlC2H3O2)、二乙酸铝(HOAl(C2H3O2)2)、和三乙酸铝(Al(C2H3O2)3)、氢氧化铝(Al(OH)3)、三乙酰基丙酮酸铝、氟化铝(AlF3)、六氟铝酸钠(Na3AlF6)或其任何组合。

煅烧以形成载体

二氧化硅-氧化铝载体或二氧化硅载体和铝化合物的混合物可在一种或多种惰性气体、氧化剂、还原气体存在下或以其任何次序/组合加热(煅烧)产生干燥氧化铝-二氧化硅催化剂载体。如本文所用,术语“氧化剂”可包括(但不限于)空气、氧气、超零级空气、氧气/惰性气体混合物或其任何组合。惰性气体可包括(但不限于)氮气、氦气、氩气或其组合。还原气体可包括(但不限于)氢气、一氧化碳或其组合。

可在氮气或其它惰性气体下将二氧化硅-氧化铝载体或二氧化硅载体和铝化合物的混合物加热到第一温度。在加热到第一温度之后,可停止氮气,可引入一种或多种氧化剂,并且温度可升高到第二温度。举例来说,可在惰性氛围下将二氧化硅-氧化铝载体或二氧化硅载体和铝化合物的混合物加热到约200℃的温度,可引入氧化剂,并且可随后将混合物加热到约450℃到约1,500℃的温度以产生氧化铝-二氧化硅催化剂载体。第二温度可在约250℃、约300℃、约400℃或约500℃的低值到约600℃、约650℃、约700℃、约800℃或约900℃的高值范围内。举例来说,第二温度可在约400℃到约850℃、约800℃到约900℃、约600℃到约850℃或约810℃到约890℃范围内。二氧化硅-氧化铝载体或二氧化硅载体和铝化合物的混合物可在第二温度下加热并且保持约1分钟到约100小时范围内的一段时间。举例来说,二氧化硅-氧化铝载体或二氧化硅载体和氧化铝化合物的混合物可在第二温度下加热并且保持约30分钟、约1小时或约3小时的低值到约10小时、约20小时或约50小时的高值范围内的时间。在一个或多个实施例中,二氧化硅-氧化铝载体或二氧化硅载体和氧化铝化合物的混合物可在不加热到中间或第一温度的情况下从环境温度加热到第二或上限温度。二氧化硅-氧化铝载体或二氧化硅载体和氧化铝化合物的混合物可最初在氮气或其它惰性氛围下加热,所述氮气或其它惰性氛围可在中温下改变以包括一种或多种氧化剂或氛围在从环境温度进行初始加热时可为或包括一种或多种氧化剂。

催化剂活化

载体可与卤离子、硫酸根离子或阴离子组合的一种或多种来源混合、掺合、接触或以其它方式组合,以产生无机氧化物催化剂载体和阴离子的混合物,其可经加热或煅烧以产生活化载体。举例来说,一种或多种卤离子来源、硫酸根离子来源、金属离子来源或其任何组合可与无机氧化物载体干燥混合,即,在不存在液体或刻意添加的液体下混合。在另一实例中,一种或多种卤离子来源、硫酸根离子来源、金属离子来源或其任何组合可与无机氧化物催化剂载体湿式混合,即,在存在液体下。说明性液体可包括(但不限于)醇、水或其组合。适合的醇可包括(但不限于)具有1到5个碳原子的醇和其混合物或组合。干燥混合或湿式混合的混合物可经煅烧以产生活化载体。用于煅烧的适合的系统显示在图1和2中。

图1为可在实施例中使用的催化剂活化系统100的简化工艺流程图。举例来说,如上文所描述的催化剂载体102可放置在流体化床反应器104中以便活化。可通过放置在流体化区108上方的电炉加热器106加热流体化床反应器104。还可例如通过电热示踪112加热流体化床反应器104的上部110。分配板114允许气体从气体馈送管线116流动到流体化床反应器104的底部。来自气体馈送管线116的气体将床流体化并且载送材料(如水蒸气)离开催化剂载体102。在流体化床反应器104的底部的倾泄阀118允许产物直接去除到惰性产物容器120,例如已经吹扫以去除氧气和水并且留下惰性气体的槽。

在活化程序期间可使用任何数目的不同气体。举例来说,系统可尤其耦合到空气源122和氮气源124。阀126和128可用于选择哪一种气体对馈送管线130打开。馈送管线130可分成两个管线。第一管线132将气体提供到流体化床反应器104的底部并且第二管线134提供可用于将固体从过滤器吹到流体化床的顶部的气体吹扫。

第一管线132向设定活化压力的压力调节器136馈料。气流穿过测量向上穿过流体化床反应器104的气流的流动指示器138。气体可从流动指示器138流动穿过控制阀140。可使用压力安全阀142防止管线或容器过压,例如防止压力调节器136失效或流体化床反应器104中的操作。可使用电预加热器144将流体化气体预加热到低于、处于或高于床温度的温度。气体馈送管线116将气体从预加热器144载送到流体化床反应器104的底部。

在流体化床反应器104中,向上穿过分配板114的气流将载体流体化,允许从载体(如水)中去除材料。另外,在本文中描述的实施例中,气流可用于降解材料(如卤化物供体),允许材料与催化剂载体粒子反应。气流速率对床的表面积可影响活化工艺的效率。流速过低可导致由某些组分烧结和形成碎块。相反,流动速率过高可导致卤化物在与载体表面反应之前从床逃脱。流动速率过高还可引起来自流体化床102的粒子夹带,所述夹带可堵塞例如位于流体化床反应器104的顶部的粒子过滤器146。粒子过滤器146中的过滤器元件通常为标称3到20微米等级,选择烧结金属以耐受在工艺中遇到的高温和存在的任何腐蚀剂。然而,粒子过滤器146可为陶瓷,和其它材料。因为活化在高温下进行,所以粒子过滤器146将由耐热性材料制成。在市售流化床活化器中,通常具有12到150个以数个组分组的用于回吹目的的粒子过滤器146。

为了降低粒子过滤器146堵塞的可能性,第二气体管线134可提供回吹粒子的吹扫。回吹气体可为氮气或可为在任何时间点用作主要流体化气体的任何气体。第二气体管线134中的气体流动通过设定吹扫压力的压力调节器148。调节槽150保持一定量的浪涌以提供足够的气体体积以逐渐或突然吹扫一组粒子过滤器146。压力安全阀(PSV)151可用于防止调节槽过压,所述过压例如由压力调节器148的失效所引起。吹扫阀152和154连同出口阀156和158一起使用以选择吹扫粒子过滤器146中的哪些并且哪些允许流出流体化床反应器104。举例来说,在从调节槽150到粒子过滤器146的管线上的两个阀152可关闭,而在从那些粒子过滤器146引导到洗涤容器的管线上的对应阀156可打开,允许从流体化床反应器104流动到洗涤容器160。同时,在从调节槽150到粒子过滤器146的管线上的一个阀门154可打开,而从所述粒子过滤器146到洗涤器160的对应阀可关闭。如箭头所示,此配置将允许气体通过两个粒子过滤器146流出流体化床反应器104,同时通过第三粒子过滤器146将吹扫流提供到反应器中。

洗涤器160可经配置以从离开流体化床反应器104的流中去除任何数目的气体。举例来说,洗涤器160可填充有所属领域的技术人员已知的不同形状固体的填充床,在所述填充床上方喷涂氢氧化钠(NaOH)或氢氧化钾(KOH)溶液162并且所述溶液在所述填充床上方缓慢滴下以吸收氟化氢(HF)和其它酸性气体。与NaOH的反应形成酸的钠盐,例如,NaF。泵166将溶液162从洗涤器的底部再循环到填充床上方的喷嘴168。洗涤器160上的排放口164可用于在溶液162饱和后将其去除。来自洗涤器160的经清洁惰性或氧化气体可经由排气口170释放到大气中。

在图1中显示的实施例中,流体化床反应器104具有约1米(约39英寸)的床直径172。在实施例中,气体可以大于约0.08直到至少0.4ft./sec表观速度的速率流动通过反应器。较高速率可减少碎屑、碎石或较大碎片的形成。

图2为可在实施例中使用的另一催化剂活化器200的简化工艺流程图。类似编号的项目如根据图1所描述。在此实施例中流体化床反应器202可具有较小床直径206,例如直径为四英寸、六英寸、八英寸或十二英寸。其它流体化床反应器202可较大,如30英寸、42英寸或更大。

当流体化床反应器202的床直径206较小时,可使用较少过滤器来从离开流体化床反应器202的流线去除颗粒。举例来说,两个较长过滤器146可用于从流出物中过滤粒子。

另外,流体化床活化器的设计可以某一流体化床体积为目标以满足所需生产能力。举例来说,具有较小高度与直径比的短、矮胖活化器或具有较大高度与直径比的高窄活化器。已发现流体化床的较大高度与直径比与就向上通过床的ft./sec(或m./sec)气流来说的给定气体通量下碎石形成减弱相关。在图2中的流体化床活化器202中,流体化床的高度204比直径206比大于图1中的流体化床活化器102的高度108比直径172比。因此,碎石的较少形成可见于较大高度与直径比的床202中。举例来说,图1中的床102的H/D比在约1与约1.5之间,而图2中的床202的H/D比在约2.3与约10,或约2.5到约3之间。在其它床中,H/D可较高,例如高达12、15或17。

对于具有本文中考虑的高度与直径比的流化床活化器,应设计分配板以使通过板的压降为在工艺中使用的气流速率下通过粒子的流体化床的压降的至少7%。此可帮助确保通过分配板中的所有孔的良好气流,因此床的中心也流体化,或几乎也流体化,如床外部一样。此外,对于圆锥形分配板,在圆锥中下部的二氧化硅氧化铝材料充分流体化。

在工艺中将使用的气体流速下,应设计分配板以使通过分配板的压降为通过粒子的流体化床的压降的至少7%。此准则帮助确保通过分配板中的所有孔的良好气流,因此床的中心,和在圆锥中下部的材料,充分流体化。

在购买时,AHF粒子较大并且密集。因此,其倾向于在流体化床的底部分离。此分离行为似乎与在流体化床的底部形成富含氟的二氧化硅氧化铝碎屑和碎石相关。此类碎屑和碎石可随后干扰整个床的良好流体化和干扰在整个流体化床中实现均匀温度。对于具有圆锥形分配板的床,分离的AHF粒子可在圆锥中心中积聚并且造成气流分配的问题。举例来说,气体将优先流动穿过通过板的在圆锥上较高位置的无阻塞孔,而非穿过在分配板的阻塞中心中的孔。

为了改进流体化,可研磨AHF化合物以将其平均粒径从约350微米减少到约20-40微米。此尺寸较接近二氧化硅氧化铝载体粒子,当AHF分解时其可帮助AHF粒子较好地流体化并且以通常使用的低0.10ft./sec流体化气体速度与二氧化硅氧化铝载体粒子充分混合。另外,AHF可在装入流体化床活化器之前与二氧化硅氧化铝载体粒子混合,如此AHF粒子在开始时良好地分配。

这些行为可帮助减少较大和较重AHF粒子在流体化床的底部分离。分离行为似乎与在流体化床的底部形成富含氟的二氧化硅氧化铝碎屑和碎石相关。分离干扰整个床的良好流体化和干扰在整个流体化床中实现均匀温度。对于具有圆锥形分配板的床,经分离AHF粒子可在圆锥中心聚集并且造成严重气流分配问题,其中相对于分配板的阻塞中心中的孔,穿过分配板中的较高无阻塞孔的流量较大。

应选择每单位活化容器横截面积的过滤器表面积使得接近过滤器元件面的气体接近面速度为近似约3.1ft./min。如果接近速度过高(例如7.8ft./min),那么烧结金属排气过滤器倾向于因二氧化硅氧化铝固体的夹带细颗粒而发生常见的堵塞,引起活化器中的压力增加。在维持恒定SGV的单元中,较高活化器压力意思指每小时更多磅(pph)的气体必须馈送,进一步促成活化器压力增加。

在一些情况下,压力可历经短时间段(如约5到30秒)增加,产生压力峰值。由于在涉及的较高操作温度下金属强度较弱,活化容器通常为相对低压力容器。因此,压力安全互锁通常设定在10或14psig下。如果活化器压力升高到此水平,那么互锁通常切断加热器、主要气流和回吹气流。当温度开始下降,床去流体化,并且过滤器比当前更糟地堵塞时,此在批料中引起主要破坏。可通过提供足够的排气过滤器表面积来降低风险。

如果排气过滤器确实堵塞,那么使流体化气体速度基本上降低20到30倍以急剧地降低容器中的压力。当容器压力较低时,恢复过滤器回吹系统操作。回吹供应系统与较低活化器压力之间的较大△P使得回吹更有效并且清洁过滤器元件。允许回吹系统操作足够久以回吹所有过滤器元件组至少一次。随后使气体流体化速度以数个增量升高回到所推荐设置以允许床逐渐膨胀,而非突然以避免将床提升和排气回到过滤器元件上。

过滤器回吹系统在极短暂脉冲模式(例如每组过滤器0.5到2秒脉冲)下在较高回吹气体供应压力(至少15psig并且最多60psig或更高)下较好地运作。回吹系统可使用文氏管(venturi)设计,如来自康涅狄格州法明顿的盟德公司(Mott Corporation,Farmington,CT)的HyPulse GSV,其使用新鲜气体喷射以将过滤的出口气体抽吸到将各元件吹回活化容器中的回吹流体中。与使用同样不移走滤饼或将其吹到其它过滤器元件上,进而快速堵塞那些其它元件的低压长持续时间吹气的回吹系统相比,此更有效。可使用大约30秒的总回吹循环时间,在此期间依次吹回各组过滤器并且回吹操作返回到第一组。

为了尝试使二氧化硅氧化铝载体的氟化最大化,可实施多种修改。举例来说,在250到350℃床温度的AHF分解范围期间可维持低流体化气流。为了提供在测量的分解温度范围附近的一些边限,可维持约230到约370℃的低气流。因为初始二氧化硅氧化铝载体仅需要约0.10ft./sec流体化气体速度来充分流体化,通常从环境温度直到370℃实施0.10ft./sec气流。在高达至少约340℃的操作期间,床温度通常非常均匀(伴随约4到6℃的最大到最小差距)。如果气流保持在0.10ft./sec下,那么床温度开始在340到370℃范围内的床温度下分散开。此指示流体化退化并且不再均匀。如果保持在0.10ft./sec下,那么在床温度达到约600℃的时候此差距可增长到50-60℃。此指示流体化的严重不均匀性。为了与此对抗,气流可在约370℃下增加到约0.40ft./sec。此缩小床温度的差距,但不完全消除所述差距。

在约370℃下,以数个增量进行气流从0.1ft./sec到0.4ft./sec的增加,以便使床逐渐膨胀而非突然将紧实床向上排气到排气过滤器上,此可引发排气过滤器堵塞问题。0.05ft./sec的增量似乎令人满意。

床温度可保持在约200℃下1到2小时以允许彻底去除水分。在此之后,床温度可斜升到相信AHF分解开始的250℃床温度。当AHF应分解时床温度可在250到350℃床温度范围期间例如以每小时约30℃缓慢斜升。在实践中,此缓慢斜升速率从约230℃到370℃进行以提供床温度变化的一些边限。相信缓慢斜升以数种可能的方式造成较多氟被二氧化硅氧化铝捕获。第一,在AHF开始分解时,其应在比温度更快速斜升的情况慢的速率下分解。因此粒子周围的气流中的HF和SiF4浓度应较低,允许表面处的捕获反应在化合物达到床顶部并且与排出气流一起逃脱之前更完全地耗尽气流中的氟化合物。第二,缓慢斜升床温度应更缓慢地从二氧化硅表面释放水分并且从许多孔释放出,此应提供在孔中和粒子周围的气流中气体中的较低水浓度。因为水以HF与表面羟基的相互作用的副产物形式释放,如果存在任何对HF反应的平衡行为,如果孔中的气体中的总水分浓度较低,那么表面对HF的捕获程度可增加。另外,与排出气流中吹扫出容器的量相比,氟原子到二氧化硅氧化铝表面上的键结可增加。第三,使床温度从约230℃缓慢斜升到250℃应允许低于250℃释放的表面水分在AHF开始在250℃下分解之前吹扫到在孔中和粒子周围的气体中的较低浓度。

高于约370℃,斜升速率可增加到每小时50℃。对于在开始时在水铝矿相中具有氧化铝的二氧化硅氧化铝载体(如Siral 40),优选地在每小时不高于约50℃下斜升到高于约370℃,因为较高速率增加排气过滤器堵塞的问题。所述问题可由排出气流中的水浓度增加所引起,水浓度增加由水铝矿氧化铝更快速地转化成γ氧化铝引起。举例来说,约20wt%在此转化步骤中损失的水从约400到约550℃出现。对于氧化铝不经历水铝矿到γ相转化的其它二氧化硅氧化铝载体,高于约370℃,较高斜升速率可为可能的。

如果在斜升阶段期间,锅炉设定值不持续增加,但替代地以增量增加,那么可使用较小常见的斜升增量。较大增量增加可引起由PQ公司载体上的铝化合物的分解而突然释放大量水和可能有机副产物。此类突然释放似乎造成排气过滤器堵塞。举例来说,每6分钟5℃加热器设定值增加等于每小时约50℃斜升速率并且运作良好。低于约230℃,斜升速率可以是每小时至少约50℃并且可能较高,例如每小时约100到125℃。

其它减少碎屑和碎石以及增加均匀性的方法

另一确保氟化合物(如AHF)均匀分配的方法为在适合地搅拌的掺合器中将氟化合物于适合的溶剂中的液体溶液浸渍到二氧化硅氧化铝载体的孔中并且随后干燥以去除溶剂。溶剂的量可为足以形成随后干燥以形成自由流动的固体粉末的液体/固体浆液。或氟化合物与溶剂的溶液的量可为足以使用通常称为初始湿润的技术恰好填充二氧化硅氧化铝载体的内部孔隙体积。当搅拌固体时缓慢添加溶液因此不产生自由液体在粒子外的可干扰良好溶液分配的泥浆或区域。在装入所有溶液后,干燥具有充满液体的孔的固体以去除溶剂。氟化合物在粒子的孔中留下并且穿过内表面积和外表面积扩散。

另一方法为递增地以较小部分进行氟化和煅烧。举例来说,一半氟化合物可连同所有二氧化硅氧化铝载体一起装入到活化器中。将混合物流体化并且加热到足够的床温度以完全分解氟化合物。对于AHF,这将意味着至少约350℃。床温度可加热到用于产物的煅烧的最终峰值温度(如600或650℃)。混合物将随后冷却到环境温度或至少低于氟化合物开始分解的温度,例如对于AHF为约250℃。可随后添加固体AHF粉末的剩余装料,与二氧化硅氧化铝一起流体化,通过如早先所描述的AHF分解区域再加热并且加热到用于产物的煅烧的最终峰值温度(例如约600到650℃)。此处的意图为将氟充分分配在载体上而不经历可引起碎石或碎屑形成的氟化合物局部过分集中。

所描述的方法,例如使用氟化合物的较小粒径、在煅烧之前将氟化合物浸渍到二氧化硅氧化铝的孔中或在多个煅烧步骤中进行氟化,均旨在消除或最小化富含氟的碎屑或碎石的形成。形成此类物质引起产物进入产物容器和其它加工容器中的流动困难并且可需要如惰性筛选的其它操作来去除较大粒子。此外,形成富含氟的碎屑和碎石耗尽大部分作为具有一些其预期含量的氟的自由流动粉末的批料,此可影响随后在聚合物载体上制得的聚合催化剂的性能。

载体与卤离子、硫酸根离子或阴离子组合的一种或多种来源的混合物可在一种或多种惰性气体、氧化剂、还原气体存在下以其任何次序、其任何组合或其任何次序/组合加热(煅烧)以产生活化载体。举例来说,氟化剂/氧化铝-二氧化硅载体混合物可在氮气吹扫或其它惰性气体或惰性气体的组合下加热到第一温度。在加热到第一温度之后,流体化气体可从惰性气体供应源转换到含有一种或多种氧化剂的供应源,并且温度可增加到第二温度。举例来说,氟化剂/氧化铝-二氧化硅载体混合物可在惰性氛围下加热到约200℃的温度,可引入氧化剂,并且可加热混合物到约600℃或更高的温度以产生活化载体。可将氟化剂/氧化铝-二氧化硅载体混合物加热到在约250℃、约300℃或约400℃的低值到约600℃、约750℃或约900℃的高值范围内的第二温度。

氟化剂/氧化铝-二氧化硅载体混合物可经加热并且保持在第二温度下持续在约1分钟到约100小时范围内的一段时间。举例来说,氟化剂/氧化铝-二氧化硅载体混合物可经加热并且保持在第二温度下持续在约30分钟、约1小时或约3小时的低值到约10小时、约20小时或约50小时的高值范围内的时间。

可代替在加热之前将卤离子来源、硫酸根离子来源和/或金属离子来源与载体组合,或除所述组合以外,在加热或煅烧期间引入一种或多种卤离子来源、硫酸根离子来源和/或金属离子来源。

一种或多种卤离子来源、硫酸根离子来源和/或金属离子来源可与氧化铝-二氧化硅载体或二氧化硅载体和铝化合物的混合物混合、掺合、接触或以其它方式组合。组合的卤离子来源、硫酸根离子来源和/或金属离子来源、氧化铝-二氧化硅载体或二氧化硅载体与任选的铝化合物的混合物可随后一起而非单独地加热,产生活化载体。举例来说,氟化物来源(如六氟硅酸铵((NH4)2SiF6))可与二氧化硅、氧化铝或二氧化硅-氧化铝化合物组合,其可随后经煅烧产生氟化氧化铝-二氧化硅载体。可在目前技术中使用任何数目的其它二氧化硅-氧化铝载体,包括市售级二氧化硅-氧化铝载体,如本文中论述的Siral级。

活化载体可包括(但不限于)溴化氧化铝、溴化氧化铝-二氧化硅、溴化二氧化硅、氟化氧化铝、氟化氧化铝-二氧化硅、氟化二氧化硅、氟化氧化铝-氧化锆、氟化二氧化硅-氧化锆、氟化-氯化氧化铝、氟化-氯化氧化铝-二氧化硅、氯化氧化铝、氯化氧化铝-二氧化硅、氯化二氧化硅、硫酸化氧化铝、硫酸化氧化铝-二氧化硅、硫酸化二氧化硅、或其任何组合。除了一种或多种卤离子来源和/或硫酸根离子来源以外或作为其的替代,可用一种或多种金属离子处理载体。说明性金属离子可包括(但不限于)铜、镓、钼、银、锡、钨、钒、锌或其任何组合。

说明性氟化(fluorinating/fluoriding)剂可包括(但不限于)六氟硅酸铵((NH4)2SiF6)、氟(F2)、氢氟酸(HF)、氟化铵(NH4F)、二氟化铵(NH4HF2)、四氟硼酸铵(NH4BF4)、六氟磷酸铵(NH4PF6)、七氟钽酸铵(V)(NH4)2TaF7、六氟锗酸铵(IV)(NH4)2GeF6、六氟钛酸铵(IV)(NH4)2TiF6、六氟锆酸铵(NH4)2ZrF6、氟化铝(AlF3)、六氟铝酸钠(Na3AlF6)、氟化钼(VI)(MoF6)、五氟化溴(BF5)、三氟化氮(NF3)、二氟胺(NHF2)、全氟己烷C6F14、六氟苯(C6F6)、氟代甲烷(CH3F)、三氟乙醇(C2H3F3O)、氟利昂(freon)、其衍生物或其任何组合。说明性氯化(chlorinating/chloriding)剂可包括(但不限于)氟利昂、全氯苯、氯甲烷、二氯甲烷、氯仿、四氯化碳、三氯乙醇、氯化氢、氯、其衍生物或其任何组合。说明性硫酸化剂可包括(但不限于)硫酸、硫酸盐(如硫酸铵)或其任何组合。

说明性氟利昂可包括(但不限于)三氯氟甲烷(CCl3F)、二氯二氟甲烷(CCl2F2)、氯三氟甲烷(CClF3)、氯二氟甲烷(CHClF2)、二氯氟甲烷(CHCl2F)、氯氟甲烷(CH2ClF)、溴氯二氟甲烷(CBrClF2)、1,1,2-三氯-1,2,2-三氟乙烷(Cl2FC-CClF2)、1,1,1-三氯-2,2,2-三氟乙烷(Cl3C-CF3)、1,2-二氯-1,1,2,2-四氟乙烷(ClF2C-CClF2)、1-氯-1,1,2,2,2-五氟乙烷(ClF2C-CF3)、2-氯-1,1,1,2-四氟乙烷(CHFClCF3)、1,1-二氯-1-氟乙烷(Cl2FC-CH3)、1-氯-1,1-二氟乙烷(ClF2C-CH3)、四氯-1,2-二氟乙烷(CCl2FCCl2F)、四氯-1,1-二氟乙烷(CClF2CCl3)、1-溴-2-氯-1,1,2-三氟乙烷(CHClFCBrF2)、2-溴-2-氯-1,1,1-三氟乙烷(CF3CHBrCl)、1,1-二氯-2,2,3,3,3-五氟丙烷(CF3CF2CHCl2)、1,3-二氯-1,2,2,3,3-五氟丙烷(CClF2CF2CHClF)。

与载体混合的卤离子来源、硫酸根离子来源和/或金属离子来源的量以混合物,即,载体、卤离子来源、硫酸根离子源和/或金属离子来源的总重量计,可以在约0.01wt%、约0.1wt%或约1wt%的低值到约10wt%、约20wt%、约30wt%、约40wt%或约50wt%的高值范围内。举例来说,每克无机氧化物催化剂载体可组合呈约0.01g到约0.5g的量的氟化剂。在另一实例中,卤离子来源可为氟化剂,载体可为二氧化硅-氧化铝,并且以载体的重量计,载体上的氟化物的量可以在约2wt%、约3wt%、约3.5wt%、约4wt%、约4.5wt%或约5wt%的低值到约8wt%、约9wt%、约10wt%约11wt%或约12wt%的高值范围内。在另一实例中,卤离子来源可为氟化剂,载体可为二氧化硅,在铝来源存在下煅烧,并且以载体的重量计,载体上的氟化物的量可以在约1.5wt%、约2wt%或约2.5wt%的低值到约3.5wt%、约4wt%、约4.5wt%或约5wt%的高值范围内。

活化的催化剂载体的表面积可在约1m2/g、约50m2/g或约100m2/g的低值到约400m2/g、约500m2/g或约800m2/g的高值范围内。活化的催化剂载体的孔隙体积可在约0.01cm3/g、约0.1cm3/g、约0.8cm3/g、或约1cm3/g的低值到约2cm3/g、约2.5cm3/g、约3cm3/g、或约4cm3/g的高值范围内。活化的催化剂载体的平均粒径可在约0.1μm、约0.3μm、约0.5μm、约1μm、约5μm、约10μm或约20μm的低值到约50μm、约100μm、约200μm或约500μm的高值范围内。活化的催化剂载体的平均孔径可以在约到约范围内。可使用的孔径的示例性范围包括约到约或约到约

适合的催化剂载体论述和描述于Hlatky,《化学评论(Chem.Rev.)》(2000),100,13471376和Fink等人,《化学评论》(2000),100,1377 1390,美国专利号:4,701,432、4,808,561、4,912,075、4,925,821、4,937,217、5,008,228、5,238,892、5,240,894、5,332,706、5,346,925、5,422,325、5,466,649、5,466,766、5,468,702、5,529,965、5,554,704、5,629,253、5,639,835、5,625,015、5,643,847、5,665,665、5,698,487、5,714,424、5,723,400、5,723,402、5,731,261、5,759,940、5,767,032和5,770,664;以及WO 95/32995、WO 95/14044、WO 96/06187和WO 97/02297中。

共催化剂

如本文所用,术语“活化剂”当不意指一项工艺设备时,和“共催化剂”互换使用并且指负载或未负载的任何化合物或化合物的组合,其可如通过产生阳离子种类的催化剂组分来活化单位点催化剂化合物或组分。举例来说,这可以包括从单位点催化剂化合物/组分的金属中心夺取至少一个离去基(本文所描述的单位点催化剂化合物中的“X”基团)。

举例来说,活化剂可以包括路易斯酸(Lewis acid)或非配位性离子活化剂或电离活化剂,或包括路易斯碱、铝烷基和/或常规型共催化剂的任何其它化合物。除上述甲基铝氧烷(“MAO”)和经改性的甲基铝氧烷(“MMAO”)之外,说明性活化剂可以包括(但不限于)铝氧烷或经改性的铝氧烷和/或中性或离子性的电离化合物,如三(正丁基)铵四(五氟苯基)硼、三全氟苯基硼类金属前驱体、三全氟萘基硼类金属前驱体或其任何组合。

铝氧烷可以描述为具有-Al(R)-O-子单元的寡聚铝化合物,其中R是烷基。铝氧烷的实例包括(但不限于)甲基铝氧烷(“MAO”)、经改性的甲基铝氧烷(“MMAO”)、乙基铝氧烷、异丁基铝氧烷或其组合。铝氧烷可以通过使相应三烷基铝化合物水解来产生。MMAO可以通过使三甲基铝和较高碳数三烷基铝(如三异丁基铝)水解来产生。MMAO一般更可溶于脂肪族溶剂中,并且在储存期间更稳定。存在多种用于制备铝氧烷和经改性的铝氧烷的方法,非限制性实例可以如在美国专利号4,665,208、4,952,540、5,091,352、5,206,199、5,204,419、4,874,734、4,924,018、4,908,463、4,968,827、5,308,815、5,329,032、5,248,801、5,235,081、5,157,137、5,103,031、5,391,793、5,391,529、5,693,838、5,731,253、5,731,451、5,744,656、5,847,177、5,854,166、5,856,256和5,939,346;以及EP 0 561 476、EP 0 279 586、EP 0 594-218和EP 0 586 665;以及WO公开案WO 94/10180和WO 99/15534中所论述和描述。

在一个或多个实施例中,可以使用视觉上透明的MAO。举例来说,可以过滤混浊和/或胶凝的铝氧烷以产生透明铝氧烷,或可以从混浊铝氧烷溶液中倾析出透明铝氧烷。在另一个实施例中,可以使用混浊和/或胶凝的铝氧烷。另一种铝氧烷可以包括改性的3A型甲基铝氧烷(“MMAO”)(可以商标名3A型改性甲基铝氧烷购自阿克苏化学品公司(Akzo Chemicals,Inc.),论述和描述于美国专利第5,041,584号中)。适合的MAO来源可以是具有例如约1wt%到约50wt%MAO的溶液。市售MAO溶液可包括10wt%和30wt%的MAO于溶剂(如甲苯)中的溶液,其可购自路易斯安那州巴吞鲁日(Baton Rouge,La))的雅保公司(Albemarle Corporation)。

在至少一个具体实施例中,催化剂系统可不含或基本上不含任何刻意添加的有机铝化合物。换句话说,在至少一个实施例中,可避免使用有机铝化合物或以其它方式不刻意添加到催化剂系统中。

在一个或多个实施例中,一种或多种中性或离子性电离或化学计量活化剂可与铝氧烷或改性的铝氧烷组合使用。举例来说,可使用三(正丁基)铵四(五氟苯基)硼、三全氟苯基硼类金属前驱体或三全氟萘基硼类金属前驱体、多卤化杂硼烷阴离子(WO 98/43983)、硼酸(美国专利第5,942,459号)或其组合。中性化学计量活化剂的实例可包括经三取代的硼、碲、铝、镓、铟或其任何组合。三个取代基可各独立地选自烷基、烯基、卤素、经取代的烷基、芳基、芳基卤化物、烷氧基和卤化物。优选的中性化学计量活化剂包括三全氟苯基硼或三全氟萘基硼。

催化剂化合物

单位点催化剂化合物可为或包括一种或多种茂金属催化剂和其它单位点催化剂。如本文所描述,具有多种类型的活性位点的催化剂可在本发明技术中使用,尤其如双金属催化剂、多位点催化剂或混合茂金属催化剂。茂金属催化剂化合物一般描述于例如《基于茂金属的聚烯烃(METALLOCENE-BASED POLYOLEFINS)》1和2(John Scheirs和W.Kaminsky编,约翰·威利父子有限公司(John Wiley&Sons,Ltd.)2000);G.G.Hlatky的《配位化学评论(COORDINATION CHEM.REV.)》181 243-296(1999)通篇中以及尤其用于《基于茂金属的聚烯烃》1 261-377(2000)中的聚乙烯合成中。茂金属催化剂化合物可以包括“半夹层”和/或“全夹层”化合物,所述化合物具有一个或多个结合到至少一个第3族到第12族金属原子上的Cp配体(环戊二烯基和与环戊二烯基同构的配体),和一个或多个结合到所述至少一个金属原子上的离去基。如本文所用,对元素周期表和其族的所有参考均指《霍氏简明化学词典(HAWLEY'S CONDENSED CHEMICAL DICTIONARY)》第十三版,约翰·威利父子公司(1997)(在IUPAC准许下复印)中公布的新记法(NEW NOTATION),除非参考标有罗马编号的先前IUPAC形式(也出现在其中),或除非另外指出。

Cp配体是一个或多个环或环系统,其至少一部分包括π键结的系统,如环烷二烯基配体和杂环类似物。所述环或环系统通常包括选自由第13族到第16族原子组成的群组的原子,并且在特定示例性实施例中,构成Cp配体的原子选自由以下组成的群组:碳、氮、氧、硅、硫、磷、锗、硼、铝以及其组合,其中碳构成环成员的至少50%。在一个更特定示例性实施例中,Cp配体选自由经取代和未经取代的环戊二烯基配体以及与环戊二烯基同构的配体组成的群组,其非限制性实例包括环戊二烯基、茚基、芴基以及其它结构。此类配体的其它非限制性实例包括环戊二烯基、环五菲基、茚基、苯并茚基、芴基、八氢芴基、环辛四烯基、环戊环十二烯基、菲并茚基、3,4-苯并芴基、9-苯基芴基、8-H-环戊[a]苊基、7-H-二苯并芴基、茚并[1,2-9]蒽烯基、噻吩并茚基、噻吩并芴基、其氢化形式(例如4,5,6,7-四氢茚基或“H4Ind”)、其经取代形式(如下文更详细论述和描述)以及其杂环形式。

茂金属催化剂化合物的金属原子“M”可以在一个示例性实施例中,选自由第3族到第12族原子和镧系族原子组成的群组;并且在一个更特定示例性实施例中,选自由第3族到第10族原子组成的群组;并且在又一个更特定示例性实施例中,选自由以下组成的群组:Sc、Ti、Zr、Hf、V、Nb、Ta、Mn、Re、Fe、Ru、Os、Co、Rh、Ir以及Ni;并且在又一个更特定示例性实施例中,选自由第4族、第5族和第6族原子组成的群组,并且在又一个更特定示例性实施例中是Ti、Zr、Hf原子,并且在又一个更特定示例性实施例中是Hf。金属原子“M”的氧化态在一个示例性实施例中可以在0到+7范围内;并且在一个更特定示例性实施例中,可以是+1、+2、+3、+4或+5;并且在又一个更特定示例性实施例中,可以是+2、+3或+4。除非另外指示,否则结合到金属原子“M”上的基团使得下文在化学式和结构中所描述的化合物是电中性的。Cp配位体与金属原子M形成至少一个化学键以形成“茂金属催化剂化合物”。Cp配体与键结到催化剂化合物上的离去基的不同之处在于其对取代/夺取反应并非高度敏感。

一种或多种茂金属催化剂化合物可以由式(I)表示:

CpACpBMXn (I)

其中M如上文所描述;各X以化学方式键结到M;各Cp基团以化学方式键结到M;并且n是0或1到4的整数,并且在一个特定示例性实施例中是1或2。

在式(I)中,由CpA和CpB表示的配体可以是相同或不同环戊二烯基配体或与环戊二烯基同构的配体,其中的任一个或两个可以含有杂原子,并且其中的任一个或两个可以被基团R取代。在至少一个具体实施例中,CpA和CpB独立地选自由以下组成的群组:环戊二烯基、茚基、四氢茚基、芴基以及每一个的经取代衍生物。

独立地,式(I)的各CpA和CpB可以未经取代或经取代基R中的任一个或组合取代。下文论述和描述的如在结构(I)以及结构Va-d中的环取代基中所用的取代基R的非限制性实例包括选自由以下组成的群组的基团:氢基、烷基、烯基、炔基、环烷基、芳基、酰基、芳酰基、烷氧基、芳氧基、烷基硫醇、二烷基胺、烷基酰胺基、烷氧基羰基、芳氧基羰基、氨甲酰基、烷基-氨甲酰基和二烷基-氨甲酰基、酰氧基、酰基氨基、芳酰基氨基以及其组合。与式(I)到(Va-d)相关联的烷基取代基R的更特定非限制性实例包括甲基、乙基、丙基、丁基、戊基、己基、环戊基、环己基、苯甲基、苯基、甲基苯基以及叔丁基苯基等,包括其所有异构体,例如叔丁基、异丙基等。其它可能的基团包括经取代的烷基和芳基,如氟甲基、氟乙基、二氟乙基、碘丙基、溴己基、氯苯甲基;经烃基取代的有机类金属基团,包括三甲基硅烷基、三甲基锗烷基、甲基二乙基硅烷基等;和经卤碳基取代的有机类金属基团,包括三(三氟甲基)硅烷基、甲基双(二氟甲基)硅烷基、溴甲基二甲基甲锗烷基等;和二取代硼基,包括例如二甲基硼;和二取代第15族基团,包括二甲胺、二甲基膦、二苯胺、甲基苯基膦,以及第16族基团,包括甲氧基、乙氧基、丙氧基、苯氧基、甲硫醚和乙硫醚。其它取代基R包括(但不限于)烯烃,如烯烃不饱和取代基,包括乙烯基封端的配体,如3-丁烯基、2-丙烯基、5-己烯基等。在一个示例性实施例中,至少两个R基团(在一个特定示例性实施例中两个相邻R基团)接合形成具有3到30个选自由以下组成的群组的原子的环结构:碳、氮、氧、磷、硅、锗、铝、硼以及其组合。另外,取代基R,如1-丁烷基,可以与元素M形成键结缔合。

在上式(I)中和用于以下式/结构(II)到(Va-d)的各X独立地选自由以下组成的群组:在一个示例性实施例中任何离去基;在一个更特定示例性实施例中卤离子、氢负离子、C1到C12烷基、C2到C12烯基、C6到C12芳基、C7到C20烷基芳基、C1到C12烷氧基、C6到C16芳氧基、C7到C8烷基芳氧基、C1到C12氟烷基、C6到C12氟芳基以及C1到C12含杂原子的烃和其经取代的衍生物;在又一个更特定示例性实施例中氢负离子、卤离子、C1到C6烷基、C2到C6烯基、C7到C18烷基芳基、C1到C6烷氧基、C6到C14芳氧基、C7到C16烷基芳氧基、C1到C6烷基羧酸根、C1到C6氟化烷基羧酸根、C6到C12芳基羧酸根、C7到C18烷基芳基羧酸根、C1到C6氟烷基、C2到C6氟烯基以及C7到C18氟烷基芳基;在又一个更特定示例性实施例中氢负离子、氯离子、氟离子、甲基、苯基、苯氧基、苯甲酰氧基、甲苯磺酰基、氟甲基以及氟苯基;在又一个更特定示例性实施例中C1到C12烷基、C2到C12烯基、C6到C12芳基、C7到C20烷基芳基、经取代的C1到C12烷基、经取代的C6到C12芳基、经取代的C7到C20烷基芳基以及C1到C12含杂原子的烷基、C1到C12含杂原子的芳基以及C1到C12含杂原子的烷基芳基;在又一个更特定示例性实施例中氯离子、氟离子、C1到C6烷基、C2到C6烯基、C7到C18烷基芳基、卤化C1到C6烷基、卤化C2到C6烯基以及卤化C7到C18烷基芳基;在又一个更特定示例性实施例中氟离子、甲基、乙基、丙基、苯基、甲基苯基、二甲基苯基、三甲基苯基、氟甲基(单氟甲基、二氟甲基和三氟甲基)和氟苯基(单氟苯基、二氟苯基、三氟苯基、四氟苯基和五氟苯基);以及在又一个更特定示例性实施例中氟离子。

X基团的其它非限制性实例包括胺、膦、醚、羧酸根、二烯、具有1到20个碳原子的烃基、氟化烃基(例如,-C6F5(五氟苯基))、氟化烷基羧酸根(例如,CF3C(O)O-)、氢负离子、卤离子以及其组合。X配体的其它实例包括烷基,如环丁基、环己基、甲基、庚基、甲苯基、三氟甲基、四亚甲基、五亚甲基、亚甲基、甲氧基、乙氧基、丙氧基、苯氧基、双(N-甲基苯胺)、二甲酰胺、二甲基磷化物基团等。在一个示例性实施例中,两个或更多个X形成稠环或环系统的一部分。在至少一个具体实施例中,X可以是选自由以下组成的群组的离去基:氯离子、溴离子、C1到C10烷基和C2到C12烯基、羧酸根、乙酰丙酮酸根以及醇盐。

茂金属催化剂化合物包括其中CpA和CpB通过至少一个桥连基(A)彼此桥连的那些式(I),以使得所述结构由式(II)表示:

CpA(A)CpBMXn (II)

这些由式(II)表示的桥接化合物称为“桥连茂金属”。结构(II)中的要素CpA、CpB、M、X以及n如上文对式(I)所定义;其中各Cp配体以化学方式键结到M,并且(A)以化学方式键结到各Cp。桥连基(A)可以包括含有至少一个第13族到第16族原子的二价烃基,所述原子如(但不限于)碳、氧、氮、硅、铝、硼、锗、锡原子以及其组合中的至少一个;其中所述杂原子还可以经C1到C12烷基或芳基取代以满足中性价数。除上文所论述和描述的茂金属催化剂化合物之外,其它适合的有机金属催化剂化合物可以包括(但不限于)在美国专利第7,741,417号;第7,179,876号;第7,169,864号;第7,157,531号;第7,129,302号;第6,995,109号;第6,958,306号;第6,884,748号;第6,689,847号;以及WO公开案WO 97/22635;WO 00/699/22;WO 01/30860;WO 01/30861;WO 02/46246;WO 02/50088;WO 04/026921;和WO 06/019494中所论述和描述的催化剂化合物。

连续性添加剂/静电控制剂

在气相聚乙烯生产工艺中,如本文所公开,可能需要另外使用一种或多种静电控制剂来辅助调节反应器中的静电水平。如本文所用,静电控制剂是在引入流体化床反应器中时可以影响或驱动流体化床中的静电荷(变负、变正或为零)的化学组合物。所用的特定静电控制剂可以取决于静电荷的性质,并且静电控制剂的选择可以取决于所产生的聚合物和所用单位点催化剂化合物而变化。举例来说,静电控制剂的使用公开于欧洲专利第0229368号和美国专利第4,803,251号、第4,555,370号和第5,283,278号以及其中引用的参考文献中。

按进入反应器中的所有进料(不包括再循环)的重量计,可以在0.05到200ppm范围内的量向反应器中添加连续性添加剂或静电控制剂。在一些实施例中,可以在2到100ppm范围内的量或以在4到50ppm范围内的量添加连续性添加剂。

聚合工艺

催化剂系统可用于聚合一种或多种烯烃,以由其提供一种或多种聚合物产物。可使用任何聚合工艺,包括(但不限于)高压、溶液、浆液和/或气相工艺。在一个实施例中,利用流体化床反应器的持续气相工艺用于聚合乙烯和一种或多种任选的共聚单体以提供聚乙烯。

术语“聚乙烯”是指具有至少50wt%乙烯衍生单元的聚合物。在各种实施例中,聚乙烯可以具有至少70wt%乙烯衍生单元、至少80wt%乙烯衍生单元、至少90wt%乙烯衍生单元、至少95wt%乙烯衍生单元或至少100wt%乙烯衍生单元。因此,聚乙烯可以是均聚物或具有一个或多个其它单体单元的共聚物,包括三元共聚物。如本文所描述,聚乙烯可以包括例如至少一种或多种其它烯烃和/或共聚单体。在一个实施例中适合的共聚单体可含有3到16个碳原子;在另一实施例中,3到12个碳原子;在另一实施例中,4到10个碳原子;以及在又一个实施例中4到8个碳原子。说明性共聚单体包括(但不限于)丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、4-甲基戊-1-烯、1-癸烯、1-十二烯、1-十六烯等。

适合的流体化床反应器可包括反应区和所谓的减速区。反应区可以包括床,所述床具有生长中的聚合物粒子、形成的聚合物粒子以及少量催化剂粒子,所述催化剂粒子由气态单体和用于去除聚合热的稀释剂通过反应区的连续流动而流体化。任选地,一些再循环气体可以经冷却和压缩以形成液体,所述液体在重新进入反应区中时增加循环气流的排热能力。通过简单实验可以容易确定气流的适合的速率。将气态单体补充到循环气流中的速率可以等于从反应器中取出颗粒聚合物产物和与其相关的单体的速率,并且可以调整通过反应器的气体的组成以在反应区内维持基本上稳定状态的气态组成。离开反应区的气体可传递到减速区,在减速区中去除所夹带的粒子。所夹带的较细颗粒和灰尘可以用旋风分离器和/或微细过滤器去除。气体可通过可去除至少一部分聚合热的热交换器,在压缩器中压缩,并且随后返回到反应区。其它反应器细节和用于操作所述反应器的手段描述于例如美国专利第3,709,853号、第4,003,712号、第4,011,382号、第4,302,566号、第4,543,399号、第4,882,400号、第5,352,749号和第5,541,270号;EP 0802202;以及比利时专利第839,380号中。

流化床工艺的反应器温度可以在30℃或40℃或50℃到90℃或100℃或110℃或120℃或150℃范围内。一般来说,反应器温度可在考虑反应器内的聚合物产物的烧结温度的情况下的最高可行温度下操作。与用于制备聚烯烃的工艺无关,聚合温度或反应温度应低于待形成的聚烯烃的熔融或“烧结”温度。因此,在一个实施例中,温度上限是反应器中所产生的聚烯烃的熔融温度。

可以在烯烃聚合中使用氢气来控制聚烯烃的最终特性,如“《聚丙烯手册(Polypropylene Handbook)》”中第76-78页(汉瑟出版社(Hanser Publishers),1996)所述。使用增加氢气浓度(分压)的某些催化剂系统可增加产生的聚烯烃的流动指数(FI)。因此,流动指数可以受氢气浓度影响。聚合中氢气的量可表示为相对于总可聚合单体,例如乙烯,或尤其乙烯、丁烯、己烯或丙烯的掺合物的摩尔比。还可使用共聚单体的任何组合来获得最终树脂的特性目标。聚合工艺中所用的氢气量可以是为实现最终聚烯烃树脂的所需流动指数所必需的量。在一个实施例中,氢气与总单体的摩尔比(H2:单体)可介于在一个实施例中大于0.0001,并且在另一实施例中大于0.0005,并且在又一个实施例中大于0.001,并且在又一个实施例中小于10,并且在又一个实施例中小于5,并且在又一个实施例中小于3,并且在又一个实施例中小于0.10范围内,其中理想的范围可包括本文中描述的任何摩尔比上限与任何摩尔比下限的任何组合。换一种方式表达,任何时间时反应器中的氢气量可在至多5,000ppm,并且在另一实施例中至多4,000ppm,并且在又一个实施例中至多3,000ppm,并且在又一个实施例中50ppm到5,000ppm之间,并且在另一实施例中50ppm到2,000ppm之间的范围内。反应器中的氢气量可以在约1ppm、约50ppmw或约100ppm的低值到约400ppm、约800ppm、约1,000ppm、约1,500ppm或约2,000ppm的高值范围内。在又一个实施例中,氢气与总单体的比(H2:单体)可为约0.00001:1到约2:1、约0.0005:1到约1.5:1或约0.0001:1到约1:1。

气相工艺(单阶段或两个或更多个阶段)中的一种或多种反应器压力可在690kPa(100psig)到3,448kPa(500psig)范围内变化,并且在另一实施例中在1,379kPa(200psig)到2,759kPa(400psig)范围内,并且在又一个实施例中在1,724kPa(250psig)到2,414kPa(350psig)范围内。

气相反应器可能够产生每小时约10kg聚合物(22lbs./hr)到90,900kg/hr(200,000lbs./hr),并且在另一实施例中大于455kg/hr(1,000lbs./hr),并且在又一个实施例中大于4,540kg/hr(10,000lbs./hr),并且在又一个实施例中大于11,300kg/hr(25,000lbs./hr),并且在又一个实施例中大于15,900kg/hr(35,000lbs./hr),并且在又一个实施例中大于22,700kg/hr(50,000lbs./hr),并且在又一个实施例中29,000kg/hr(65,000lbs./hr)到45,500kg/hr(100,000lbs./hr)。

还可使用浆液聚合工艺。浆液聚合工艺一般使用在约101kPa(1大气压)到约5,070kPa(50大气压)和甚至更大范围内的压力和在约0℃到约120℃,并且更具体地说约30℃到约100℃范围内的温度。在浆液聚合中,在添加乙烯和共聚单体和通常氢气以及催化剂的液体聚合稀释介质中可形成固体、颗粒聚合物的悬浮液。可间歇或连续从反应器中去除包括稀释剂的悬浮液,其中挥发性组分与聚合物分离并且任选地在蒸馏之后再循环到反应器中。在聚合介质中所采用的液体稀释剂可以是具有3到7个碳原子的烷烃,如分支链烷烃。所采用的介质应在聚合条件下是液体,并且相对惰性。当使用丙烷介质时,所述工艺应在反应稀释剂临界温度和压力以上操作。在一个实施例中,可以采用己烷、异戊烷或异丁烷介质。

聚乙烯的熔融指数比(I21/I2)可在约5到约300,或约10到小于约250,或在许多实施例中,约15到约200范围内。可根据ASTM D1238(190℃,21.6kg)测量FI(I21)。可根据ASTM D1238(在190℃下,2.16kg重量)测量MI(I2)。可根据ASTM D1238(在190℃下,5.0kg重量)测量FI(I5)。

密度可以根据ASTM D-792测定。除非另外指出,否则密度表示为克/立方厘米(g/cm3)。聚乙烯的密度可以在约0.89g/cm3、约0.90g/cm3或约0.91g/cm3的低值到约0.95g/cm3、约0.96g/cm3或约0.97g/cm3的高值范围内。聚乙烯的容积密度根据ASTM D1895方法B测量,可以为约0.25g/cm3到约0.5g/cm3。举例来说,聚乙烯的容积密度可以在约0.30g/cm3、约0.32g/cm3或约0.33g/cm3的低值到约0.40g/cm3、约0.44g/cm3或约0.48g/cm3的高值范围内。

聚乙烯可以适合于如膜、纤维、非编织物和/或编织物、挤制品和/或模制品的物品。膜的实例包括通过共挤出或通过层合形成的吹塑或流延膜,其适用作食品接触和非食品接触应用中的收缩膜、保鲜膜(cling film)、拉伸膜、密封膜、定向膜、点心包装、重载袋(heavy duty bag)、杂货袋、烘焙和冷冻食品包装、医用包装、工业衬垫、膜等、农业膜和薄片。纤维的实例包括以编织或非编织形式使用的熔融纺丝、溶液纺丝和熔喷纤维操作,其用于制造过滤器、尿布、卫生产品、医用服装、土工布(geotextile)等。挤制品的实例包括管材、医用管材、电线和电缆涂层、导管、土工膜(geomembrane)以及水池衬垫。模制品的实例包括单层和多层构造,其呈瓶子、槽、大型中空制品、刚性食品容器以及玩具等形式。

实例

为了提供对前述论述的较好的理解,提供测试和程序的以下非限制性实例。除非另外指示,否则所有部分、比例和百分比均以重量计。

材料

表观气速(SGV)在本文中定义为考虑容器横截面积(平方英尺)和流体化床中的气体的实际温度和压力,活化容器中的流体化气体的线性向上速度。使用理想气体定律和气体的分子量如所属领域中所熟知将气体的质量流率转化成实际立方英尺/分钟。随后将流体化气流的每分钟的实际立方英尺除以60得到每秒的实际立方英尺,随后除以容器的横截面积得到线性英尺/秒的向上气体速度。此又称为表观气速或SGV并且具有英尺/秒的单位。

Siral 40为原始合成二氧化硅氧化铝催化剂载体,其中氧化铝在水铝矿相(AlOOH)中。其由德国汉堡(Hamburg,Germany)的沙索德国有限责任公司(Sasol Germany Gmbh)出售。在煅烧之后沙索40级尤其具有约40%二氧化硅和60%氧化铝。在550℃下煅烧3小时之后,载体具有约490到525m2/g的表面积,约0.9ml/g的孔隙体积和约39到42微米的平均粒径。其沉降容积密度为约0.31到0.34g/cc。

Siralox 40/480为由德国汉堡的沙索德国有限公司出售的脱水(又称为煅烧)二氧化硅氧化铝催化剂载体。其基于作为起始物质的原始Siral 40。供应商已将Siralox 40/480在550℃的温度下脱水三小时。在煅烧之后Siralox 40/480级具有约40%二氧化硅和60%氧化铝。氧化铝在具有分子式Al2O3的γ相中。在煅烧之后,载体具有约480到500m2/g的表面积,约0.9到1.0ml/g的孔隙体积,和约29到33微米的平均粒径。其沉降容积密度为约0.33到0.37g/cc。

Siral 40/650为通过本发明的方法制备的氟化(5.3%F)脱水二氧化硅氧化铝载体。具有后缀600的等级已经在高达600℃的温度下脱水三到五小时。具有后缀650的等级已经在高达650℃的温度下脱水三到五小时。载体具有约0.25g/cc的沉降容积密度。

除二氧化硅氧化铝载体以外,各种等级的改性原始二氧化硅催化剂载体用作起始物质。这些为可购自宾夕法尼亚州康舍霍肯的PQ公司的ES70W、ES70和ES757。所有三个等级均通过添加在1000℃下煅烧之后产生5wt%铝负载的化合物来改性。ES70W上的PQ 5%Al具有约249到290m2/g的表面积,约1.32到1.35ml/g的孔隙体积,和约43到46微米的平均粒径。ES70上的PQ 5%Al具有约278m2/g的表面积,约1.32ml/g的孔隙体积,和约39微米的平均粒径。ES757上的PQ 5%Al具有约270到290m2/g的表面积,约1.31到1.34ml/g的孔隙体积,和约25到27微米的平均粒径。

六氟硅酸铵(AHF)为可购自佛罗里达州马尔伯里(Mulberry,FL)的KC Industries的市售干燥结晶粉末化合物。相信这种化合物在高温下分解以释放氨、HF和SiF4,所有均在高温下为气体。分解反应似乎在250到350℃的温度范围内在接近300℃发生的分解的峰率下发生。气态HF和SiF4化合物经历与二氧化硅氧化铝催化剂载体的表面的进一步化学反应以将氟原子键结到表面上,可能主要铝原子上。AHF化合物粒子的尺寸极其大,范围高达约500-600微米的d90和约325-360微米的d50,和约190微米的d10。其沉降容积密度为约1.18g/cc。

制备程序

除本文中论述的将载体与氟供体干燥混合以外,使用水浸渍方法制备氟化Siral 40。用于使用水浸渍方法制备氟化Siral 40的材料包括88g六氟硅酸铵(AHF)、638g Siral 40和约642g去离子水。在操作之前,对用于制备的搅拌槽进行清洗、干燥和压力测试。槽用双螺旋带叶轮搅拌并且通过与经油填充的夹套连接的油浴加热。

首先在室温(约27℃到30℃之间)下向清洁槽中添加原始Siral 40。随后低速搅拌槽。将六氟硅酸铵(AHF)预先溶解于642g去离子水中。过滤并且去除未溶解的AHF和/或不可溶杂质。随后将AHF溶液装入搅拌槽中。搅动器速度增加到130rpm并且在室温下搅拌所得浆液半小时。随后在65℃夹套温度下在全真空(约27英寸Hg)和进入槽底部的氮气吹扫下干燥材料。干燥材料直到材料温度达到标定值持续2小时,其出现在约58-60℃下。氟化Siral 40随后在600℃下在标准程序下脱水。

催化剂制备

用于制备催化剂的材料包括14.26g双(正丙基-环戊二烯基)二甲基铪(称为HfP)、甲基铝氧烷(MAO)于甲苯中的843g 10wt%溶液、477g脱水氟化Siral 40和约937g无水甲苯。在操作之前,对用于负载程序的搅拌槽进行清洗、干燥和压力测试。槽用双螺旋带叶轮搅拌并且通过与经油填充的夹套连接的油浴加热。

在约室温(例如约27℃到30℃)下将甲基铝氧烷和甲苯装入清洁槽中。低速搅拌混合槽。将HfP溶解于少量甲苯中并且将溶液转移到搅拌槽中。用无水甲苯冲洗瓶子并且将冲洗液转移到槽中。将搅拌速度增加到130rpm,并且在室温,约27℃-30℃下搅拌槽30分钟。随后向混合槽中添加脱水氟化Siral 40。使所得浆液在室温下再混合一小时。通过增加浴温到75℃并且逐渐减少压力直到其达到全真空(约27英寸Hg)来开始干燥。在材料自由流动后,开始氮吹扫以继续干燥。干燥材料直到催化剂中的残余甲苯含量低于3wt%。此通常在材料温度变得稳定在约68到70℃下之后约2小时出现。使催化剂冷却,并且排出到清洁容器中,并且取得最终催化剂样品。此批料的预期产量为575g。

整体观察结果

出乎意料地发现在原始二氧化硅氧化铝催化剂载体脱水和经氟改性成脱水氟化二氧化硅氧化铝催化剂载体期间出现固体载体的流化性的显著变化。确切地说,确定仅需要0.10ft./sec流体化气体速度来使原始二氧化硅氧化铝载体充分流体化。然而,脱水氟化二氧化硅氧化铝催化剂载体需要0.35到0.40ft./sec流体化气体速度来充分流体化。

流化性的变化可部分为二氧化硅氧化铝中所固有的。举例来说,一些原始二氧化硅氧化铝载体中的氧化铝存在于水铝矿相中并且在转化成γ氧化铝相期间在加热到如550到650℃的高温时随着水损失约20wt%。由此显著重量减轻所引起的粒子形状和特性变化可部分造成脱水产物相对于原始二氧化硅氧化铝载体的不同流化性。流化性变化的另一促成者可为在二氧化硅氧化铝载体的脱水期间进行的二氧化硅氧化铝表面的氟改性。

表1:原始Siral 40的床膨胀测试结果

如表1中所示,原始二氧化硅氧化铝Siral 40载体仅在0.10ft./sec流体化气体速度下充分流体化。图3为显示原始Siral 40的床膨胀对流体化气体的流速(SGV)的图300。

相比之下,如表2中所示,脱水Siralox 40/480二氧化硅氧化铝载体需要约0.35ft./sec流体化气体速度来充分流体化。图4为显示经供应商在550℃下煅烧三个小时的Siralox 40/480的床膨胀对SGV的图400。

表2:供应商煅烧的Siralox 40/480的床膨胀测试结果

另外,如表3中所示,氟化脱水Siral 40二氧化硅氧化铝载体需要约0.40ft./sec流体化气体速度来充分流体化。图5为显示在600℃下煅烧之后含有约5.3%氟的Siral 40的床膨胀的图500。

表3:活化Siral 40 5.3%F 600的床膨胀测试结果.

因此,为了高效和有效地煅烧和氟化二氧化硅氧化铝催化剂载体,可适用的为个别地或彼此组合按照某些装备设计和操作参数进行煅烧。举例来说,不同活化剂具有不同几何配置。此通过H/D比中的差以及表4中显示的其它参数最好地描述。

表4:活化装备的实例和活化概况

表4中的实例5显示保持SGV较低(0.10ft./sec)直到AHF分解,随后将SGV升高到0.40ft./sec以尝试将最终产物流体化的操作。其还显示以30-60℃/hr缓慢斜升的操作。螺丝板是指美国专利第4,068,389号中论述的用于分配板的设计。在此设计中,分配板中的孔针对机器螺纹攻丝并且装配有螺丝。刮掉在螺丝的一侧上的螺纹以提供达到板与螺丝头之间的齿状垫圈的气体通道。与具有开孔的穿孔分配板相比,螺丝板可提供较高压降和较均匀气流。但孔面积必须对于使用的气流来说令人满意地低以使设计有效。

表4中的信息指示活化床中的温度差距可通过较高SGV气流减小。如本文所论述的压力峰值为活化器压力中的由排气过滤器中的过滤器元件的堵塞所引起的突然增加。压力峰值可通过具有足够的排气过滤器表面积,使得接近过滤器元件面的气体接近面速度为近似约3.1ft./min或更少来降低或消除。

表4还提供可适用于氟化载体的条件的其它实例。举例来说,如实例1中所示,H/D>1.2可减少碎屑和碎石的形成并且H/D>2.0可提供进一步改进。0.1ft./sec SGV下的呈床压降(psid)%形式的分配板压降(psid)指示此比率可需要为>7%以实现通过圆锥形分配板的良好气体分配以提供床的均匀流体化,尤其当涉及可分离的较大重粒子时。

然而,Derek Geldart的先前研究指示用于板DP/床DP的用于稳定流化床操作的目标准则不为固定数字。Geldart的研究显示其为床高度对直径的函数。因此,对于约0.2到0.3H/D的浅平坦床,准则为30%。对于具有较高H/D(例如1.2、2.0和2.8)的床,板DP/床DP准则将分别较接近7.8%、5.4%和4.3%。此相关性适用于平坦分配板。对于圆锥形分配板,较高板DP/床DP比可较好地起作用。

图6和7显示将Siral 40氟化和脱水的两个实例。图6显示具有有限过滤器表面积的反应器的操作参数的标记为实例4的图600,所述有限过滤器表面积限制可馈送到约0.23ft./sec的最大SGV流体化气体。在较高馈送速率下,出现过滤器堵塞问题。主容器中在0.23ft./sec SGV下的排气过滤器接近面速度为每秒每平方英尺过滤器面积约9.0ft.。在0.10ft./sec下进行达到约340℃的温度602的批次的早期部分。在进行操作约7小时,SGV 604升高到约0.23ft./sec,在其之后排气过滤器开始堵塞并且妨碍操作。压力606将反复地上升到高于10psig,通常接近12psig。此促使操作员干预以将SGV 604降低20到30倍以降低允许回吹系统清洁过滤器的活化器压力。SGV 604下降使床去流体化。床温度和其差距通常在这些去流体化之前和之后以不始终一致的方式改变。活化工艺的平稳操作极大地经那些压力峰值和其结果中断。

图7显示过滤器表面积比图6中高2.5倍的反应器的操作参数的标记为实例5的图700,所述过滤器表面积不将SGV流体化气体的最大流速限制为低于0.40ft./sec的所需目标。类似编号的项目与图6中所示相同。主容器中在0.40ft./sec SGV 604下的排气过滤器接近面速度为每秒每平方英尺过滤器面积约3.13ft.。在0.10ft./sec下进行达到约370℃的批次的早期部分。随后SGV 604历经每个增量约两分钟以0.05ft./sec增量升高到0.40ft./sec。压力606显示未出现排气过滤器堵塞,提供平稳操作。压力606稳定并且不上升到高于1.6psig。

在低H/D反应器的测试中,较高SGV减小床温度差距(例如在论述的实例5中),但不停止形成碎石。此可由过低板DP/床DP比与分离的重AHF粒子的组合所引起。因此,较精细粒径AHF可较好地起作用,尤其当流化床活化器的设计参数不是最优时。

表5提供对比用于表4中的数个活化实例的疏松粉末,碎屑和碎石中的氟负载。此展现碎屑和碎石的形成如何与对比疏松粉末,碎屑和碎石上的较高F负载相关。此外,注意具有较大H/D和板DP/床DP的实例1活化器如何在13次操作中不形成碎屑或碎块。此外,注意来自实例1中的活化器的粉末中的平均F重量%如何高于来自实例4中的活化器和使用相同配方(AHF:Siral 40)的类似操作的粉末中的平均F重量%。因此与粉末中相比F在碎屑和碎石中更浓缩并且将粉末中的平均F重量%降低到低于目标。在实例5的活化中,通过成比例地将AHF装料增加15%,可能得到在粉末中的达到与实例1活化器中相同的范围的F,但同样与疏松粉末相比碎屑和碎石具有显著较高的F含量。必须使用较大AHF装料来获得粉末上的相同wt%F负载是较不经济的。

表5:碎屑和碎石中的氟浓度

注释:对比实例4和实例1,在实例5中每lb Siral 40多装载15%AHF。

图8-10显示床温度差距随着流体化气体SGV(ft./sec)的变化。标记为实例2的图8为在整个操作中利用0.10ft./sec的14英寸直径的流体化床活化器中测量的床温度差距的图800。在图800中,可见在床温度达到约370℃后,流体化行为改变并且床温度中的差距随着床温度上升到600℃而稳定地上升到高达59℃。在370℃,已发生载体的基本上脱水并且已经去除许多自由和化学结合水。此外,在370℃,当AHF分解时已发生载体表面的氟化。随着温度升高,逐渐进行呈水铝矿形式的氧化铝向γ形式的转化并且床温度中的差距持续提高。

标记为实例4的图9为在操作的早期部分中利用0.10ft./sec流体化气体速度SGV的40英寸直径的流体化床活化器中测量的床温度差距的图900。在约370℃下,流体化气体速度增加到0.23ft./sec。可见床温度中的差距经较高SGV限制为平均约10℃和最大约23℃。与在0.10ft./sec下进行的实例2中的59℃差距相比,此更均匀得多。

标记为实例5的图10为在操作的早期部分中利用0.10ft./sec流体化气体速度SGV,随后高达0.40ft./sec.SGV的40英寸直径的流体化床活化器中测量的床温度差距的图1000。在约370℃下,流体化气体速度SGV历经每个增量约两分钟以0.05ft./sec增量升高到0.40ft./sec。可见床温度中的差距经较高SGV限制为平均约17℃和最大约29℃。与在0.10ft./sec下进行的实例2中的59℃差距相比,此更均匀得多。

聚合实例

本文中描述的载体用于以先前根据催化剂制备描述的通用方式,使用本文中论述的铪催化剂HfP产生催化剂。随后利用这些催化剂产生聚合物样品以使用目前技术测定产生的载体的效果。表6提供在14英寸直径的气相流体化床中间试验反应器中使用由本发明载体和表中所示的操作条件制成的催化剂进行的聚合的实例6到9。催化剂由实例1到4中论述的氟化载体制成。ICPES是指针对金属含量的电感耦合等离子体发射光谱分析。

表6:中间试验聚合实例

虽然前述内容是针对本发明的实施例,但在不脱离本发明的基本范围的情况下,可设计出本发明的其它和另外实施例,并且由所附权利要求书确定本发明的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1