一种石墨烯/铁酸盐复合磁性纳米八面体的制备方法与流程

文档序号:13749004阅读:772来源:国知局
一种石墨烯/铁酸盐复合磁性纳米八面体的制备方法与流程

本发明属于新材料制备领域,涉及石墨烯/铁酸盐复合材料的制备方法,具体为一种石墨烯/铁酸盐复合磁性纳米八面体的制备方法。



背景技术:

光催化是一种有效的环境污染控制技术,近年来受到科研工作者的广泛关注。光催化技术离不开光催化剂,光催化剂是靠利用光能(hv)来发生氧化还原反应的,它的能带是由一个充满电子的价带(VB)和一个空的导带组成。光催化剂的禁带宽度决定了其可以吸收光的波长范围,禁带宽度越小,则光催化剂可吸收光的波长范围则越大。TiO2作为传统的光催化剂,因其自身性质优势,一直都是光催化研究的热点。然而,TiO2的禁带宽度还是相对较宽(金红石:3.03eV;锐钛矿:3.18eV),依然只能吸收极少部分的太阳光。此外,TiO2不易分离回收,实现循环利用。因此,发现一类能够安全,高效以及可持续利用太阳光辐射能量的光催化剂是具有重要的意义。

尖晶石是一种具有多种性质的材料,在诸多领域都有较高的应用价值及前景,如作为颜料材料、磁性材料、陶瓷材料、隐身材料、催化材料、以及防火材料等。尖晶石型铁酸盐作为一种磁性氧化物,通常用MFe2O4来表示,M表示一种二价金属阳离子(例如:Mg2+、Ca2+、Ba2+、Sr2+、Co2+、Ni2+、Mn2+、Zn2+等),是一类离子晶体化合物,其晶体结构与典型的尖晶石型天然矿石MgAl2O4相同,是立方结构。整个结构中O2-立方紧密堆积,其间存在四面体空隙和八面体空隙,而M2+离子填充在四面体空隙中,而Fe3+填充在八面体空隙中,因此M2+离子是四配位,而Fe3+是六配位。正是由于这些空隙的存在,金属离子的掺杂与取代才成为可能,使得尖晶石型铁酸盐种类繁多,性质不一。尖晶石型金属铁酸盐由于其独特的晶体结构和众多的理化性质一直吸引着科学家的关注。尖晶石型金属铁酸盐作为一种能带窄、对可见光响应良好及光电化学性能稳定的新型光催化剂,其优异的光催化性能可以应用于多种污染物的降解。

磁性纳米颗粒和石墨烯复合能够拓展材料的应用范围,同时由于磁性颗粒的空间间隔效应能够阻止石墨烯片层之间的聚集或堆积,石墨烯铁酸盐复合材料综合了石墨烯及铁酸盐的优点。一方面能够在吸附饱和后容易快速从水体中分离,另一方面具有巨大比表面积,丰富官能团和大面积sp2轨道的碳结构,均使石墨烯不仅能加强复合材料的吸附能力,而且能够很好地固定和分散纳米颗粒。石墨烯掺杂到铁酸盐中还可使复合材料的光谱响应范围扩展至可见光区,可作为有效电子受体促进具有半导体性能的铁酸盐实现电子-空穴分离,并抑制电子空穴对的复合,从而增强了复合材料的光催化活性,实现对水体中有机污染物的高效降解。石墨烯铁酸盐复合材料,由于具备传统非均相光催化材料所不具备的诸多优势,比如pH值适应范围广、可见光响应程度高、对有机物降解效率高、可循环利用和易回收等,而在光催化领域具有广泛的发展前景和应用价值,有望使光催化体系变得更高效、低耗、适用。



技术实现要素:

本发明目的在于提供一种石墨烯/铁酸盐复合磁性纳米八面体的制备方法。

本发明的技术方案:

一种石墨烯/铁酸盐复合磁性纳米八面体的制备方法,步骤如下:

以氧化石墨烯、乙二醇、M(NO3)2·6H2O和Fe(NO3)3·9H2O为起始原料,其中,Fe(NO3)3·9H2O和M(NO3)2·6H2O的摩尔比为2:1,每10-40mL乙二醇中添加1g Fe(NO3)3·9H2O,Fe(NO3)3·9H2O与氧化石墨烯的质量比为100:1-10;

其中,M为二价金属离子,M为Mg2+、Zn2+、Ni2+、Cu2+或Co2+

(1)按比例将氧化石墨烯加入乙二醇中,超声得到均匀黑色液体;

(2)把M(NO3)2·6H2O和Fe(NO3)3·9H2O加入乙二醇中,常温下磁力搅拌,形成深红棕色溶液;

(3)边搅拌边调节步骤(2)的深红棕色溶液至PH=8-10,同时添加步骤(1)得到的黑色液体,继续搅拌60min,混合均匀;

(4)将步骤(3)得到的混合溶液200℃温度条件下,反应12h,得到黑色熔浆,即为Fe-Mg-GO八面体前絮体;

(5)步骤(4)得到的黑色熔浆冷却至室温,收集黑色沉淀物,用无水乙醇反复洗涤,然后在60℃下干燥6h;以2℃/min的升温速度,在650℃下煅烧2h,得到黑色粉末,即为石墨烯/铁酸盐复合磁性纳米八面体。

本发明的有益效果:本发明采用水热法一步合成石墨烯/铁酸盐复合纳米磁性八面体材料。该合成方法简单,污染小。得到的石墨烯/铁酸盐复合八面体颗粒分布比较均匀,颗粒间的团聚现象也不明显。并且所得的材料具有大的表面积和较强的磁性,当它被用作光催化剂的时候,可以通过简单的方法实现磁性分离,重复利用。本发明采用水热法一步合成石墨烯/铁酸盐复合纳米磁性八面体材料,对甲基橙和1,2二氯苯在可见光照射下有良好的光催化效果。所以本发明制备的材料,不仅可以作为吸附剂,还可用作可见光响应型的催化剂,应用于多种类型的污染物的光催化降解。

附图说明

图1为石墨烯/铁酸镁复合纳米微球SEM图。

图2为石墨烯/铁酸镁复合纳米微球SEM图。

图3为石墨烯/铁酸镁复合纳米微球SEM图。

图4为MgFeO4/rGO材料的拉曼光谱图。

图5为MgFeO4/rGO(25mg)在可见光照射下对甲基橙(20mg/L;150mL)的降解曲线。

具体实施方式

下面结合实施例子和附图对本发明作进一步详细说明,但实施例是对本发明的进一步说明,而不是限制本发明。

实施例1

一种石墨烯/铁酸盐复合磁性纳米八面体的制备方法

(1)把0.0456g GO加入4mL乙二醇中,超声4h,形成黑色液体;

(2)把(0.728;2mmol)Mg(NO3)2·6H2O和(1.612g;4mmol)Fe(NO3)3·9H2O溶于20mL乙二醇中,常温下磁力搅拌,形成透明溶液;

(3)一边搅拌,一边在步骤(2)中的溶液中加入(1.31g)NaAc和步骤(1)中得到的黑色液体,继续搅拌60min;

(4)将步骤(3)的反应混合物加入到50mL聚四氟乙烯不锈钢反应釜中,在200℃烘箱中反应12h;

(5)然后将反应釜冷却至室温,收集黑色沉淀物,用无水乙醇洗涤三次,然后在60℃下干燥6h;

(6)把步骤(5)中得到的黑色粉末以2℃/min的升温速度,在650℃下煅烧2h,得到最终石墨烯/铁酸镁复合磁性纳米八面体。

(7)取25mg石墨烯/铁酸镁复合磁性纳米八面体,加入150mL的甲基橙溶液(20mg/L)中,遮光搅拌1h,用氙灯照射甲基橙溶液,每隔20min取出3mL的溶液,遮光静置后,取上层清液用紫外分光光度计在464nm波长下,测溶液的吸光度。

如图1的SEM图,铁酸镁八面体很好的负载在rGO上,颗粒分布均匀,没有发生团聚现象;

如图2、3的SEM图,可知实验得到的石墨烯/铁酸镁复合纳米八面体的平均粒径约为400-500nm;

如图4,拉曼光谱表示,本实验中成功的合成了MgFeO4/rGO复合材料,通过A1g峰表明成功合成了MgFeO4,D峰和G峰的出现,并且比值大于1,说明原材料GO通过本实验,被还原成了rGO。

通过实验,如图5结果表明中显示,石墨烯/铁酸镁复合纳米微球(25mg)加入甲基橙溶液(20mg/L;150mL)后,在可见光照射的条件下发生催化降解反应,照射140min后甲基橙基本降解完全。

实施例2

一种石墨烯/铁酸盐复合磁性纳米八面体的制备方法

(1)把0.0142g GO加入4mL乙二醇中,超声,形成均匀的黑色液体;

(2)把(0.728;2mmol)Mg(NO3)2·6H2O和(1.612g;4mmol)Fe(NO3)3·9H2O溶于40mL乙二醇中,常温下磁力搅拌,形成透明溶液;

(3)一边搅拌,一边在步骤(2)中的溶液中加入(1.31g)NaAc和步骤(1)中得到的黑色液体,继续搅拌60min;

(4)将步骤(3)的反应混合物加入到50mL聚四氟乙烯不锈钢反应釜中,在200℃烘箱中反应12h;

(5)然后将反应釜冷却至室温,收集黑色沉淀物,用无水乙醇洗涤三次,然后在60℃下干燥6h;

(6)把步骤(5)中得到的黑色粉末以2℃/min的升温速度,在650℃下煅烧2h,得到最终石墨烯/铁酸镁复合磁性纳米八面体。

实施例3

一种石墨烯/铁酸盐复合磁性纳米八面体的制备方法

(1)把0.0142g GO加入4mL乙二醇中,超声,形成均匀的黑色液体;

(2)把(0.595;2mmol)Zn(NO3)2·6H2O和(1.612g;4mmol)Fe(NO3)3·9H2O溶于40mL乙二醇中,常温下磁力搅拌,形成透明溶液;

(3)一边搅拌,一边在步骤(2)中的溶液中加入(1.31g)NaAc和步骤(1)中得到的黑色液体,继续搅拌60min;

(4)将步骤(3)的反应混合物加入到50mL聚四氟乙烯不锈钢反应釜中,在200℃烘箱中反应12h;

(5)然后将反应釜冷却至室温,收集黑色沉淀物,用无水乙醇洗涤三次,然后在60℃下干燥6h;

(6)把步骤(5)中得到的黑色粉末以2℃/min的升温速度,在650℃下煅烧2h,得到最终石墨烯/铁酸锌复合磁性纳米八面体。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1