一种用于二氧化碳氧化1-丁烯脱氢制1,3-丁二烯的高效催化剂及其制备方法与流程

文档序号:17473619发布日期:2019-04-20 05:59阅读:311来源:国知局
一种用于二氧化碳氧化1-丁烯脱氢制1,3-丁二烯的高效催化剂及其制备方法与流程

本发明属于合成1,3-丁二烯气相合成催化技术,更加具体地说,涉及一种用于co2氧化1-丁烯脱氢制1,3-丁二烯的高效负载型铁系复合氧化物催化剂及其制备方法。



背景技术:

1,3-丁二烯是重要的有机化工原料,大量用于石油化学工业生产橡胶、树脂、塑料,同时还是制备己二腈、环丁砜、环辛二烯等化学品的中间体。随着全球经济的发展,1,3-丁二烯的市场需求量越来越大。从以往的工艺来看,1,3-丁二烯的生产主要由石脑油蒸汽裂解c4抽提而来。然而,越来越多的天然气和炼厂气轻烃制乙烯、丙烯,以及煤制烯烃的发展将不利于蒸汽裂解的发展,减少了1,3-丁二烯来源。全球1,3-丁二烯将长期处于短缺状态。因此亟待发展新型的1,3-丁二烯制备工艺来满足全球经济的发展。

我国1-丁烯主要来源于乙烯装置及炼厂催化裂化装置副产的c4馏分。目前国内大部分1-丁烯资源没有得到有效利用,而直接被混在液化气中烧掉,所以研究1-丁烯的开发与利用十分必要。采用1-丁烯作为原料氧化脱氢制1,3-丁二烯(如反应式(1))是1,3-丁二烯的重要来源之一。由于该反应是放热的,且以o2为氧化剂会使1-丁烯深度氧化生成碳氧化合物,难以控制,因此造成产物的选择性降低。

1-c4h8+1/2o2→1,3-c4h6+h2o(1)

而利用温和的氧化剂co2替代o2(如反应式(2)),不仅可以有效抑制采用o2作氧化剂时反应放热、1-丁烯深度氧化致使选择性降低等问题,还可以减少积炭,增加催化剂寿命。另外,该工艺的发展还对实现温室气体co2的有效转化与资源化利用有着积极作用。因此,co2氧化1-丁烯脱氢是很具前景的研究方向,该领域的研究工作在综合利用含碳资源、保护生态环境等方面具有重大的现实意义和广阔的应用前景。

1-c4h8+co2→1,3-c4h6+co+h2o(2)

2014年,新加坡yanliu课题组首次报道了该工艺的研究工作,研究发现fe2o3/γ-al2o3催化剂在co2氧化1-丁烯脱氢制1,3-丁二烯方面有着较好的催化性能。但是此类催化剂活性较低,稳定性也比较差。因此亟待开发一种新型高效催化剂。



技术实现要素:

本发明的目的在于克服现有技术的不足,提供能够用于co2氧化1-丁烯脱氢制1,3-丁二烯的一类负载型铁系复合氧化物催化剂及其制备方法,以这些方法所制得的催化剂具有活性高、选择性好、稳定性好及制备成本低的特点,其制备方法过程比较简单。

本发明的技术目的通过下述技术方案予以实现:

一种用于二氧化碳氧化1-丁烯脱氢制1,3-丁二烯的高效催化剂及其制备方法,按照下述步骤进行制备:

步骤1,将载体、可溶性三价铁盐、掺杂元素的可溶性盐置于去离子水中均匀分散,加热以除去溶剂水并得到粉末样品;

步骤2,将步骤1制备的粉末样品烘干后,自室温20—25摄氏度升温至500—600℃进行保温焙烧后,自然冷却至室温20—25摄氏度即可,升温速度为1~5℃/min,保温焙烧时间为3—8小时。

而且,在步骤1中,选择茄型瓶为反应容器进行搅拌分散,转速为180~220r/min,搅拌时间180~240min,以实现分散均匀,然后使用旋转蒸发仪除去溶剂水,温度60~80℃,时间40~60min。

而且,在步骤1得到粉末样品后,将得到的样品粉末烘干,温度为100~120℃,将烘干得到的橙色样品用研钵研磨细之后进行焙烧。

而且,在步骤2中,升温速度为3~5℃/min,保温焙烧时间为3—5小时,温度为550—600摄氏度。

而且,在步骤2中,选择马弗炉为焙烧设备,空气为焙烧气氛。

制备的催化剂由载体和活性组分组成,以金属铁和掺杂元素的复合氧化物为活性组分,铁元素的负载量为催化剂重量的5~15wt%,优选为10~15wt%,铁元素与掺杂元素的摩尔比为9:(1—10)。

掺杂元素为co、cr、cu、mn、ni、v、zn或mo中的至少一种。

载体为γ-al2o3、分子筛或者沸石。

铁元素与单一掺杂元素(如v)的摩尔比为9:(1—10)。

fe/v/第二掺杂元素(即掺杂元素中除去v后的剩余元素)的摩尔比为9:1:1。

fe/v/cr的摩尔比为9:1:(1—5)。

fe/v/cr/mo的摩尔比为9:(1—0.5):(1—0.5):(1—0.5)。

可溶性三价铁盐为硝酸铁或者氯化铁、掺杂元素的可溶性盐为掺杂元素的硝酸盐、盐酸盐或者铵盐,利用盐加入量调整金属铁和掺杂元素的比例关系。

利用上述催化剂在co2氧化1-丁烯脱氢制1,3-丁二烯的应用,原料1-丁烯和二氧化碳的摩尔比为1:(2—13),优选1:(7—9);反应温度为500~700℃,优选550—650摄氏度,反应压力为常压的条件下(即一个标准大气压),以1-丁烯为基准的质量空速为1.5~7.5h-1时,催化剂的用量为0.1~0.2g。

现有技术中fe2o3/γ-al2o3催化剂属于过渡金属氧化物催化剂,fe2o3的晶格氧含量及氧流动性是影响其发挥优良催化性能的关键。与现有技术相比,本发明的优点在于采用杂原子掺杂法制备的负载型铁系复合氧化物催化剂(通过杂原子掺杂的方法向fe2o3中引入一种或多种杂原子),与传统的氧化铝负载的氧化铁催化剂(fe2o3/γ-al2o3)相比,可有效的提高催化剂的晶格氧流动性和晶格氧含量,从而提高催化剂的活性及稳定性。其中1,3-丁二烯时空收率最高可达1,3-丁二烯时空收率最高达1412.1mg/g/h,在铁负载量相当的情况下(15wt%),这比传统fe2o3/γ-al2o3催化剂高出916.8mg/g/h。本发明催化剂对环境友好,无污染。

附图说明

图1为本发明fevcrmoox/al2o3催化剂的xrd谱图。

图2为本发明fevcrmoox/al2o3催化剂的tem照片。

具体实施方式

下面结合具体实施例进一步说明本发明的技术方案。本发明的技术方案如下:

使用共浸渍法制备催化剂,具体来说:称取γ-al2o3作为载体、fe(no3)3·9h2o作为提供铁元素的可溶性盐、掺杂元素(co、cr、cu、mn、ni、v、zn或mo中的一种或多种元素)的可溶性盐类数克,量取去离子水数毫升,置于茄型瓶中搅拌,其转速约180~220r/min,搅拌时间180~240min,其中掺杂元素优选为v、cr、mo。将得到的样品使用旋转蒸发仪除去其中的水溶剂,温度60~80℃,时间40~60min。将得到的样品粉末烘干,温度为100~120℃。将得到的橙色样品用研钵研磨细之后,置于马弗炉中500~600℃下焙烧3~4h(升温速率3~5℃/min)。最终得到负载型复合氧化物催化剂。采用xrd对其中制备的fevcrmoox/al2o3催化剂的物相进行了分析,如图1所示。催化剂出现了γ-al2o3、α-fe2o3、v2o5、fe0.716v1.284o4和(fe0.6cr0.4)2o3的特征衍射峰,说明γ-al2o3负载v、cr、mo元素的前驱体焙烧后形成的物相为α-fe2o3、v2o5、fe0.716v1.284o4和(fe0.6cr0.4)2o3。而mo元素没有出现相应的衍射峰,说明mo元素高度分散在γ-al2o3的表面。图2为fevcrmoox/al2o3催化剂的tem图。从左图可以看出,该催化剂表面的活性组分颗粒分布较为均匀。进一步对其表面的颗粒进行高倍分析,如右图所示。可以看出,这种均匀分散的颗粒主要为α-fe2o3,由于v2o5、fe0.716v1.284o4和(fe0.6cr0.4)2o3的量太少,并未检测出。由此可知,本发明制备的催化剂中形成金属铁和掺杂元素的复合氧化物作为活性组分。

【实施例1~7】

在传统fe2o3/al2o3催化剂的基础上进行单一元素掺杂改性,其中掺杂元素选取co、cr、cu、mn、ni、v或zn中的一种,具体制备方法如下:

称取γ-al2o33g,fe(no3)3·9h2o3.2464g(0.0080mol),掺杂元素的硝酸盐(其中v为nh4vo3)0.00089mol,即fe与掺杂元素的摩尔比为9:1,量取蒸馏水100ml,置于茄型瓶中60℃下连续搅拌4h。旋转蒸发出去水溶剂后,置于烘箱内120℃下干燥4h。再将上述样品置于马弗炉中600℃下焙烧4h(升温速率5℃/min),即得到样品,分别记为fecoox/al2o3、fecrox/al2o3、fecuox/al2o3、femnox/al2o3、feniox/al2o3、fevox/al2o3、feznox/al2o3。

【实施例8】

在常压微型反应系统进行催化剂活性评价,通入反应物6ml/min1-丁烯及54ml/minco2,即进气比co2/c4h8=9:1,分别使用实施例1~7催化剂0.2g,即空速为4.5h-1,在600℃、常压下进行反应,采用气相色谱进行产物分析。以反应进行10min时1-丁烯转化率,1-丁烯对1,3-丁二烯的选择性及1,3-丁二烯的时空收率为指标,所得反应性能如表1所示。由结果可以明显看出通过掺杂v元素可以有效提高1,3-丁二烯的选择性,从而提高1,3-丁二烯的时空收率,最高1,3-丁二烯时空收率1054.3mg/g/h。因此选用v元素作为掺杂的第一种元素。

表1单一元素掺杂改性催化剂催化co2氧化1-丁烯脱氢制1,3-丁二烯的反应结果

【实施例9~10】

在实施例8的反应条件下,采用实施例6中的催化剂(fevox/al2o3)进行合成1,3-丁二烯的反应条件中反应温度的考察,以探究得到最佳反应温度。设置反应温度分别为500℃,550℃。以反应进行10min时1-丁烯转化率,1-丁烯对1,3-丁二烯的选择性及1,3-丁二烯的时空收率为指标,所得反应性能如表2所示。从表2中可以看出在反应温度为500℃或550℃时催化剂的活性均不及600℃(实施例8的反应条件)时高。因此得到600℃为反应的最佳温度。

表2不同反应温度下fevox/al2o3催化剂的催化性能

【实施例11~13】

在实施例8的反应条件下,采用实施例6中的催化剂(fevox/al2o3)进行合成1,3-丁二烯的反应条件中空速的考察,以探究得到最佳反应空速。设置空速分别为3、4、5。以反应进行10min时1-丁烯转化率,1-丁烯对1,3-丁二烯的选择性及1,3-丁二烯的时空收率为指标,所得反应性能如表3所示。从表3中可以看出在空速为3、4或5时催化剂的活性均不及空速为4.5(实施例8的反应条件)时高。因此得到4.5为反应的最佳空速。

表3不同空速下fevox/al2o3催化剂的催化性能

【实施例14~15】

在实施例8的反应条件下,采用实施例6中的催化剂(fevox/al2o3)进行合成1,3-丁二烯的反应条件中co2/c4h8进气比例的考察,以探究得到最佳co2/c4h8进气比。设置co2/c4h8进气比例分别为co2/c4h8=5:1、13:1。以反应进行10min时1-丁烯转化率,1-丁烯对1,3-丁二烯的选择性及1,3-丁二烯的时空收率为指标,所得反应性能如表4所示。从表4中可以看出在进气比为co2/c4h8=5:1或13:1时催化剂的活性均不及co2/c4h8=9:1(实施例8的反应条件)时高。因此得到co2/c4h8=9:1为反应的最佳进气比。

表4不同进气比条件下fevox/al2o3催化剂的催化性能

【实施例16~20】

考察fevox/al2o3催化剂中fe/v比对催化剂性能的影响,以获得最佳的fe/v比制备条件。在实施例6的催化剂制备条件下,通过改变fe元素与v元素的摩尔比制备出不同fe/v比的催化剂,其中fe/v分别为9:3、9:5、9:7和9:9。另外,为了做对比,同时制备了fe元素含量为0的催化剂,即v2o5/al2o3催化剂。

在最佳的反应条件下,即在反应温度为600℃、空速为4.5、进气比co2/c4h8=9:1的反应条件下,即实施例8的反应条件下,对以上5种催化剂进行活性评价。以反应进行10min时1-丁烯转化率,1-丁烯对1,3-丁二烯的选择性及1,3-丁二烯的时空收率为指标,所得反应性能如表5所示。从表5中可以看出,在fe/v=9:3、9:5、9:7、9:9或fe元素含量为0时均不及fe/v=9:1时(实施例6制备的催化剂)催化剂的活性高。因此得到fevox/al2o3催化剂中fe/v比最佳为9:1。

表5不同fe/v比fevox/al2o3催化剂及v2o5/al2o3催化剂的催化性能

【实施例21~26】

在实施例6所制备的催化剂基础上进行第二种元素的掺杂改性,掺杂元素选用co、cr、cu、mn、ni或zn中的一种,以进一步提高催化剂的活性。具体的制备方法如下:

称取γ-al2o33g,fe(no3)3·9h2o3.2464g(0.0080mol),nh4vo30.00089mol,掺杂元素的硝酸盐0.00089mol,即fe/v/第二元素的摩尔比为9:1:1,量取蒸馏水100ml,置于茄型瓶中60℃下连续搅拌4h。旋转蒸发出去水溶剂后,置于烘箱内120℃下干燥4h。再将上述样品置于马弗炉中600℃下焙烧4h(升温速率5℃/min),即得到样品,分别记为fevcoox/al2o3、fevcrox/al2o3、fevcuox/al2o3、fevmnox/al2o3、fevniox/al2o3、fevznox/al2o3。

在最佳的反应条件下,即在反应温度为600℃、空速为4.5、进气比co2/c4h8=9:1的反应条件下,即实施例8的反应条件下,对以上6种催化剂进行活性评价。以反应进行10min时1-丁烯转化率,1-丁烯对1,3-丁二烯的选择性及1,3-丁二烯的时空收率为指标,所得反应性能如表6所示。从表6中可以看出,在fevox/al2o3催化剂基础上进一步掺杂第二种元素为cr元素时,催化剂的催化效果最好,即fevcrox/al2o3催化活性最高,其1,3-丁二烯的空收率可以达到1303.3mg/g/h。

表6双元素掺杂改性催化剂的催化性能

【实施例27~28】

考察fevcrox/al2o3催化剂中fe/v/cr比对催化剂性能的影响,以获得最佳的fe/v/cr比制备条件。在实施例22的催化剂制备条件下,通过改变fe元素与cr元素的摩尔比制备出不同fe/v/cr比的催化剂,其中fe/v/cr分别为9:1:3和9:1:5。

在最佳的反应条件下,即在反应温度为600℃、空速为4.5、进气比co2/c4h8=9:1的反应条件下,即实施例8的反应条件下,对以上2种催化剂进行活性评价。以反应进行10min时1-丁烯转化率,1-丁烯对1,3-丁二烯的选择性及1,3-丁二烯的时空收率为指标,所得反应性能如表7所示。从表7中可以看出,在fe/v/cr=9:1:3或9:1:5时催化剂的活性均不及在fe/v/cr=9:1:1(实施例22制备的催化剂)时高。因此得到fevcrox/al2o3催化剂中fe/v/cr比最佳为9:1:1。

表7不同fe/v/cr比fevcrox/al2o3催化剂的催化性能

【实施例29~32】

在实施例22所制备的催化剂基础上进行第三种元素的掺杂改性,掺杂元素选用mo,以进一步提高催化剂的活性。具体的制备方法如下:

称取γ-al2o33g,fe(no3)3·9h2o3.2464g(0.0080mol),nh4vo3数克,cr(no3)3·9h2o数克,(nh4)6mo7o24·4h2o数克,量取蒸馏水100ml,置于茄型瓶中60℃下连续搅拌4h。旋转蒸发出去水溶剂后,置于烘箱内120℃下干燥4h。再将上述样品置于马弗炉中600℃下焙烧4h(升温速率5℃/min),即得到样品,记为fevcrmoox/al2o3。

为了获得催化剂中各元素最佳的比例,制备同时调变fevcrmoox/al2o3催化剂中fe、v、cr、mo的比例,分别为fe:v:cr:mo=9:1:1:1、9:1:1:0.5、9:1:0.5:0.5、9:0.5:0.5:0.5,即获得分别对应实施例29~32的催化剂。

【实施例33】

在最佳的反应条件下,即在反应温度为600℃、空速为4.5、进气比co2/c4h8=9:1的反应条件下,即实施例8的反应条件下,对以上4种催化剂进行活性评价。以反应进行10min时1-丁烯转化率,1-丁烯对1,3-丁二烯的选择性及1,3-丁二烯的时空收率为指标,所得反应性能如表8所示。从表8中可以看出,在fe:v:cr:mo=9:1:1:0.5时,fevcrmoox/al2o3催化剂的催化效果最好,其1,3-丁二烯的空收率可以达到1412.1mg/g/h。

表8不同fe/v/cr/mo比fevcrmoox/al2o3催化剂的催化性能

【对比例1】

传统fe2o3/γ-al2o3催化剂的制备:

将γ-al2o3载体浸渍于fe(no3)3·9h2o的水溶液中,60℃下搅拌4h,旋转蒸发移除水溶剂后,120℃下烘箱干燥4h;然后再置于马弗炉600℃焙烧4h(升温速率5℃/min),最终得到氧化铝负载氧化铁催化剂,记为fe2o3/γ-al2o3。

将此催化剂在实施例8的反应条件下进行活性测试,1-丁烯转化率为72.5%,1,3-丁二烯选择性为11.4%,1,3-丁二烯的时空收率为495.3mg/g·h。在铁负载量与实施例2、3、5~7、21~30中催化剂相等的情况下,此活性均低于实施例2、3、5~7、21~30中催化剂的催化活性。其中,实施例30中催化剂(fevcrmoox/al2o3,fe:v:cr:mo=9:1:1:0.5)的活性最高,1,3-丁二烯时空收率为1412.1mg/g/h,这比fe2o3/γ-al2o3高出916.8mg/g/h。

利用本发明记载内容进行工艺参数和原料配方的调整,均可实现催化剂的制备,且表现出与实施例基本一致的性能。以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1