氙吸附剂的制作方法

文档序号:18359483发布日期:2019-08-06 23:37阅读:184来源:国知局
氙吸附剂的制作方法

本发明涉及氙吸附剂。本发明的氙吸附剂在例如选择性吸附来自混合气体的氙并回收的用途中是有用的。



背景技术:

作为氙的用途,可以举出如专利文献1中记载的医疗行业中的麻醉气体、医学图像、离子推进发动机(宇宙空间)、平板显示器(等离子体)和高亮度放电(hid)光。

另外,如专利文献2中所记载的制造半导体集成电路、液晶面板、太阳能电池面板、磁盘等半导体制品的工序中也使用氙,近年来,为了进行更高度的处理,氙的用量增加。

然而,氙为大气的微量成分(87ppb),为了通过从空气分离而得到,得到1l的氙需要11000000l的空气。因此,氙成为非常昂贵的气体。

因此,要求从包含氙的混合气体吸附回收氙。

专利文献1中,作为xe/n2选择比低于65的吸附剂,列举了氧化铝、沸石、硅胶和活性炭,但未示例具体的吸附剂。

专利文献2中,作为用于吸附作为易吸附成分的氙的吸附剂,公开了活性炭、na-x型沸石、ca-x型沸石、ca-a型沸石、li-x型沸石,但作为用于吸附低浓度的氙的吸附剂,不能说具有充分的性能。

作为氙吸附剂,专利文献3中公开了银离子交换zsm5,专利文献4中公开了ca-x型沸石或na-y型沸石,但作为用于吸附低浓度的氙的吸附剂,不能说具有充分的性能。

另外,专利文献5中,作为氙吸附剂,列举了孔径以上的合成沸石、孔径以上的分子筛碳,但未示例具体的吸附剂。

这些吸附剂可以说均不具有作为特别用于吸附低浓度的氙的吸附剂的充分的性能。

现有技术文献

专利文献

专利文献1:日本国专利第5449289号

专利文献2:日本国特开2006-61831号

专利文献3:日本国专利第5392745号

专利文献4:日本国专利第3824838号

专利文献5:日本国特开2008-137847号



技术实现要素:

发明要解决的问题

本发明提供与以往的氙吸附剂相比特别是低浓度的氙吸附量大、进而对作为空气成分之一的氮气的选择性高的氙吸附剂。本发明的氙吸附剂能从混合气体有效地吸附氙。

用于解决问题的方案

本发明人等为了解决上述课题而深入研究,结果发现:作为氙吸附剂,孔径为的范围、且二氧化硅/氧化铝的摩尔比为10~30的范围的沸石优异,完成了本发明。

即,本发明在于以下的[1]至[6]。

[1]一种氙吸附剂,其特征在于,含有沸石,所述沸石的孔径为的范围、且二氧化硅/氧化铝的摩尔比为10~30的范围。

[2]根据上述[1]所述的氙吸附剂,其特征在于,包含选自锂、钠、钾、镁、钙、锶、钡、铁、铜、银中的至少1种作为沸石中所含的金属成分。

[3]根据上述[1]或[2]所述的氙吸附剂,其特征在于,金属成分相对于沸石的铝为0.1~1.0当量(对于价数n的金属离子,所述当量为在金属/al摩尔比上乘以金属的价数n而得到的值)。

[4]根据上述[1]~[3]中任一项所述的氙吸附剂,其特征在于,含有银,所述银在空气中、以500℃焙烧后测定的紫外可见吸收光谱在290~350nm处具有吸收峰,且该吸收峰在310~330nm处具有最大值。

[5]根据上述[1]~[4]中任一项所述的氙吸附剂,其特征在于,沸石包含选自cha型、fer型、heu型、mww型中的至少1种结构。

[6]根据上述[1]~[5]中任一项所述的氙吸附剂,其特征在于,氙吸附剂为成型体。

发明的效果

本发明的氙吸附剂即使在低浓度下也能效率良好地从混合气体吸附氙。

具体实施方式

以下,对本发明进行说明。

本发明的氙吸附剂含有沸石,所述沸石的孔径为的范围、且二氧化硅/氧化铝的摩尔比为10~30的范围。

此处,孔径是指,国际沸石学会(internationalzeoliteassociation)2007年发行的沸石结构数据集“atlasofzeoliteframeworktypes”(elsevier出版)中记载的孔径(其中,孔为椭圆状的情况下,设为在形状上限制吸附分子的短径)。

孔径的范围的沸石的氙吸附性能优异的理由不确定,但有接近于氙分子的大小即约产生影响的可能性。即使为孔径小于的沸石,由于晶体骨架的热振动而孔径也发生变化,因此,能吸附氙。孔径低于的情况下,不吸附氙,超过的情况下,与氙共存的其他成分的吸附成为优势。为了进一步吸附氙,孔径优选以上且低于的范围。

二氧化硅/氧化铝的摩尔比是指,sio2/al2o3摩尔比,低于10的情况下,成为吸附位点的金属成分多,极性变得过强,与氙共存的其他成分的吸附成为优势,超过30的情况下,成为吸附位点的金属成分少,不具有充分的吸附性能。

作为本发明的氙吸附剂中使用的沸石所含的金属成分,优选包含选自锂、钠、钾、镁、钙、锶、钡、铁、铜、银中的至少1种,特别优选包含选自钠、银中的至少1种。氙为单原子分子,因此,为不具有极性的分子,但通过从外部施加电场而诱导偶极子,变得具有极性,变得吸附于沸石。作为诱导偶极子的金属成分,前述金属成分优异。

为了更有效地吸附氙,前述金属成分相对于沸石的铝优选0.1~1.0当量(对于价数n的金属离子,为在金属/al摩尔比上乘以金属的价数n而得到的值。以下相同)、进一步优选0.4~1.0当量、特别优选0.5~1.0当量。

进而,本发明的氙吸附剂所含有的银有如下特征:在空气中、以500℃焙烧后测定的紫外可见吸收光谱在290~350nm处具有吸收峰、且该吸收峰在310~330nm处具有最大值。用于测定紫外可见吸收光谱的氙吸附剂的焙烧如下进行:使用通常的箱型马弗炉,边每1.0~1.2分钟吹入与马弗炉的内容积相等的量的干燥空气边以1小时40分钟进行升温,以500℃进行3小时焙烧。紫外可见吸收光谱如下测定:通过扩散反射法,在室温下测定如上述那样以500℃进行焙烧了的试样。

对于本发明的氙吸附剂,为了得到更高的氙吸附量,银的含量优选1~20重量%、进一步优选3~18重量%、特别优选4~15重量%。

对沸石修饰金属成分的方法没有特别限定,可以使用离子交换法、浸渗法、蒸发干固法等。作为离子交换法,使沸石和含有期望的离子的溶液接触直至沸石中的离子量成为期望的浓度,从而达成。可以应用分批法、流通法等通常的离子交换法。需要说明的是,对于金属成分的修饰而言,氙吸附剂为粉末的情况下可以进行修饰,氙吸附剂为成型体的情况下也可以进行修饰。制造成型体的氙吸附剂时,可以对沸石粉末进行了金属修饰后形成成型体,也可以使沸石粉末形成成型体后进行金属修饰,均可。进而,含有银的氙吸附剂通过在300℃~700℃、优选400℃~600℃的温度下进行热处理(焙烧),从而可以提高氙的吸附性能。焙烧气氛可以为空气、氮气等非活性气氛,均可。

作为本发明的氙吸附剂中使用的沸石,优选包含选自cha型、fer型、heu型、mww型中的至少1种结构。其中,优选cha型、fer型、heu型、mww型,最优选fer型。fer型的孔径为左右,孔径与氙分子尺寸最接近,因此推测氙吸附性能优异。作为cha型的沸石,例如可以举出菱沸石等,作为fer型的沸石,例如可以举出镁碱沸石等。作为heu型的沸石,例如可以举出片沸石、斜发沸石等,作为mww型的沸石,例如可以举出mcm-22、itq-1、ssz-25等。

本发明的氙吸附剂中使用的孔径为的范围、且二氧化硅/氧化铝的摩尔比为10~30的范围的沸石、优选cha型、fer型、heu型、mww型的沸石可以如下制造:使二氧化硅源、氧化铝源、碱源、根据需要的结构导向剂的混合物在水热下结晶从而制造。

二氧化硅源例如可以使用胶体二氧化硅、无定型二氧化硅、硅酸钠、原硅酸四乙酯、硅酸铝凝胶等。

氧化铝源例如可以使用硫酸铝、铝酸钠、氢氧化铝、氯化铝、硅酸铝凝胶、金属铝等。二氧化硅源和氧化铝源优选能与其他原料充分均匀地混合的形态。

碱源例如可以使用钠、钾、铵的氢氧化物、卤化物、硫酸盐、硝酸盐、碳酸盐等各种盐、铝酸盐中、硅酸盐中、硅酸铝凝胶中的碱成分等。

也根据需要使用结构导向剂。作为结构导向剂,例如可以使用胺类等,作为胺类,例如可以包含选自四甲基氢氧化铵、四甲基卤化铵、四乙基氢氧化铵、四乙基卤化铵、四丙基氢氧化铵、四丙基卤化铵、n,n,n-三甲基金刚烷氢氧化铵、n,n,n-三甲基金刚烷卤化铵、n,n,n-三甲基金刚烷铵碳酸盐、n,n,n-三甲基金刚烷铵甲基碳酸盐、n,n,n-三甲基金刚烷铵硫酸盐等中的至少1种而使用。

沸石的结晶可以使用高压釜,结晶的温度可以设为100℃以上且250℃以下、优选110℃以上且200℃以下、进而优选120℃以上且190℃以下。结晶时间可以设为12小时以上且96小时以内、优选14小时以上且84小时以内、进而优选16小时以上且72小时以内。结晶在静置、搅拌下均可以进行。

结晶结束后,进行固液分离,可以用纯水、温水等清洗剩余的碱溶液。清洗后可以进行干燥。干燥温度只要为80℃以上且200℃以下即可。包含结构导向剂的情况下,干燥后可以通过热分解处理而去除。

用上述记载的方法制造的沸石可以直接形成氙吸附剂。另外,也可以将沸石与粘结剂混合形成成型体的氙吸附剂。

本发明的氙吸附剂可以形成成型体。分离混合气体时形成成型体时容易操作。成型的方法没有特别限定。作为成型中使用的粘结剂,例如可以使用粘土、氧化铝、二氧化硅等无机系粘结剂等。而且,进行成型时可以使用纤维素等有机系助剂、磷酸盐等无机系助剂等作为成型助剂。成型体的形状可以形成例如球状、圆柱状、三叶型、椭圆状、筒型、环状等。成型体的大小可以形成以直径计为0.5~3mm的大小。成型体中,为了使粘结剂烧结,可以在400~650℃左右的温度下、在空气、氮气等非活性气体中进行焙烧。

附图说明

图1为含有银的氙吸附剂的紫外可见吸收光谱。

图2为放大了图1的320nm附近的吸收峰而得到的图。

实施例

以下,根据实施例对本发明进而具体地进行说明,但本发明不限定于这些。

<氙吸附量和氮气吸附量的测定>

吸附量的测定使用定容量式吸附测定装置(belsorp28sa:microtracbelcorp.制)。吸附剂以350℃、在0.01pa以下的真空下进行前处理2小时。吸附温度在25℃下测定。氙吸附量求出压力1kpa时的吸附量、氮气吸附量求出100kpa时的吸附量。

<氙选择性>

氙选择性以式(1)算出。

氙选择性=(1kpa的氙吸附量/1kpa)/(100kpa的氮气吸附量/100kpa)(1)

<紫外可见吸收光谱的测定>

含有银的氙吸附剂的紫外可见吸收光谱的测定如下:边向内容积30l的马弗炉中以25l/分钟的流量吹入干燥空气,边以1小时40分钟进行升温,以500℃进行3小时焙烧得到试样,对于所得的试样,使用具备积分球单元的紫外可见分光光度计(v-650:日本分光株式会社制),通过扩散反射法,在室温下进行测定。测定条件如下:在2分钟内测定200~400nm的波长范围。

实施例1

加入n,n,n-三甲基金刚烷氢氧化铵25%水溶液7.5g、纯水37.0g、氢氧化钠48%水溶液1.0g、氢氧化钾48%水溶液1.4g、和无定形硅酸铝凝胶9.3g,充分混合,得到原料组合物。原料组合物的组成以将sio2设为1时的摩尔比计为:al2o3:0.072、n,n,n-三甲基金刚烷氢氧化铵:0.065、na2o:0.044、k2o:0.044、h2o:18。

将该原料组合物密闭在80cc的不锈钢制高压釜中,边以55rpm旋转边以150℃进行70小时加热。将加热后的产物进行固液分离,将所得固相用充分量的纯水清洗,以110℃进行干燥得到产物。根据粉末x射线衍射和荧光x射线分析,产物为cha型沸石单相。将所得cha型沸石的干燥粉末在空气流通下、以600℃进行2小时焙烧(cha型沸石的孔径:)。cha型沸石的sio2/al2o3摩尔比为13、na/al比为0.2、k/al比为0.4(相对于铝的金属(na+k)量:0.6当量)。

该cha型沸石(氙吸附剂)的25℃、1kpa下的氙吸附量为0.14mol/kg,25℃、100kpa下的氮气吸附量为0.47mol/kg。另外,氙选择性为29.8。

实施例2

加入纯水825g、氢氧化钠48%水溶液4.9g、氢氧化钾48%水溶液13.5g、和无定形硅酸铝凝胶557g,充分混合,得到原料组合物。原料组合物的组成以将sio2设为1时的摩尔比计为:al2o3:0.051、na2o:0.071、k2o:0.019、h2o:21。

将该原料组合物密闭于2000cc的不锈钢制高压釜,边搅拌边以180℃进行72小时加热。将加热后的产物进行固液分离,将所得固相用充分量的纯水清洗,以110℃进行干燥得到产物。根据粉末x射线衍射和荧光x射线分析,产物为fer型沸石(孔径:)单相。fer型沸石的sio2/al2o3摩尔比为18、na/al比为0.3、k/al比为0.7(相对于铝的金属(na+k)量:1.0当量)。

对于所得fer型沸石100重量份,添加凹凸棒石粘土(mingelmb:activemineralsinternational,llc制)20重量份、羧甲基纤维素3重量份、rheodol(twl-120:花王制)1重量份、纯水110重量份,在混磨机(mixmuller)中进行混炼。将混炼物挤出成直径1.5mmφ的圆柱状并成型。使成型物以110℃进行干燥后,以650℃在空气下焙烧3小时,得到氙吸附剂(成型体)。

所得氙吸附剂的25℃、1kpa下的氙吸附量为0.34mol/kg,25℃、100kpa下的氮气吸附量为0.60mol/kg。另外,氙选择性为56.7。

实施例3

对实施例1中得到的焙烧后的cha型沸石(孔径:)用硝酸钠溶液进行离子交换。所得钠交换cha型沸石的sio2/al2o3摩尔比为13、na/al比为0.8(相对于铝的金属(na)量:0.8当量)、不含有k。需要说明的是,离子交换前的na/al比为0.2、k/al比为0.4。

该钠交换cha型沸石(氙吸附剂)的25℃、1kpa下的氙吸附量为0.17mol/kg,25℃、100kpa下的氮气吸附量为0.64mol/kg。另外,氙选择性为26.6。

实施例4~7

制备实施例2中得到的结晶后的fer型沸石(孔径:成型前的粉体、实施例6),对该fer型沸石用硝酸钠溶液(实施例4、5)、硝酸钾(实施例7)进行离子交换,制备na、k含量不同的4种fer型沸石(sio2/al2o3摩尔比为18)。将各自的25℃、1kpa下的氙吸附量、25℃、100kpa下的氮气吸附量、氙选择性示于表1。

[表1]

如表1所示那样,钠交换量越多,氙吸附量越多,而且氙选择性越优异。

实施例8

将铝酸钠水溶液(浅田化学制、al2o319.3%、na2o19.6%)1.07g、48%氢氧化钠水溶液0.39g、和纯水51.6g充分混合,向其中添加六亚甲基亚胺2.27g、无定形二氧化硅(nipsil-vn3:东曹株式会社二氧化硅制、sio290.2%、al2o30.38%、na2o0.25%)4.40g,进而充分混合,得到原料组合物。原料组合物的组成以将sio2设为1时的摩尔比计为:al2o3:0.033、六亚甲基亚胺:0.35、na2o:0.09、h2o:45。

将该原料组合物密封于80cc的不锈钢制高压釜,边以55rpm旋转边以150℃加热7天。将加热后的产物进行固液分离,将所得固相用充分量的纯水清洗,以110℃进行干燥,进而在空气流通下、以600℃焙烧2小时。根据粉末x射线衍射,产物为mww型沸石(孔径:)。另外,根据荧光x射线分析,mww型沸石的sio2/al2o3摩尔比为20。

对所得mww型沸石焙烧品用硝酸钠溶液进行离子交换。所得钠交换mww型沸石的sio2/al2o3摩尔比为20、na/al比为0.6(相对于铝的金属(na)量:0.6当量)。

该钠交换mww型沸石(氙吸附剂)的25℃、1kpa下的氙吸附量为0.17mol/kg,25℃、100kpa下的氮气吸附量为0.47mol/kg。另外,氙选择性为36.2。

实施例9

对实施例1中得到的焙烧后的cha型沸石(孔径:)用硝酸银溶液进行离子交换。所得银交换cha型沸石的sio2/al2o3摩尔比为13,ag/al比为0.6(相对于铝的金属(ag)量:0.6当量),不含有na、k。将该银交换cha型沸石的紫外可见吸收光谱示于图1和图2。由图表明,在310~330nm处具备具有峰顶的吸收峰。

该银交换cha型沸石(氙吸附剂)的25℃、1kpa下的氙吸附量为0.88mol/kg,25℃、100kpa下的氮气吸附量为0.65mol/kg。另外,氙选择性为135。

实施例10

对实施例2中得到的结晶后的fer型沸石(孔径:进行成型前的粉体)用硝酸银溶液进行离子交换。所得银交换fer型沸石的sio2/al2o3摩尔比为18,ag/al比为0.5(相对于铝的金属(ag)量:0.5当量),不含有na、k。将该银交换fer型沸石的紫外可见吸收光谱示于图1和图2。由图表明,在310~330nm处具备具有峰顶的吸收峰。

该银交换fer型沸石(氙吸附剂)的25℃、1kpa下的氙吸附量为0.79mol/kg,25℃、100kpa下的氮气吸附量为0.63mol/kg。另外,氙选择性为125。

将该银交换fer型沸石在干燥空气气氛中、以400、500、600℃进行3小时焙烧(升温速度:均为5℃/分钟)。将焙烧后的银交换沸石各自的25℃、1kpa下的氙吸附量、25℃、100kpa下的氮气吸附量、氙选择性示于表2。

[表2]

如表2所示那样,通过400℃~600℃的焙烧,银交换沸石的氙吸附量增加。

实施例11

对实施例10中得到的银交换fer型沸石再次用硝酸银溶液进行离子交换。所得银交换fer型沸石的sio2/al2o3摩尔比为18,ag/al比为0.8(相对于铝的金属(ag)量:0.8当量),不含有na、k。将该银交换fer型沸石的紫外可见吸收光谱示于图1和图2。由图表明,在310~330nm处具备具有峰顶的吸收峰。

该银交换fer型沸石(氙吸附剂)的25℃、1kpa下的氙吸附量为0.98mol/kg,25℃、100kpa下的氮气吸附量为0.74mol/kg。另外,氙选择性为132。

将该银交换fer型沸石在干燥空气气氛中、以500℃进行3小时焙烧(升温速度:均为5℃/分钟)。将焙烧后的银交换沸石各自的25℃、1kpa下的氙吸附量、25℃、100kpa下的氮气吸附量、氙选择性示于表2。

如表2所示那样,通过500℃的焙烧,银交换沸石的氙吸附量增加。

实施例12

对实施例8中得到的mww型沸石(孔径:)用硝酸银溶液进行离子交换。所得银交换mww型沸石的sio2/al2o3摩尔比为20,ag/al比为0.5(相对于铝的金属(ag)量:0.5当量),不含有na。将该银交换mww型沸石的紫外可见吸收光谱示于图1和图2。由图表明,在310~330nm处具备具有峰顶的吸收峰。

该银交换mww型沸石(氙吸附剂)的25℃、1kpa下的氙吸附量为0.49mol/kg,25℃、100kpa下的氮气吸附量为0.38mol/kg。另外,氙选择性为129。

实施例13

对实施例1中得到的焙烧后的cha型沸石(孔径:)用硝酸银溶液进行离子交换。所得银交换cha型沸石的sio2/al2o3摩尔比为13,ag/al比为0.5(相对于铝的金属(ag)量:0.5当量),不含有na、k。将该银交换cha型沸石的紫外可见吸收光谱示于图1和图2。由图表明,在310~330nm处具备具有峰顶的吸收峰。

该银交换cha型沸石(氙吸附剂)的25℃、1kpa下的氙吸附量为0.79mol/kg,25℃、100kpa下的氮气吸附量为0.59mol/kg。另外,氙选择性为134。

将该银交换cha型沸石在干燥空气气氛中、以400、500℃进行3小时焙烧(升温速度:均为5℃/分钟)。将焙烧后的银交换沸石各自的25℃、1kpa下的氙吸附量、25℃、100kpa下的氮气吸附量、氙选择性示于表2。

如表2所示那样,通过400℃~500℃的焙烧,银交换沸石的氙吸附量增加。

实施例14

对实施例2中得到的结晶后的fer型沸石(孔径:进行成型前的粉体)用氯化铵溶液进行离子交换,接着,用硝酸钙溶液进行离子交换。所得钙交换fer型沸石的sio2/al2o3摩尔比为18,ca/al比为0.45(相对于铝的金属(ca)量:0.90当量),不含有na、k。

该钙交换fer型沸石(氙吸附剂)的25℃、1kpa下的氙吸附量为0.55mol/kg,25℃、100kpa下的氮气吸附量为0.70mol/kg。另外,氙选择性为78.6。

实施例15

对实施例2中得到的结晶后的fer型沸石(孔径:进行成型前的粉体)用氯化铵溶液进行离子交换,接着,用硝酸镁溶液进行离子交换。所得镁交换fer型沸石的sio2/al2o3摩尔比为18,mg/al比为0.45(相对于铝的金属(mg)量:0.90当量),不含有na、k。

该镁交换fer型沸石(氙吸附剂)的25℃、1kpa下的氙吸附量为0.36mol/kg,25℃、100kpa下的氮气吸附量为0.50mol/kg。另外,氙选择性为72.0。

实施例16

对实施例2中得到的结晶后的fer型沸石(孔径:进行成型前的粉体)用氯化铵溶液进行离子交换,接着,用氯化锂溶液进行离子交换。所得锂交换fer型沸石的sio2/al2o3摩尔比为18,li/al比为1.0(相对于铝的金属(li)量:1.0当量),不含有na、k。

该锂交换fer型沸石(氙吸附剂)的25℃、1kpa下的氙吸附量为0.63mol/kg,25℃、100kpa下的氮气吸附量为1.08mol/kg。另外,氙选择性为58.3。

比较例1

测定nax型沸石成型体(zeorum(注册商标)f-9ha:东曹株式会社制、沸石的孔径:二氧化硅/氧化铝的摩尔比:2.5)的氙吸附量和氮气吸附量。25℃、1kpa下的氙吸附量为0.03mol/kg,25℃、100kpa下的氮气吸附量为0.43mol/kg。另外,氙选择性为7.0。

比较例2

测定lilsx型沸石成型体(zeorum(注册商标)nsa-700:东曹株式会社制、沸石的孔径:二氧化硅/氧化铝的摩尔比:2.0)的氙吸附量和氮气吸附量。25℃、1kpa下的氙吸附量为0.03mol/kg,25℃、100kpa下的氮气吸附量为1.13mol/kg。另外,氙选择性为2.7。

比较例3

测定cax型沸石成型体(zeorum(注册商标)sa-600a:东曹株式会社制、沸石的孔径:二氧化硅/氧化铝的摩尔比:2.5)的氙吸附量和氮气吸附量。25℃、1kpa下的氙吸附量为0.11mol/kg,25℃、100kpa下的氮气吸附量为1.14mol/kg。另外,氙选择性为9.6。

比较例4

测定caa型沸石成型体(zeorum(注册商标)sa-500a:东曹株式会社制、沸石的孔径:二氧化硅/氧化铝的摩尔比:2.0)的氙吸附量和氮气吸附量。25℃、1kpa下的氙吸附量为0.05mol/kg,25℃、100kpa下的氮气吸附量为0.57mol/kg。另外,氙选择性为8.8。

比较例5

对nay型沸石(hsz-320naa:东曹株式会社制、沸石的孔径:二氧化硅/氧化铝的摩尔比:5.7)用氯化铵溶液进行离子交换,接着,用硝酸银溶液进行离子交换。所得银交换fau型沸石的sio2/al2o3摩尔比为5.7,ag/al比为0.2,na/al比为0.2。

该银交换fau型沸石(氙吸附剂)的25℃、1kpa下的氙吸附量为0.02mol/kg。

将该银交换fau型沸石在干燥空气气氛中、以500℃进行3小时焙烧(升温速度:均为5℃/分钟)。焙烧后的银交换沸石的25℃、1kpa下的氙吸附量为0.02mol/kg。通过500℃的焙烧,银交换沸石的氙吸附量未增加。

需要说明的是,将2017年1月6日申请的日本专利申请2017-1299号、2017年6月28日申请的日本专利申请2017-125856号、2017年11月14日申请的日本专利申请2017-218780号的说明书、权利要求书、附图和摘要的全部内容引入至此,作为本发明的说明书的公开内容被引入。

产业上的可利用性

本发明的氙吸附剂吸附低浓度氙的吸附量多,因此可以从混合气体有效地吸附氙。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1