一种细菌纤维素负载金属粒子与植物纤维复合制备的催化试纸及其方法与流程

文档序号:15462051发布日期:2018-09-18 18:24阅读:179来源:国知局

本发明涉及造纸技术以及有机催化领域,具体涉及一种细菌纤维素负载金属粒子与植物纤维复合制备的催化试纸及其方法。



背景技术:

非均相催化剂中的金属纳米粒子具有接近分子水平的催化反应效率,因为其尺寸较小,并具有较大的比表面积。然而,金属纳米粒子的有效分离与回收仍然是一个问题,过程往往耗时耗力,花费较高;此外,由于较高的表面能和范德华力,金属纳米粒子容易聚集,降低其催化活性。将金属纳米粒子负载在一个合适的载体上,提高其稳定性,并提高其分离及回收性,使其兼具均相和非均相催化剂的优势,是一个普遍需要解决的问题。一些被用来负载的金属纳米催化剂的常用载体包括:介孔有机硅及接枝硅泡沫、层状双氢氧化物、粘土、沸石分子筛、各种金属氧化物、活性或氮掺杂碳、聚合物网络、石墨烯、树脂等。然而,通过重复使用,这些载体中的大多数很容易使催化剂浸出或降解,影响反应得率,限制了重复利用。此外,大部分载体的比表面积较低,难以赋予催化剂与反应物较大的接触面积。因而寻找合适的金属纳米粒子载体,能够同时赋予催化剂较高的催化效率与较强的可回收及重复使用性仍是需要解决的一个主要技术问题。

细菌纤维素是一种新兴的生物材料,由微生物分泌合成,具有极高的纤维素纯度及结晶度、精细的微观网状结构。微观形态下,均匀分离及相互交织的纤维素微纤丝结构(直径2-100nm)赋予了细菌纤维素超精细的三维网络结构,这些交织的纤丝结构形成了细菌纤维素表面数量庞大的纳米级隧道和孔隙结构,具有将金属纳米粒子锁定、分散、防止其聚集的潜能。然而,以单纯的细菌纤维素作为金属纳米粒子载体成本较高,力学性能较差,并且液体通透性较弱,削弱了反应物与金属粒子的接触。

也是由于其精细的网状结构,细菌纤维素能够通过数量庞大的游离羟基与植物纤维紧密地结合,因此可以通过对细菌纤维素的物化改性,提升其功能化特性,赋予纸张特殊功能。因而本发明的创新点在于,将负载金属纳米粒子的细菌纤维素与植物纤维复合制备催化试纸。该催化试纸中,细菌纤维素保证了金属纳米粒子良好的分散及稳定性,而植物纤维作为基体保证催化剂载体的力学强度以及反应物通透性。该催化试纸具有使用及回收极其方便、重复使用性高、设计简单、制造成本低、催化效率较高、载体材料绿色可降解等优点。



技术实现要素:

为寻找绿色可降解的金属纳米粒子载体,并能够同时赋予催化剂较高的催化效率与较强的可回收及重复使用性,本发明的目的在于提供一种细菌纤维素负载金属粒子与植物纤维复合制备催化试纸的方法。该催化试纸中,细菌纤维素保证了金属纳米粒子良好的分散及稳定性,而植物纤维作为基体保证催化剂载体的力学强度以及反应物通透性。该催化试纸具有使用及回收极其方便、重复使用性高、设计简单、制造成本低、催化效率较高、载体材料绿色可降解等优点。

本发明的目的通过以下技术方案实现。

一种细菌纤维素负载金属粒子与植物纤维复合制备催化试纸的方法,包括以下步骤:

(1)将含氮或含磷的有机小分子化合物通过与细菌纤维素结构中的大量羟基化学键合,得到具有含氮或含磷基团的功能化细菌纤维素;其有益效果为,通过含氮或含磷基团与金属原子的蝥合作用,增强金属纳米粒子与细菌纤维素的结合稳定性,提高催化试纸的可重复使用性;

(2)将过渡金属的无机盐配置成水溶液,加入步骤(1)中制备的功能化细菌纤维素,根据过渡金属无机盐的溶解度,反应可加热进行,搅拌反应3小时以上直至含氮或含磷的功能基团将过渡金属离子吸附到细菌纤维素的纳米孔隙表面至饱和,分离并使用去离子水洗涤;其有益效果为,增强金属粒子在细菌纤维素表面的分散,提高催化效率;

(3)对步骤(2)中吸附至细菌纤维素表面的过渡金属离子进行原位还原,得到负载过渡金属纳米颗粒的细菌纤维素;其有益效果为,增强金属粒子在细菌纤维素表面的分散,提高催化效率;

(4)将植物纤维浆料与步骤(3)中制备的负载过渡金属纳米颗粒的细菌纤维素混合,用标准纸浆疏解机分散均匀,将混合浆料抄造成纸,制备成催化试纸;将试纸干燥至衡重,避光及隔绝空气保存;其有益效果为,以植物纤维作为基体可以保证催化剂载体(催化试纸)的力学强度,并且由于植物纤维的多孔性,可以提高载体的反应物通透性,提高反应物与金属粒子的接触几率,进而提高催化效率。

进一步地,所述细菌纤维素由细菌微生物如葡萄糖醋杆菌属、醋酸菌属、土壤杆菌属、假单胞杆菌属、无色杆菌属、产碱杆菌属、气杆菌属、固氮菌属、根瘤菌属和八叠球菌属中的一种体外合成,培养条件为静态或动态发酵培养条件。

更进一步地,步骤(1)中的含氮或含磷的有机小分子化合物包括(但是不限于)乙二胺、四乙烯五胺、二乙烯三胺、聚乙烯亚胺、N-甲基咪唑、二苯基氯化磷等。

进一步地,步骤(2)中的过渡金属包括(但是不限于)钯、铬、镍、银、铜、金等具有催化性能的金属。

进一步地,步骤(1)中的含氮或含磷的有机小分子与细菌纤维素羟基键合的方法包括(但是不限于)使用氧化剂如高碘酸盐、四甲基哌啶氮氧化物TEMPO等在水中将细菌纤维素上C2及C3键位上的羟基氧化成醛基,然后通过还原胺化反应与含氮化合物键合。

进一步地,步骤(1)中的含氮或含磷的有机小分子与细菌纤维素羟基键合的方法包括(但是不限于)将细菌纤维素在浓碱中(10-20%质量分数)与环氧氯丙烷等含卤素的环氧化合物反应,将环氧基团与细菌纤维素羟基键合,接着环氧基团再与含氮有机小分子化合物反应。

进一步地,步骤(1)中的含氮或含磷的有机小分子与细菌纤维素羟基键合的方法包括(但是不限于)将细菌纤维素与氯化亚砜等在二甲基甲酰胺(DMF)或N,N-二甲基乙酰胺(DMAc)下反应,将氯原子键合到细菌纤维素的羟基上,接着再与含氮小分子化合物反应。

进一步地,步骤(1)中的含氮或含磷的有机小分子与细菌纤维素羟基键合的方法包括(但是不限于)使用二苯基氯化磷等在吡啶作为溶剂的条件下与细菌纤维素的羟基键合。

进一步地,步骤(3)中的对细菌纤维素吸附得过渡金属离子进行原位还原的方法包括(但是不限于)将吸附过渡金属离子的细菌纤维素浸泡在硼氢化钠、氰基硼氢化钠、盐酸羟胺等还原剂的溶液中。

进一步地,步骤(4)中的植物纤维浆料为木材纤维、非木材植物纤维或二次纤维通过机械或化学制浆法等制备的造纸原料。

进一步地,步骤(4)中所述干燥的温度为110℃左右。

进一步地,步骤(4)中所述疏解后浆液的稠度为1wt%。

由以上所述方法制得的一种催化试纸。该催化试纸使用时可以置入尼龙网框架,然后再加入需要催化反应的反应介质中,可以使用磁力搅拌或者其它方式增强反应效率;其有益效果为,保护催化试纸,提高可重复使用性。

进一步地,所述催化反应包括(但是不限于)铃木偶联反应(Suzuki-Miyaura)反应、赫克反应(Heck反应)、Sonogashira反应、或硝基芳烃化合物降解等。

与现有技术相比,本发明具有如下优点:

1、本发明制备的催化试纸中,细菌纤维素保证了金属纳米粒子良好的分散及稳定性,而植物纤维作为基体保证催化剂载体的力学强度以及反应介质通透性。

2、本发明制备的催化试纸具有使用及回收极其方便、重复使用性高、设计简单、制造成本低、催化效率较高、载体材料绿色可降解等优点。

附图说明

图1是本发明一种细菌纤维素负载金属粒子与植物纤维复合制备催化试纸的方法的流程示意图。

具体实施方式

以下通过实施例对本发明作进一步详细描述,但本发明的实施不限于此。

实施例中的细菌纤维素由葡萄糖醋杆菌(Glucoacetobacter xylinus)分泌而成。细菌培养基的成分主要为:发酵椰子水50mL,硫酸铵0.1g,硫酸镁0.1g,磷酸二氢钾0.1g,蔗糖3.0g,蒸馏水50mL,用NaOH调节pH值至4.1,100℃灭菌5min。采用静态发酵培养方法,将培养基置于250mL烧杯中,接种5%(V/V)葡萄糖醋杆菌在温度为30℃下静置培养6天。获得的细菌纤维素湿膜固含量为1.5wt%。

实施例1

将细菌纤维素(Bacterial Cellulose,BC)湿膜30g切割成小块,加入100mL水中,使用组织捣碎机分离成小碎块(各方向尺寸2mm),以静置一段时间后仍不悬浮在水中为准,过滤后加入到100mL质量分数为0.2%的高碘酸钠溶液中,并以350rpm转速搅拌。反应在室温及无光条件下进行2天。反应完成后,将氧化细菌纤维素过滤并洗涤。将氧化细菌纤维素与5.6g聚乙烯亚胺和80mL去离子水混合到锥形瓶里。加入0.21g氰基硼氢化钠作为催化剂。用0.1M盐酸将混合物的pH调节至5.8-6。反应在磁力搅拌下以350rpm的转速和室温进行6小时。反应后,将聚乙烯亚胺改性的BC过滤并洗涤。

将0.5g的氯亚钯酸钾(K2PdCl4)溶解在70℃的100ml热水中,然后加入聚乙烯亚胺改性的BC。将混合物在磁力搅拌350rpm的转速下和70℃反应6小时。所得固体产物用热水洗涤,并加入到100mL 5mg/mL硼氢化钠溶液中在常温下反应1小时,以对负载的钯离子进行原位还原。将得到的负载钯纳米颗粒的BC(Pd-BC)过滤并用去离子水洗涤。经检测,Pd-BC负载的钯质量分数达到9.7%。

将Pd-BC与漂白蔗渣浆以20%的质量比混合(Pd-BC占纸张干重),并以1%(m/m)的稠度用标准纸浆疏解机分散均匀。催化试纸由混合纸浆通过标准纸业手抄机(Messmer 225,Holland)制成。每片的干重控制在70g/m2。将纸张在120℃下干燥20分钟,并避光及隔绝空气保存。

该催化试纸对铃木偶联反应(Suzuki-Miyaura)具有较好的催化效果。使用2mmol K2CO3作为碱,在20mL螺旋盖小瓶中使用16mL 95%乙醇,1.1mmol苯基硼酸和1mmol碘苯在80℃下进行生成联苯的催化反应研究。所有反应在正常大气条件下进行,不需要惰性气体氛围条件。加入溶剂和化学品后,用盖子封闭反应小瓶,并加入到预热至80℃的油浴中。将催化试纸切成1cm×3cm的纸片。每个反应使用四张纸片,并放入尼龙网框架中。待油浴中反应瓶温度达到平衡后,插入装载有催化纸片的尼龙框架,盖紧瓶盖防止空气进入,并用磁力搅拌棒在反应混合物中搅拌。反应2小时后的联苯的产率为99%。同一张催化试纸使用26次时候仍能够获得接近90%的产率。同样的,选取几种取代基不同的苯基硼酸和芳基卤化物,该催化试纸也具有较好的催化效率,催化反应时间及得率见下表1(使用实施例1中的催化试纸,在16mL的95%乙醇中以2.5mmol K2CO3作为碱,1mmol苯基硼酸与1.1mmol芳基卤生成联苯产物的反应时间及得率,其中反应温度=80℃)。

表1。

注:X=卤素;R=苯环上的取代基。

实施例2

将细菌纤维素(Bacterial Cellulose,BC)湿膜30g切割成小块,加入90mL去离子水中,使用组织捣碎机分离成小碎块(各方向尺寸2mm),以静置一段时间后仍不悬浮在水中为准,过滤后加入10%质量分数的氢氧化钠溶液中润胀,并以350rpm转速搅拌20min。接着加入15mL环氧氯丙烷,反应24h后过滤洗涤。将环氧化的BC加入90mL去离子水中,并加入7.6mL四乙烯五胺以及1.3g碳酸钠,常温下反应3小时后过滤洗涤,得到四乙烯五胺改性的BC。

将0.5g的氯亚钯酸钾(K2PdCl4)溶解在80℃的100ml热水中,然后加入四乙烯五胺改性的BC。将混合物在磁力搅拌350rpm的转速下和80℃反应3小时。所得固体产物用热水洗涤,并加入到100mL 5mg/mL硼氢化钠溶液中并在常温下反应1小时,以对负载的钯离子进行原位还原。将得到的负载钯纳米颗粒的BC(Pd-BC)过滤并用去离子水洗涤。经检测,Pd-BC负载的钯质量分数达到8.2%。

将Pd-BC与漂白蔗渣浆以20%的质量比混合(Pd-BC占纸张干重),并以1%(m/m)的稠度用标准纸浆疏解机分散均匀。催化试纸由混合纸浆通过标准纸业手抄机(Messmer 225,Holland)制成。每片的干重控制在70g/m2。将纸张在105℃下干燥30分钟,并避光及隔绝空气保存。

该催化试纸对赫克反应(Heck反应)以及Sonogashira反应具有较好的催化效果。使用2mmol K2CO3作为碱,在20mL螺旋盖小瓶中使用16mL 95%乙醇,1.1mmol苯乙烯或1.1mmol苯乙炔与1mmol溴苯在80℃下进行反应研究。所有反应在正常大气条件下进行,不需要惰性气体氛围条件。加入溶剂和化学品后,用盖子封闭反应小瓶,并加入到预热至80℃的油浴中。将催化试纸切成1cm×3cm的纸片。每个反应使用四张纸片,并放入尼龙网框架中。待油浴中反应瓶温度达到平衡后,插入装载有催化纸片的尼龙框架,盖紧瓶盖防止空气进入,并用磁力搅拌棒在反应混合物中搅拌。反应2小时后的产率分别为95%和98%。同一张催化试纸使用20次时候仍能够获得接近90%的产率。

实施例3

将细菌纤维素(Bacterial Cellulose,BC)湿膜30g分离成小碎块,步骤同实例1。过滤BC水分后加入100mL吡啶中,加热至80℃,并以500rpm转速搅拌30min。冷却至室温后,加入10mL二苯基氯化磷,以350rpm的转速在室温下反应3天。反应结束后,过滤洗涤,得到二苯基膦功能化的BC。将二苯基膦功能化的BC加入100mL 0.2M的六水合氯化镍溶液中(NiCl2.6H2O),在室温下以350rpm的转速搅拌反应4小时。过滤洗涤所得的固体产物,并加入到100mL 0.1M氰基硼氢化钠溶液中,在常温下搅拌反应1小时,对负载的镍离子进行原位还原。将所得的负载镍纳米颗粒的BC(Ni-BC)过滤并用去离子水洗涤。

将Ni-BC与漂白针叶木浆混合抄造成催化试纸,步骤同实例1。

该催化试纸对硝基芳烃化合物降解反应具有较好的催化效果。在20mL螺旋盖小瓶中加入0.8mL 0.2M的2-硝基苯酚溶液、1.6mL 0.2M的硼氢化钠溶液、以及10mL去离子水中在常温下反应。催化试纸的使用方法及用量同实例1。反应30min后,生成2-氨基苯酚的得率达92%。同一张催化试纸使用10次,仍能获得接近85%的得率。

实施例4

将细菌纤维素(Bacterial Cellulose,BC)湿膜30g分离成小碎块,步骤同实例1。将BC加入100mL N,N-二甲基乙酰胺与20mL氯化亚砜的混合溶液中,在95℃下搅拌反应3小时制备氯代BC。将3.28gN-甲基咪唑加入100mL二甲基亚砜(DMSO)中,溶解后加入氯代BC,在惰性气体的保护下加热至100度,并以350rpm转速搅拌12h。冷却至室温后,过滤并用丙酮洗涤,得到N-甲基咪唑功能化BC。将N-甲基咪唑功能化BC加入100mL 0.1M的硝酸银溶液中(AgNO3),在室温下以350rpm的转速搅拌反应4小时。过滤洗涤所得的固体产物,并加入到100mL 0.1M氰基硼氢化钠溶液中,在常温下搅拌反应1小时,对负载的银离子进行原位还原。将所得的负载银纳米颗粒的BC(Ag-BC)过滤并用去离子水洗涤。

将Ag-BC与二次纤维木浆混合抄造成催化试纸,步骤同实例1。

该催化试纸对硝基芳烃化合物降解反应具有较好的催化效果。在20mL螺旋盖小瓶中加入0.8mL 0.2M的4-硝基苯酚溶液、1.6mL 0.2M的硼氢化钠溶液、以及10mL去离子水中在常温下反应。催化试纸的使用方法及用量同实例1。反应30min后,生成4-氨基苯酚的得率达95%。同一张催化试纸使用10次,仍能获得接近90%的得率。

本发明的流程示意图如图1所示。

以上列举的仅是本发明的具体实施例。本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1