一种可见光响应铁系光催化剂的制备方法与流程

文档序号:15441550发布日期:2018-09-14 22:51阅读:316来源:国知局

本发明涉及一种可见光响应铁系光催化剂及制备,属于无机非金属材料制造技术领域。



背景技术:

目前采用光催化技术用于降解环境污染物已开始应用,但遇到几个限制因素:一是以二氧化钛为主的半导体光催化剂,因其带隙较宽(2.8ev),只能依赖387nm以下的紫外光才能发挥作用,不能利用太阳光,成本高;二是产生的光生电子和光生空穴易复合,使光催化剂的量子效率低,去污能力差;三是制得的粉末态光催化剂在废水和废气处理中难回收,限制了应用。

铁酸铋(bfo)也是一种半导体光催化剂,它带隙较窄(2.2ev左右),对光响应范围达400nm的可见光区,化学稳定性也好,在室温下有弱磁性,具有光催化活性和磁分离性能。但它产生的光生电子和光生空穴也易复合,使之光催化效率不高。另外,由于自身周期摆线螺旋结构(周期约62nm)导致铁离子固有磁矩相互部分抵消,使得bfo宏观表现磁性很弱。为此,开发光催化效率高、化学性质稳定、价廉的催化剂已成为当务之急和热点课题。

近年来有关掺杂适量的金属离子在一定程度上可改变bfo的铁电、铁磁等性能的文献已有很多报道,代表性的论文有:稀土元素钇和钬掺杂对铁酸铋磁性的影响(《武汉工程大学学报》,2013),水热法制备稀土掺杂铁酸铋粉末及其性能研究(《材料导报b》,1914),bifeo3的制备及光催化氧化性能研究(《环境科学与技术》,2015),过渡族金属掺杂对bifeo3物相和光催化性的影响(《环境科学和技术》,2017)等。

有关掺杂铁酸铋光催化剂的发明专利也比较多,如:

cn105170157a公开了“一种钕掺杂铁酸铋纳米光催化剂及其制备方法”,该发明提供了一种可见光响应型钕掺杂铁酸铋纳米光催化剂,其特点在于该光催化剂的化学式为bi(1-x)ndxfeo3(0<x≤0.02),具有多孔纳米结构,颗粒尺寸介于100~300nm范围。同时,本发明还提供了该纳米光催化剂的制备方法,其特点在于,将硝酸铁、硝酸铋和硝酸钕按比例溶于乙二醇形成溶液,加入一定量的酒石酸作为螯合剂,混合均匀,加热形成溶胶后烘干,研磨后焙烧即可得到钕掺杂铁酸铋纳米粉体。本发明得到的钕掺杂铁酸铋纳米光催化剂具有良好的可见光响应和光催化性能,制备方法简单,工艺条件易调控,成本低,无污染,易于工业生产和推广应用。

cn101303928公开了“一种钴掺杂铁酸铋多铁材料及其制备方法”,该发明公开的钴掺杂铁酸铋多铁材料,其化学式为bicoxfe1-xo3,0<x≤0.07。制备方法包括制备铁、铋和钴的羟基氧化物沉淀作为反应物料,加入适宜浓度的氢氧化钾促进晶化,于120~200℃下,水热反应得到掺钴铁酸铋粉体。本发明通过钴掺杂,使铁酸铋的磁性得到显著提高。且工艺过程简单,无污染,成本低,易于规模化生产。本发明的掺钴铁酸铋多铁材料结晶质量稳定,在信息存储、卫星通讯、精密控制、高压输电线路的电路测量、磁电传感器等领域有着广泛的应用前景。

但是,至今尚未见有关过渡金属和稀土元素共掺杂复合铁酸铋的可见光响应光催化剂报道,更未见到用该技术和材料治理废气和废水的报道。



技术实现要素:

发明目的:旨在提供一种可见光响应催化功能的复合半导体材料及制备,其响应的可见光光谱范围大,且具有较强磁性,使用后易回收,从而为利用太阳光实施光催化治理环境污染、为解决粉末态催化剂在废水治理中的回收难题,提供了一种实用材料。

技术方案:一种可见光响应铁系光催化剂,包含过渡金属、稀土、铋和铁等成分,其最终产物分子式为bi(1-x-y)txpyfeo3,式中t为过渡金属,p为稀土元素,0<x≤0.07,0<y≤0.07,如bi0.90ni0.03ce0.07feo3。

所述可见光响应铁系光催化剂的制备方法,采用低温热分解配位前驱体法,快速制备掺杂过渡金属和稀土元素的铁酸铋,包括配位前驱体的制备和和配位前驱体的热分解等二个步骤:

配位前驱体的制备,将一定量的配位剂二乙三胺五乙酸(h5dtpa)溶解于热水中,按催化剂分子剂量加入过渡金属元素、稀土元素、铋和铁的水合硝酸盐,其过渡金属为铬cr、锰mn、钴co、镍ni、铜cu和锌zn等水合硝酸盐中的一种;其稀土元素为镧la、钇y、铈ce、镨pr、钕nd、钐sm、铕eu、钆gd、镝dy、铒er和钇y等水合硝酸盐中的一种。过渡金属、稀土、铋和铁的硝酸盐加入量按照最终产物bi(1-x-y)txpyfeo3计量,式中t为过渡金属,p为稀土元素,0<x≤0.07,0<y≤0.07。

将混合物充分搅拌,直至得到透明溶液,再在60℃~90℃下加热3d~6d,得到配位前驱体bi(1-x-y)txpy(dtpa)fe(no3)3·nh2o固体。

2、配位前驱体的热分解

将固态bi(1-x-y)txpy(dtpa)fe(no3)3·nh2o配位前驱体置入马弗炉中于400℃~600℃灼烧1h~2h,待样品冷却至室温,研磨,得到深褐色的bi(1-x-y)txpyfeo3粉末氧化物。

配位前驱体溶液时,其溶液加热温度低于90℃。

配置掺杂成分与基体元素铋和铁的比为:过渡金属元素(t):稀土元素(p):铋(bi):铁(fe)=x:y:(1-x-y):1,式中0<x≤0.07,0<y≤0.07。

用于制备配位前驱体的溶液,需将混合得到的透明溶液加热至50℃~90℃并保持3d~6d。

有益效果:本发明在经典的铁酸铋催化剂中同时掺杂了过渡金属元素和稀土元素。其制备方法为:先制备共掺杂铁酸铋的前驱体,使金属和稀土离子进入铁酸铋晶格中;然后热分解配位前驱体,使之形成纳米级复合铁酸铋氧化物bi(1-x-y)txpyfeo3。以该系催化剂以bi0.90p0.03o0.07feo3为例,它对可见光的吸收波长可扩展至665nm,其最大吸收区间为520nm附近;饱和磁矩和剩余磁矩分别为4.53emu·g-1和0.98emu·g-1,具有较强的顺磁性;在可见光下对亚甲基兰水溶液的脱色率大于95%;样品使用后的磁化回收率达90%。因此该催化剂既能有效地利用可见光催化,又能通过磁分离法进行回收,在废水及废气治理中具有很高的实用性。

本发明在严格控制原料的配比、制备工艺和烧成制度等条件下,制得了掺杂的铁酸铋光催化剂。将过渡金属和稀土共掺杂于铁酸铋中,扩充了催化剂对可见光的响应范围,大大提高可见光的利用率和光催化反应效率;二是该粉末状催化剂的磁性强,便于在废水处理中回收;三是制备采用了低温热分解配位前驱体法,快速、简便。因此,本发明将能促进利用太阳治理废气和废水,将会带来良好的经济和社会效益。

附图说明

具体实施方式

1、配位前驱体的制备

将一定量的配位剂二乙三胺五乙酸(h5dtpa)溶解于热水中,按剂量加入过渡金属元素、稀土元素、铋和铁的水合硝酸盐,其过渡金属为铬cr、锰mn、钴co、镍ni、铜cu和锌zn等水合硝酸盐中的一种;其稀土元素为镧la、钇y、铈ce、镨pr、钕nd、钐sm、铕eu、钆gd、镝dy、铒er和钇y等水合硝酸盐中的一种。过渡金属、稀土、铋和铁的硝酸盐加入量按照最终产物bi(1-x-y)txpyfeo3计量,式中t为过渡金属,p为稀土元素,0<x≤0.07,0<y≤0.07。

充分搅拌混合物得到透明溶液,将此溶液在60℃~90℃下加热3d~6d,得到配位前驱体bi(1-x-y)txpy(dtpa)fe(no3)3·nh2o固体。

2、配位前驱体的热分解

将固态bi(1-x-y)txpy(dtpa)fe(no3)3·nh2o配位前驱体置入马弗炉中于400℃~600℃灼烧1~2h,待样品冷却至室温,研磨,得到深褐色的bi(1-x-y)txpyfeo3粉末氧化物。

3、物相和和催化性能表征

(1)用x粉末衍射仪(xrd),分析样品的定性和定量组成,结晶的形态和尺寸等。

(2)用红外光谱仪(ft-ir),测定样品的特征吸收峰,获得分子结构和化学键信息。

(3)用紫外可见漫反射光谱仪,测定样品对光的吸收范围,根据eg=1240/λ公式估算半导体的带隙。

(4)用样品磁强计,测定样品的磁性强度。

(5)甲基橙(mo)光降解试验:将浓度为20mg·l-1的mo溶液置于烧杯中,加入一定量的光催化剂bitxpyfe(1-x-y)o3,磁力搅拌,光源为300w的荧光灯(波长为400nm~760nm),开始先避光通入空气,使催化剂吸附mo达到平衡。然后开启光源照射,使mo进行光降解反应,定时取样。将取出的悬浊液高速离心分离,取上层清液分析测定样品的吸光度,用以下公式计算mo溶液的脱色率r:

r=(c0-ct)/c0×100%=(a0-at)/a0×100%

式中:c0-光照前溶液的mo浓度(mg/l),ct-光照t时间后的mo浓度(mg/l);a0-光照前mo溶液的吸光度,at-光照t时间后mo溶液的吸光度。

实施例1:制备bi0.95ni0.05ce0.05feo3可见光响应光催化剂,方法如下:

配制浓度为1mmol的h5dtpa溶液500ml,置于磁力搅拌器上搅拌并加热至80℃,待h5dtpa全部溶解。依次加入0.90mmol的bi(no3)3·5h2o溶液250ml和1mmol的fe(no3)3·6h2o溶液250ml,继续加热保持80℃,充分搅拌,得黄绿色透明溶液。再依次加入0.05mmol的ni(no3)2·6h2o溶液250ml,0.05mmol的ce(no3)2·6h2o溶液250ml,然后将其溶液置于80℃的烘箱中保温5d,形成固体配位前驱体bi0.90ni0.05ce0.05(dtpa)fe(no3)3·nh2o,最后放入瓷坩埚并置入马弗炉中500℃灼烧1h。待样品冷却至室温,取出样品,研磨至150目,得到深砖红色bi0.90ni0.05ce0.05feo3粉末。

样品的物相表征和光催化性能测试结果:

xrd测试表明,该方法制备的掺杂铁酸铋,主相仍为六方菱形r3c相的铁酸铋,晶体尺寸为26nm,灼烧后产物组成接近bi0.90ni0.05ce0.05feo3。

ft-ir测试表明,前驱体需在接近500℃时才完全分解,出现的一些特征峰是由于ni2+和ce2+掺杂后bfo晶格畸变及晶体变小引起的。

紫外-可见漫反射光谱仪测试表明,样品对光的吸收范围对光的强吸收范围超过510nm,边带扩展到650nm,根据eg=1240/λ估算了带隙,带隙减小到2.0ev左右。

磁强计测试表明,样品的饱和磁矩和剩余磁矩分别为4.27和0.90emu·g-1

光降解试验表明,甲基橙溶液经过2.5h可见光光催化反应,其脱色率可达95%,通过磁分离方式对催化剂回收,每次回收率达90%左右。

实施例2:制备bi0.90ni0.03ce0.07feo3可见光响应光催化剂。

除加入250ml的ni(no3)2·6h2o溶液浓度为0.03mmol、ce(no3)2·6h2o溶液的浓度为0.07mmol外,其余加入试剂的浓度和加入量,以及操作步骤均与上述实施例1相同。

样品的物相表征和光催化性能测试结果:

xrd测试表明,该方法制备的掺杂铁酸铋,主相仍为六方菱形r3c相的铁酸铋,晶体尺寸为28nm,灼烧后产物组成接近bi0.90ni0.03ce0.07feo3。

ft-ir测试表明,前驱体需在接近500℃时才完全分解,出现的一些特征峰是由于ni2+和ce2+掺杂后bfo晶格畸变及晶体变小引起的。

紫外-可见漫反射光谱仪测试表明,样品对光的吸收范围对光的强吸收范围超过520nm,边带扩展到665nm,根据eg=1240/λ估算了带隙,带隙减小到1.9ev左右。

磁强计测试表明,样品的饱和磁矩和剩余磁矩分别为4.53emu·g-1和0.98emu·g-1

光降解试验表明,甲基橙溶液经过2.5h可见光光催化反应,其脱色率可达98%,通过磁分离方式对催化剂回收,每次回收率达92%左右。

实施例3:制备bifeo3可见光响应光催化剂。

配制浓度为1mmol的h5dtpa溶液500ml,置于磁力搅拌器上搅拌并加热至80℃,待h5dtpa全部溶解。依次加入1mmol的bi(no3)3·5h2o溶液250ml和1mmol的fe(no3)3·6h2o溶液250ml,继续加热保持80℃,充分搅拌,得黄绿色透明溶液。然后将其溶液置于80℃的烘箱中保温5d,形成固体配位前驱体bi(dtpa)fe(no3)3·nh2o,最后放入瓷坩埚并置入马弗炉中500℃灼烧1h。待样品冷却至室温,取出样品,研磨至150目,得到深砖红色bifeo3粉末。

xrd测试表明,产品的主相为六方菱形r3c相的铁酸铋,晶体尺寸为30nm,灼烧后产物组成接近bifeo3。

ft-ir测试表明,前驱体需在接近500℃时才完全分解,出现的峰表明bi和fe存在。

紫外-可见漫反射光谱仪测试表明,样品对光的吸收范围对光的强吸收范围超过460

nm,边带扩展近600nm,根据eg=1240/λ估算了带隙为2.10ev左右。

磁强计测试表明,样品的饱和磁矩和剩余磁矩分别为3.93和0.78emu·g-1

光降解试验表明,甲基橙溶液经过2.5h可见光光催化反应,其脱色率可达75%,通过磁分离方式对催化剂回收,每次回收率达70%左右。

上述实施例表明铁酸铋中共掺杂过渡金属和稀土元素的光催化效果比不掺杂的铁酸铋好,过渡金属和稀土元素的掺杂量也会引起催化剂物相和光催化效果的变化。

以上所述仅为本发明的实施例,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均以包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1